JPS6021205B2 - How to dissolve reduced iron - Google Patents

How to dissolve reduced iron

Info

Publication number
JPS6021205B2
JPS6021205B2 JP52049533A JP4953377A JPS6021205B2 JP S6021205 B2 JPS6021205 B2 JP S6021205B2 JP 52049533 A JP52049533 A JP 52049533A JP 4953377 A JP4953377 A JP 4953377A JP S6021205 B2 JPS6021205 B2 JP S6021205B2
Authority
JP
Japan
Prior art keywords
iron
reduced iron
slag
melting
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52049533A
Other languages
Japanese (ja)
Other versions
JPS53134716A (en
Inventor
忍 佐々木
宗谷 高木
淳一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP52049533A priority Critical patent/JPS6021205B2/en
Publication of JPS53134716A publication Critical patent/JPS53134716A/en
Publication of JPS6021205B2 publication Critical patent/JPS6021205B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は還元鉄を銭鉄溶製用原材料の一部として電気誘
導炉にて溶解するに降して、フェロシリコソやフェロマ
ンガン等の成分調整用添加剤や還元鉄自身及び他の鋳鉄
溶製用原材料の溶解歩蟹りを向上させ、且つ、発生する
スラグ中の酸化鉄の還元反応を促進させるとともに、ス
ラグによるラィニング侵食量を極力低く抑えることを目
的とする効率的な溶解方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves melting reduced iron in an electric induction furnace as a part of the raw material for smelting iron, and then adding additives for adjusting the composition such as ferrosilicoso and ferromanganese and reducing iron itself. This is an efficient method that aims to improve the melting process of raw materials for smelting and other cast iron, promote the reduction reaction of iron oxide in the generated slag, and suppress the amount of lining erosion caused by slag to the lowest possible level. It concerns a method of dissolution.

鉄鉱石を軟化や溶融の生じない比較的低温度で還元すれ
ば鉄鉱石中の酸化鉄が金属鉄となり還元鉄が得られる。
If iron ore is reduced at a relatively low temperature that does not cause softening or melting, the iron oxide in the iron ore becomes metallic iron and reduced iron is obtained.

この還元鉄中には鉱石中の脈石はそのまま残存するが還
元された金属鉄の部分には脈右や還元剤に由釆する不純
物は少〈、その品位は、製法等により異るが、全鉄80
〜95%、金属鉄70〜93%、還元率(金属鉄/全鉄
)総〜96%程度のものであり、製鋼や鏡鉄溶製用原材
料として利用できる可能性の大きなものである。しかし
前述の如く還元鉄には鉱石中の脈石がそのまま残存して
おり、この還元鉄を溶解すればスラグが多量に発生して
、溶濠表面を覆った状態になれと、その後に袋入される
溶製用原材料は、このスラグ上に浮遊紙態となったり、
又巻込れた状態となり、このために溶解時間が著しく長
くなり、ひいては溶解効率の低下、原材料の溶解歩留り
の低下をきたすものである。
The gangue in the ore remains in this reduced iron, but there are few impurities in the reduced metal iron that are caused by the vein or the reducing agent.The quality varies depending on the manufacturing method, etc. All iron 80
It has a reduction rate of ~95%, metallic iron 70-93%, and a total reduction rate (metallic iron/total iron) of approximately ~96%, and has great potential to be used as a raw material for steel manufacturing and mirror iron melting. However, as mentioned above, the gangue in the ore remains in the reduced iron, and if this reduced iron is melted, a large amount of slag will be generated, which will cover the surface of the moat. The raw materials for melting are suspended on this slag, or
In addition, the material becomes entangled, which significantly lengthens the dissolution time, resulting in a decrease in dissolution efficiency and a decrease in the melting yield of raw materials.

又これらのスラグは炉内で長時間保持されるため電気炉
のラィニソグが侵食され易くその寿命が著しく短くなる
などの問題点もある。従来還元鉄の溶解にはアーク炉や
キュポラが使用されることが多かったが、これは操業し
ながら溶解炉のラィニングの補修することが可能である
等、上述の問題点に比較的対処し易いためである。
Further, since these slags are kept in the furnace for a long time, they tend to erode the line slag of the electric furnace, resulting in a problem that the service life of the slag is significantly shortened. Conventionally, arc furnaces and cupolas were often used to melt reduced iron, but these are relatively easy to deal with the problems mentioned above, such as making it possible to repair the lining of the melting furnace during operation. It's for a reason.

しかし近時、鋳鉄用溶解炉として柑禍型低周波誘導炉が
広く普及しているが、この電気誘導炉においては、溶解
炉のライニングを補修するためには溶解炉を停止して溶
解炉の溶湯を全て出傷して行なわねばならず、上述の問
題点を解決することが大きな課題となっている。電気譲
導炉の長所の一つは炉径が大きいことであり、このため
に鉄板屑(スチールスクラップ)をプレス機で大きな直
方体に成形したべーラーを大量に袋入することが可能で
ある。
However, in recent years, Kangai-type low-frequency induction furnaces have become widely used as melting furnaces for cast iron, but in order to repair the lining of the melting furnace, it is necessary to stop the melting furnace and restart the melting furnace. All of the molten metal must be extracted before the process, and solving the above-mentioned problems has become a major challenge. One of the advantages of electric transfer furnaces is their large diameter, which makes it possible to bag large quantities of balers made by forming steel scrap into large rectangular parallelepipeds using a press.

そしてこのスチールスクラップを溶製用材料として使用
する場合は加炭材としての黒鉛をはじめフェロシリコン
やフェロマンガンなどの成分調整用の添加剤が必要とな
るが、これらの添加剤の溶解歩蟹りも当然スラグによっ
て影響され、更には還元鉄とこれらの添加剤の装入順序
によっても大きく左右される。これは還元鉄は非常に多
孔質であるため気孔中に多量の空気を含んでおりこの空
気中のQが溶湯中のSi,Mn,Cなどを酸化し、一方
では還元鉄中の酸化鉄が溶湯に溶け込んでいく過程で溶
湯中のSi,Mn,Cなどにより還元されていずれもS
i,Mn,Cなどが消費される。Si,Mn.Cなどの
元素のうちこれらの酸化還元反応に主としてあずかる元
素は、還元鉄が港縁中に溶け込み反応が進行する部分の
温度と溶傷中の平衡濃度の関係に支配される。ここで、
還元鉄を装入するより前にフェロシリコン・フェロマン
ガンを装入すると元湯中のSiとMmの濃度が高くなり
、そこへ還元鉄を菱入すると上述の酸化還元反応は主と
してSi,Mnにより行われSi,Mnが消費されフェ
ロシリコンやフェロマンガンの溶解歩蟹りは著しく低下
するものである。
When using this steel scrap as a material for melting, additives such as graphite as a recarburizer, ferrosilicon, and ferromanganese are required to adjust the composition, but the dissolution process of these additives is Naturally, this is also affected by the slag, and is also greatly influenced by the order in which reduced iron and these additives are charged. This is because reduced iron is very porous and contains a large amount of air in its pores, and the Q in this air oxidizes Si, Mn, C, etc. in the molten metal, and on the other hand, the iron oxide in the reduced iron In the process of dissolving into the molten metal, it is reduced by Si, Mn, C, etc. in the molten metal, and all of them become S.
i, Mn, C, etc. are consumed. Si, Mn. Among the elements such as C, the elements that mainly participate in these redox reactions are controlled by the relationship between the temperature at the part where reduced iron dissolves in the port edge and the reaction proceeds and the equilibrium concentration in the melt. here,
If ferrosilicon/ferromanganese is charged before charging reduced iron, the concentration of Si and Mm in the source water will increase, and when reduced iron is added there, the above-mentioned redox reaction will occur mainly due to Si and Mn. As a result, Si and Mn are consumed, and the dissolution rate of ferrosilicon and ferromanganese is significantly reduced.

本発明は以上の還元鉄等有の事情にかんがみて、還元鉄
などの溶製用材料やフェロシリコン、フェロマンガン、
加炭材などの成分調整用添加剤の装入時期を検討するこ
とにより効果的な溶解方法を見し、出し完成されたもの
であり、所要量の銭湯を元湯として貯えた電気誘導炉に
まずスチールスクラップと戻し材などの鉄原材料及び成
分調整用の加炭材等の鋳鉄用原材料とする袋入物を袋入
し、これらの装入物が溶け落ちた後に還元鉄を菱入し、
還元鉄の溶解により発生したスラグを除去した後にフェ
ロシリコン、フェロマンガン等の成分調整用添加物を装
入することを特徴とするものである。
In view of the above-mentioned circumstances of the existence of reduced iron, etc., the present invention has been developed to provide melting materials such as reduced iron, ferrosilicon, ferromanganese, etc.
An effective melting method was found by considering the timing of charging additives for adjusting the composition, such as recarburizing materials, and was completed. First, materials to be used as raw materials for cast iron such as iron raw materials such as steel scrap and return material and recarburizing materials for composition adjustment are placed in bags, and after these materials have melted down, reduced iron is poured into the bag.
This method is characterized in that after removing the slag generated by dissolving reduced iron, additives for adjusting the composition such as ferrosilicon and ferromanganese are charged.

還元鉄の袋入より前に加炭材及びスチ−ルスクラツプ戻
し材等の鉄原材料を袋入するために還元後に起因するス
ラグに妨害されることなくC及び鉄原材料の溶解歩蟹り
を高くし、又溶解速度を遠くすることができる。したが
ってC濃度が高くなった溶傷中に還元鉄を菱入するため
還元鉄により持ち来たされる酸素及び酸化鉄は主として
Cにより還元反応が行われSi,Mnは補助的にしか反
応にあずからない。このため酸化鉄は効率的に還元され
ることが可能となり、したがって発生するスラグ量を少
〈する効果をあわせて期待できる。又スチールスクラッ
プ等を菱入した後に還元鉄を菱入するために還元鉄が溶
け落ちた時点では溶湯量が多〈溶湯面が高い位置にある
ためスラグオフも容易に行うことができ、又スラグ発生
と同時にスラグオフするために還元鉄より発生したスラ
グは長時間炉内に保持されずそのためラィニングの侵食
量は極めて少し、ものとなる利点もある。そしてスラグ
が除去され、主としてCによる還元反応が終った最後に
フェロシリコン、フヱロマンガンなどの成分調整用添加
剤を装入するためSi,Mh‘ま還元反応に多量に消費
されることなく、又スラグにも巻込れないためにこれら
の添加剤も高溶解歩蟹りを維持されるものである。以下
に本発明を実施例により説明する。
In order to bag iron raw materials such as recarburizer and steel scrap return material before bagging reduced iron, the dissolution rate of C and iron raw materials can be increased without being hindered by slag caused after reduction. , the dissolution rate can also be increased. Therefore, in order to inject reduced iron into a melt wound where the C concentration is high, the oxygen and iron oxide brought by the reduced iron undergo a reduction reaction mainly with C, and Si and Mn participate in the reaction only in an auxiliary manner. It doesn't matter. For this reason, iron oxide can be efficiently reduced, and the effect of reducing the amount of slag generated can also be expected. In addition, since reduced iron is injected after steel scrap, etc. is injected, there is a large amount of molten metal when the reduced iron melts down (because the molten metal surface is at a high position, slag off can be easily performed, and slag is generated). At the same time, since the slag is slag-off, the slag generated from the reduced iron is not retained in the furnace for a long time, so there is an advantage that the amount of corrosion of the lining is extremely small. Then, the slag is removed, and additives for adjusting the composition such as ferrosilicon and fluoromanganese are charged at the end after the reduction reaction mainly due to C has finished, so that Si, Mh' and other components are not consumed in large quantities in the reduction reaction, and the slag is removed. These additives also maintain a high dissolution rate because they are not entrained in water. The present invention will be explained below using examples.

(実施例) 溶解量1.5tの低周波誘導炉を使用し、溶製用原材料
を次の配合と順序で装入し溶解した。
(Example) Using a low frequency induction furnace with a melting capacity of 1.5 tons, raw materials for melting were charged and melted in the following composition and order.

○}FC2の相当のキュポラ元湯500k9装入‘21
スチールスクラップ250k9刀o炭材19k9を装
入。
○}Cupola source water equivalent to FC2 500k9 charged '21
Charge steel scrap 250k9 sword o carbon material 19k9.

炉体電力320KWで20分間通電すると溶け落ちた。
‘3’ 戻し材500k9装入。
It melted when the furnace power was 320KW for 20 minutes.
'3' Charge 500k9 of return material.

炉体電力36皿W、35分間で溶け落ち、以後45分間
で1400qoまで昇温した。■ 還元鉄250k9菱
入。
The furnace power was 36 W, melting occurred in 35 minutes, and the temperature was increased to 1400 qo in 45 minutes. ■ Reduced iron 250k9 hishi type.

炉体電力350〜400KWにより18分間で溶け込む
。このとき還元鉄がスラグに巻込れることなく迅速に溶
解するのが観察された。還元鉄溶解完了後直ちにスラグ
オフした。側 フエロシリコン14k9、フエロマンガ
ン5.4k9を袋入。
Melting takes place in 18 minutes using a furnace power of 350-400KW. At this time, it was observed that the reduced iron was rapidly dissolved without being entangled in the slag. Immediately after the reduced iron melting was completed, the slag was removed. Side: Packed with 14k9 of ferrosilicone and 5.4k9 of ferromanganese.

炉体電力400KWで30分間加熱後1500℃で出濠
した。以上の条件での操業結果は第1表に示す。
After heating for 30 minutes with a furnace body power of 400 KW, it was drained at 1500°C. The results of operation under the above conditions are shown in Table 1.

(比較例 1) 実施例と同一材料を同一配合量で添加順序のみ次の如く
に変更した。
(Comparative Example 1) The same materials as in the example were used in the same amounts, but only the order of addition was changed as follows.

{1’ キュポラ元湯 ‘21 スチールスクラップ十加炭材+フェロシリコン
+フエロマンガン‘3’還元鉄 【4ー 戻し材 以上の条件での操業結果を第1表に示す。
{1' Cupola source water '21 Steel scrap Juka carbon material + ferrosilicon + ferromanganese '3' Reduced iron [4- Returning material Table 1 shows the operation results under the above conditions.

(比較例 2) 添加順序を更に次の如く変更した。(Comparative example 2) The order of addition was further changed as follows.

m キュポラ元湯 ■ スチールスクラップ ‘3’還元鉄 (4’ フェロマンガン+フェロシリコン十加炭材■戻
し材第1表 これから分かる如く特許請求の範囲の欄の記載と同じ添
加順序である実施例は比較例1、2に比べて、まずフェ
ロシリコンとフェロマンガンの溶解歩鍵りが非常に改善
されている。
m Cupola source water ■ Steel scrap '3' Reduced iron (4' Ferromanganese + ferro silicon decacharide material ■ Reconstitution material Table 1 As can be seen from the table, examples in which the order of addition is the same as described in the claims column are Compared to Comparative Examples 1 and 2, first, the dissolution steps of ferrosilicon and ferromanganese were greatly improved.

更に比較例2に比べスラグ中の酸化鉄の還元率が高くス
ラグ発生量も少し、。又比較例1と比べると酸化鉄還元
率はほぼ同等であるがラィニングの浸食が少し・分だけ
スラグ発生量は少くなっている。これらのことより本発
明による溶解法が非常に効率のよいものであることが理
解される。
Furthermore, compared to Comparative Example 2, the reduction rate of iron oxide in the slag was higher and the amount of slag generated was smaller. Also, compared to Comparative Example 1, the iron oxide reduction rate is almost the same, but the amount of slag generated is smaller due to the slight erosion of the lining. From these facts, it is understood that the dissolution method according to the present invention is very efficient.

Claims (1)

【特許請求の範囲】[Claims] 1 鋳鉄溶製用原材料の一部として還元鉄を電気誘導炉
にて溶解するに際して、所定量の元湯を貯えた前記電気
誘導炉に、まず、スチールスクラツプ、戻し材等の鉄原
材料と成分調整用の加炭材等の鋳鉄原材料とする装入物
を装入し、ついで、前記装入物が溶け落ちた後に前記還
元鉄を装入し、次に、発生したスラグを除去した後にフ
エロシリコン、フエロマンガン等の成分調整用添加剤を
装入することを特徴とする還元鉄の溶解方法。
1. When reducing iron is melted in an electric induction furnace as part of raw materials for cast iron smelting, iron raw materials such as steel scrap and return material are first added to the electric induction furnace in which a predetermined amount of raw hot water is stored. A charge to be used as a raw material for cast iron, such as a recarburizer for composition adjustment, is charged, and then, after the charge has melted down, the reduced iron is charged, and then, after the generated slag is removed, A method for melting reduced iron, characterized by charging additives for composition adjustment such as ferrosilicon and ferromanganese.
JP52049533A 1977-04-29 1977-04-29 How to dissolve reduced iron Expired JPS6021205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52049533A JPS6021205B2 (en) 1977-04-29 1977-04-29 How to dissolve reduced iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52049533A JPS6021205B2 (en) 1977-04-29 1977-04-29 How to dissolve reduced iron

Publications (2)

Publication Number Publication Date
JPS53134716A JPS53134716A (en) 1978-11-24
JPS6021205B2 true JPS6021205B2 (en) 1985-05-25

Family

ID=12833789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52049533A Expired JPS6021205B2 (en) 1977-04-29 1977-04-29 How to dissolve reduced iron

Country Status (1)

Country Link
JP (1) JPS6021205B2 (en)

Also Published As

Publication number Publication date
JPS53134716A (en) 1978-11-24

Similar Documents

Publication Publication Date Title
JP5522320B1 (en) Steelmaking slag reduction treatment method
CN106755724B (en) A kind of smelting technology being suitable for 3 tons of intermediate frequency furnace production nodulizers
JP3338701B2 (en) Method for producing chromium-containing metal
JP5625654B2 (en) Hot metal production method
KR101818372B1 (en) Operating method for electric arc furnace
US4160661A (en) Process for the production of ferromolybdenum in an electric arc furnace
JPS6021205B2 (en) How to dissolve reduced iron
JP4097010B2 (en) Molten steel manufacturing method
JP4422318B2 (en) Hot metal dephosphorization method with little refractory damage
RU2787133C1 (en) Method for the production of steel in an electric arc furnace
JPS5953217B2 (en) Manufacturing method of molten iron oxide
US1969886A (en) Method of manufacturing ferro alloys
JP3717625B2 (en) Electric arc furnace slag reduction method
JP3776156B2 (en) Method for producing low phosphorus high manganese steel
JP2000038612A (en) Production of molten steel
JPS6018724B2 (en) How to dissolve reduced iron
JP6878409B2 (en) Manufacturing method of tungsten-containing metal and ferrotungsten
SU981381A1 (en) Method for producing iron and its alloys from iron ore materials
SU1361181A1 (en) Method of producing method of modifying cast steel
RU2105078C1 (en) Method for production of silicocalcium
SU572504A1 (en) Method for maunfacturing iron and its alloys from iron ore
JPS59104419A (en) Steel-making process in arc furnace
JP2949697B2 (en) Cast iron manufacturing method
US3672871A (en) Metallurgical material and processes for treating steel therewith
RU2055907C1 (en) Scrap-process method for steel smelting in martin furnace