JPS60187057A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60187057A
JPS60187057A JP4261084A JP4261084A JPS60187057A JP S60187057 A JPS60187057 A JP S60187057A JP 4261084 A JP4261084 A JP 4261084A JP 4261084 A JP4261084 A JP 4261084A JP S60187057 A JPS60187057 A JP S60187057A
Authority
JP
Japan
Prior art keywords
layer
gaas
type
etching
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4261084A
Other languages
Japanese (ja)
Other versions
JPH0680675B2 (en
Inventor
Kenichi Imamura
健一 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59042610A priority Critical patent/JPH0680675B2/en
Publication of JPS60187057A publication Critical patent/JPS60187057A/en
Publication of JPH0680675B2 publication Critical patent/JPH0680675B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To enable to perform an etching for formation of a collector electrode with sufficient controllability by a method wherein an AlGaAs layer is provided between a GaAs contact layer and a GaAs collector layer. CONSTITUTION:A non-doped GaAs buffer layer 22, an n<+> type GaAs contact layer 23, and n<+> type AlGaAs layer 24, an n type GaAs collector layer 25, a p type GaAs base layer 26, an n type AlGaAs emitter layer 27, and a GaAs contact layer 28 are formed on a semiinsulative GaAs substrate 21 successively. Then, a p<+> type base contact region 29 is formed. Subsequently, a mask 30 to be used to cover the layers 27 and 28 is provided, and when a dry etching is performed, the layers 25 and 26 are etched, and the etching is brought to come to a stop on the layer 24. Then, the exposed layer 24 is removed. According to this constitution, the layer 24 is used as an etching stopping layer, and the depth of etching can be controlled accurately, thereby enabling to prevent the increase in resistance value of the lead-out part of a collector electrode 32.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は半導体装置、特にコレクタ電極引出し部を形成
する深い選択的エツチングが良好な制御性をもって実施
できて、再現性良く製造することが可能なヘテロ接合バ
イポーラトランジスタの構造に関する。
[Detailed Description of the Invention] (a) Technical Field of the Invention The present invention enables deep selective etching to form a semiconductor device, particularly a collector electrode lead-out portion, to be performed with good controllability, and can be manufactured with good reproducibility. This paper relates to the structure of a heterojunction bipolar transistor.

(b) 技術の背景 マイクロエレクトロニクスは現代産業進展の基盤となり
、また社会生活に大きな影響を与えている。現在このマ
イクロエレクトロニクスの主役はトランジスタから超大
規模集積回路装置に至るシリコン(St)半導体装置で
あって、トランジスタ素子の微細化を推進して特性の向
上と集積度の増大が達成されている。
(b) Background of the technology Microelectronics has become the foundation of modern industrial progress and has a major impact on social life. Currently, the mainstay of microelectronics is silicon (St) semiconductor devices ranging from transistors to ultra-large scale integrated circuit devices, and miniaturization of transistor elements has been promoted to improve characteristics and increase the degree of integration.

更にシリコンの物性に基づく限界をこえる動作速度の向
上、消費電力の低減などを実現するために、キャリアの
移動度がシリコンより遥かに大きい砒化ガリウム(Ga
Ag)などの化合物半導体を用いる半導体装置が開発さ
れている。
Furthermore, in order to improve operating speed beyond the limits based on the physical properties of silicon and reduce power consumption, we developed gallium arsenide (Ga), which has a much higher carrier mobility than silicon.
Semiconductor devices using compound semiconductors such as Ag) have been developed.

化合物半導体を用いるトランジスタとしては、その製造
工程が簡単であるなどの理由によって電界効果トランジ
スタの開発が先行しているが、化合物半導体装置の製造
プロセスの進歩などに伴ってバイポーラトランジスタも
開発が進められている。化合物半導体バイポーラトラン
ジスタでは、化合物半導体のエピタキシャル成長方法と
して分子線エピタキシャル成長方法(以下MBEと略称
する)或いは有機金属熱分解気相成長方法(以下MOC
VD法と略称する)・が開発されたことによってその実
現が可能となった、ヘテロ接合バイポーラトランジスタ
が特に期待されている。
Among transistors using compound semiconductors, field-effect transistors are being developed first due to their simple manufacturing process, but as the manufacturing process for compound semiconductor devices progresses, bipolar transistors are also being developed. ing. In compound semiconductor bipolar transistors, molecular beam epitaxial growth (hereinafter referred to as MBE) or metal organic pyrolysis vapor phase epitaxy (hereinafter referred to as MOC) is used as an epitaxial growth method for compound semiconductors.
The heterojunction bipolar transistor, which has become possible with the development of the VD method (abbreviated as the VD method), is particularly promising.

すなわち同じ素子面積で比較した場合に、バイポーラト
ランジスタは電界効果トランジスタより電流駆動能力が
大きく、特にエミッターベース間にヘテロ接合を設けた
ヘテロ接合バイポーラトランジスタは最も電流駆動能力
が大きい。更に動作速度を決定する主要部分の電流方向
が半導体層に垂直であることは、リソグラフィ法によっ
て寸法が設定される電界効果トランジスタより、その寸
法の短縮が遥かに容易である。
That is, when compared with the same element area, a bipolar transistor has a larger current driving ability than a field effect transistor, and in particular, a heterojunction bipolar transistor in which a heterojunction is provided between an emitter and a base has the highest current driving ability. Furthermore, since the current direction of the main portion that determines the operating speed is perpendicular to the semiconductor layer, it is much easier to reduce the size of a field effect transistor, whose size is set by a lithography method.

(c) 従来技術と問題点 ヘテロ接合バイポーラトランジスタの従来例を第1図に
示す。
(c) Prior Art and Problems A conventional example of a heterojunction bipolar transistor is shown in FIG.

図において、1は半絶縁性GaAa基板、2はノンドー
プのGaAsバッファ層、3はn+型GaAsコンタク
ト層、5はn−屋GaAgコレクタ層、 6はp生型G
aAsベース層、7はnR砒化アルξニウムガリウム(
AtcaAs)エミッタ層、8はn+fllGaAsコ
ンタクト層、9はp+型ベースコンタクト領域。
In the figure, 1 is a semi-insulating GaAa substrate, 2 is a non-doped GaAs buffer layer, 3 is an n+ type GaAs contact layer, 5 is an n-ya GaAg collector layer, and 6 is a p-type G
aAs base layer, 7 is nR aluminum ξ gallium arsenide (
8 is an n+full GaAs contact layer, and 9 is a p+ type base contact region.

10はコレクタ電極、11はベース電極、12はエミッ
タ電極である。
10 is a collector electrode, 11 is a base electrode, and 12 is an emitter electrode.

ヘテロ接合バイポーラトランジスタでは少なくともエミ
ッタ領域をベース領域より禁制帯幅が大きい半導体によ
って構成する。
In a heterojunction bipolar transistor, at least the emitter region is made of a semiconductor having a larger forbidden band width than the base region.

前記例においてはベース層6をp+型GaAsとし、エ
ミツタ層8はこれより禁制帯幅が大きいn型AtGaA
sによりて構成している。この禁制帯幅の差によって、
エミッタからベースに注入される電子による電流のベー
スからエミッタに注入される正孔による電流に対する比
、すなわち電流注入効率を向上させ、同時にベース領域
等の不純物濃度の選択などの自由度を拡大している。。
In the above example, the base layer 6 is made of p+ type GaAs, and the emitter layer 8 is made of n-type AtGaA, which has a larger forbidden band width.
It is composed of s. Due to this difference in forbidden band width,
This improves the ratio of the current caused by electrons injected from the emitter to the base to the current caused by holes injected from the base to the emitter, that is, the current injection efficiency, and at the same time expands the degree of freedom in selecting the impurity concentration of the base region, etc. There is. .

第1図に示、した従来例において半導体基体の上面方向
にエミッタ電極12.ベース電極11及びコレクタ電極
10を取出しているのはJCL(EknitterCo
upled Logic )回路により蓄積時部による
遅れのない高速動作を得るためである。これらの電極を
配設するために、p+型ベースコンタクト領域7を形成
する選択的エツチング及びアクセプタ不純物導入ならび
にn+型GaAsコンタクト層3を表出する選択的エツ
チングが必要である。
In the conventional example shown in FIG. 1, an emitter electrode 12. The base electrode 11 and collector electrode 10 are taken out by JCL (Eknitter Co.
This is to obtain high-speed operation without delay due to accumulation time by using the UPLED Logic circuit. In order to provide these electrodes, selective etching to form the p+ type base contact region 7 and introduction of acceptor impurities and selective etching to expose the n+ type GaAs contact layer 3 are required.

特にコレクタ電極lOを設けるn”mGa、Asコンタ
クト層3を表出する選択的エツチングにおいては、nm
GaAaコンタクト層9、n ff1AtGaAs工ミ
ツタ層8、p+型GaA1ベースコンタクト領域7及び
n−型GaAsコレクタ層5をエツチングすることが必
要であるが、n+型GaAl5層3を充分に残してエツ
チングを終止させる制御はエツチング深さが大きいため
に極めて困難であって、n−型GaAsコレクタ層5の
残存或いはn+型GaAsコンタクト層3の過度のエツ
チングによる抵抗値の増大を招き易い。
In particular, in the selective etching to expose the n''mGa, As contact layer 3 where the collector electrode lO is provided, nm
It is necessary to etch the GaAa contact layer 9, the nff1AtGaAs emitter layer 8, the p+ type GaAl base contact region 7, and the n-type GaAs collector layer 5, but the etching is finished leaving a sufficient amount of the n+ type GaAl5 layer 3. It is extremely difficult to control this because the etching depth is large, and the resistance value tends to increase due to residual n-type GaAs collector layer 5 or excessive etching of n+-type GaAs contact layer 3.

(d) 発明の目的 本発明はAtGaAs/GaAs系へテロ接合バイポー
ラトランジスタについて、先に述べた問題点を解決して
充分な制御性をもってコレクタ′は極形成のためのエツ
チングを実施することができる構造を提供することを目
的とする。
(d) Purpose of the Invention The present invention solves the above-mentioned problems with respect to AtGaAs/GaAs heterojunction bipolar transistors, and makes it possible to perform etching for forming a collector pole with sufficient controllability. The purpose is to provide structure.

(e) 発明の構成 本発明の前記目的は、砒化ガリウム半導体基板上に第1
の導電型の砒化ガリウムコンタクト層を備え、該砒化ガ
リウムコンタクト層上に第1の導電型の砒化アルミニウ
ムガリウム層を介して、第1の導電型の砒化ガリウムコ
レクタ層と、第2の導電型の砒化ガリウムベース層と、
第1の導電型の砒化アルミニウムガリウムエミツタ層と
が設けられて、コレクタ電極が該砒化ガリウムコンタク
ト層に接して設けられてなる半導体装置により達成され
る。
(e) Structure of the Invention The object of the present invention is to provide a first
a gallium arsenide contact layer of a conductivity type, and a gallium arsenide collector layer of a first conductivity type and a gallium arsenide collector layer of a second conductivity type are formed on the gallium arsenide contact layer via an aluminum gallium arsenide layer of a first conductivity type. a gallium arsenide base layer;
This is achieved by a semiconductor device in which an aluminum gallium arsenide emitter layer of a first conductivity type is provided, and a collector electrode is provided in contact with the gallium arsenide contact layer.

(f) 発明の実施例 以下本発明を実施例により図面を参照してその製造方法
とともに説明する。
(f) Embodiments of the Invention The present invention will be described below with reference to the drawings and its manufacturing method by way of embodiments.

第2図(a)乃至(e)は本発明の実施例を示す工程順
断面図である。
FIGS. 2(a) to 2(e) are step-by-step sectional views showing an embodiment of the present invention.

第2図(a)参照 半絶縁性GaAa基板21上にMOCVD法又はMBE
法によりて下記の各半導体層を順次エピタキシャル成長
する。ただし、下記表中、組成比Xが0はGaAs、0
.3はAto、3 Gio、7Asを示し、各数値は1
例を示す。
Refer to FIG. 2(a), a semi-insulating GaAa substrate 21 is coated with MOCVD or MBE.
The following semiconductor layers are sequentially epitaxially grown using a method. However, in the table below, composition ratio X of 0 means GaAs, 0
.. 3 indicates Ato, 3 Gio, 7As, each number is 1
Give an example.

符号 組成比 不純物濃度 厚さ X (甜) [nm:) 28 0 n−2X10” 200 27 0.3 n−lXl0” 15026 0 p−
lXl0” 50 25 0 n−lXl0” 300 24 0.3 n−2X 10” 1〜223 0 n
−2X10” 200 22 0 ノンドープ 300 すなわち、本発明による構造においては前記従来例に比
較して、n+型)、Lo、 a Ga Q、 ?A11
層24が訂型GaAsコンタクト層23とn−型GaA
sコレクタ層25との間に設けられており、その厚さは
例えば1乃至2 (nm)と薄くされている。
Sign Composition ratio Impurity concentration Thickness
lXl0" 50 25 0 n-lXl0" 300 24 0.3 n-2X 10" 1~223 0 n
-2X10'' 200 22 0 Non-doped 300 In other words, in the structure according to the present invention, compared to the conventional example, n+ type), Lo, a Ga Q, ?A11
The layer 24 is a modified GaAs contact layer 23 and an n-type GaA layer.
s collector layer 25, and its thickness is made as thin as, for example, 1 to 2 (nm).

第2図(b)参照 エミッタ領域を形成する。本実施例をこおいてはn+型
GaAs層28及びnff1Ato、aGao、7As
層27のエミッタ領域以外を除去する選択的エツチング
を、例えば弗酸(HF)と過酸化水素水(HtO鵞)と
水(Hl O)との混合液を用いて実施している。
Referring to FIG. 2(b), an emitter region is formed. In this embodiment, the n+ type GaAs layer 28 and nff1Ato, aGao, 7As
Selective etching to remove the layer 27 other than the emitter region is performed using, for example, a mixed solution of hydrofluoric acid (HF), hydrogen peroxide (HtO), and water (HlO).

次いで例えばベリリウム(Be)を、エネルギー30 
(Key)程度でドーズ量I X 10”CM)程度に
選択的にイオン注入し、例えば赤外線フラッジ。
Next, for example, beryllium (Be) is given an energy of 30
(Key) to a dose of about I x 10''CM), for example, infrared flood.

アニール法によってこれを活性化してp+型ベースコン
タクト領域29を形成する。
This is activated by an annealing method to form a p+ type base contact region 29.

第2図(e)参照 エミッタ領域及びベースコンタクト領域を被覆するマス
ク30を設け、二塩化二弗化炭素(CC4FJをエッチ
ャントとして、リアクティブイオンエツチング法等のド
ライエツチング法によってエツチングを行なう。このC
CL、 F、をエッチャントとするドライエツチング法
によればGaAsはエツチングされるがA九aAsはエ
ツチングされず、 p型GaAsベース層26及びn型
GaAsコレクタ層25がエツチングされn mAto
、3GaO,7As層24の上面に達してエツチングは
停止する。
Refer to FIG. 2(e) A mask 30 covering the emitter region and base contact region is provided, and etching is performed by a dry etching method such as a reactive ion etching method using carbon dichloride difluoride (CC4FJ) as an etchant.
According to the dry etching method using CL and F as etchants, GaAs is etched, but A9aAs is not etched, and the p-type GaAs base layer 26 and the n-type GaAs collector layer 25 are etched.
, 3GaO, 7As layer 24, the etching stops.

第2図(d)参照 前記HF HtO* H20エツチング液などを用いて
n+型ALO,aGa o、 7As層24を除去する
が、例えばHF Ht Ot Ht O液はエツチング
速度がACaAsについて60乃至200[:nm]/
分程度であって、1秒乃至数秒程度のエツチングでn型
Azo、aGBO,7AB層24を除去することができ
る。この層に比較すれば遥かに厚いn+型GaAsコン
タク)7tj523はこの短時間のエツチングによって
は実際上厚さが変化しない。
Refer to FIG. 2(d). The n+ type ALO, aGaO, and 7As layers 24 are removed using the aforementioned HF HtO*H20 etching solution. :nm]/
The n-type Azo, aGBO, and 7AB layers 24 can be removed by etching for about 1 to several seconds. The n+ type GaAs contact (7tj523), which is much thicker than this layer, does not actually change in thickness by this short-time etching.

第2図(s)参照 素子分離のためにノンドープGaAs層22に充分に達
する溝31を設ける。次いで例えば金・ゲルマニウム/
金(AuGe/Au)を用いてニレクタエぐ・・/? 電極32友♂1電a4を配設し、例えば金/亜鉛/金(
Au/Zn/Au )を用いてベース電極33を配設す
る。
Referring to FIG. 2(s), a groove 31 sufficiently reaching the non-doped GaAs layer 22 is provided for element isolation. Next, for example, gold/germanium/
Nirektaeg using gold (AuGe/Au).../? 32 electrodes ♂ 1 electrode A4 are arranged, for example, gold/zinc/gold (
A base electrode 33 is provided using Au/Zn/Au).

以上説明した実施例の製造方法から明らかな如く、本発
明によるコレクタ層とコレクタコンタクト層間のAtG
aAsJ−は、これをエツチング停止層とするGaA@
の選択的エツチングによってエツチング深さの正確な制
御を可能とし、コレクタ電極引出し部分の抵抗値の増大
を防止する。
As is clear from the manufacturing method of the embodiment described above, AtG between the collector layer and the collector contact layer according to the present invention
aAsJ- is GaA@ with this as an etching stop layer.
The selective etching enables accurate control of the etching depth and prevents an increase in the resistance value of the collector electrode lead-out portion.

なお前記実施例はn−p −n接合であるが、コレクタ
及びエミッタをp型、ペースをn型とするp−n −p
へテロ接合バイポーラトランジスタについても本発明を
同様に適用することができる。
Although the above embodiment is an n-p-n junction, a p-n-p junction in which the collector and emitter are p-type and the paste is n-type is used.
The present invention can be similarly applied to heterojunction bipolar transistors.

(g) 発明の詳細 な説明した如(本発明の構造によって、ペテロ接合バイ
ポーラトランジスタの深い選択的エツチングを必要とす
るコレクタ電極引出し構造が、良好な制御性をもって正
確に形成されて、これを素子とする集積回路装置等の半
導体装置を再現性良く安定して提供することが可能とな
る。
(g) As described in the detailed description of the invention (by the structure of the present invention, the collector electrode lead structure, which requires deep selective etching of a petrojunction bipolar transistor, can be accurately formed with good controllability, and this can be used as a device). It becomes possible to stably provide semiconductor devices such as integrated circuit devices with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はへテロ接合バイポーラトランジスタの従来例を
示す断面図、第2図(a)乃至(e)は本発明の実施例
を示す工程順断面図である。 図において、21は半絶縁性GaA1基板、22ス層、
27はn型AtGaAs エミッタ層、29はp+型ベ
ースコンタクト領域、30はマスク、31は溝、32は
コレクタ電極、33はベー−11[、a4はエミッタ電
極を示す。 草11Δ 事2図 (4) 隼2図 第2阿
FIG. 1 is a sectional view showing a conventional example of a heterojunction bipolar transistor, and FIGS. 2(a) to 2(e) are step-by-step sectional views showing an embodiment of the present invention. In the figure, 21 is a semi-insulating GaA1 substrate, 22 is a layer,
27 is an n-type AtGaAs emitter layer, 29 is a p+ type base contact region, 30 is a mask, 31 is a groove, 32 is a collector electrode, 33 is a base 11[, and a4 is an emitter electrode. Grass 11Δ Thing 2 Figure (4) Hayabusa 2 Figure 2A

Claims (1)

【特許請求の範囲】[Claims] 砒化ガリウム半導体基板上に第1の導電型の砒化ガリウ
ムコンタクト層を備え、該砒化ガリウムフタ層と、第2
の導電型の砒化ガリウムペース層と、第1の導電型の砒
化アルミニウムガリウムエミツタ層とが設けられて、コ
レクタ電極が該砒化ガリウムコ、ンタクト層に接して設
けられてなることを特徴とする半導体装置。
a gallium arsenide contact layer of a first conductivity type on a gallium arsenide semiconductor substrate;
A semiconductor comprising: a gallium arsenide paste layer of a conductivity type; an aluminum gallium arsenide emitter layer of a first conductivity type; and a collector electrode provided in contact with the gallium arsenide contact layer. Device.
JP59042610A 1984-03-06 1984-03-06 Method for manufacturing semiconductor device Expired - Fee Related JPH0680675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59042610A JPH0680675B2 (en) 1984-03-06 1984-03-06 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59042610A JPH0680675B2 (en) 1984-03-06 1984-03-06 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS60187057A true JPS60187057A (en) 1985-09-24
JPH0680675B2 JPH0680675B2 (en) 1994-10-12

Family

ID=12640794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59042610A Expired - Fee Related JPH0680675B2 (en) 1984-03-06 1984-03-06 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0680675B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63155762A (en) * 1986-12-19 1988-06-28 Fujitsu Ltd Manufacture of hetero-junction semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943583A (en) * 1972-08-30 1974-04-24
JPS51147985A (en) * 1975-06-13 1976-12-18 Fujitsu Ltd Method of manufacturing a semiconductor light emission device
JPS57197862A (en) * 1981-05-29 1982-12-04 Fujitsu Ltd Active semiconductor device and manufacture thereof
JPS589371A (en) * 1981-06-26 1983-01-19 トムソン−セ−・エス・エフ Transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943583A (en) * 1972-08-30 1974-04-24
JPS51147985A (en) * 1975-06-13 1976-12-18 Fujitsu Ltd Method of manufacturing a semiconductor light emission device
JPS57197862A (en) * 1981-05-29 1982-12-04 Fujitsu Ltd Active semiconductor device and manufacture thereof
JPS589371A (en) * 1981-06-26 1983-01-19 トムソン−セ−・エス・エフ Transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63155762A (en) * 1986-12-19 1988-06-28 Fujitsu Ltd Manufacture of hetero-junction semiconductor device

Also Published As

Publication number Publication date
JPH0680675B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
CA1299982C (en) Passivation of gallium arsenide electron devices
US4751195A (en) Method of manufacturing a heterojunction bipolar transistor
JP3262056B2 (en) Bipolar transistor and manufacturing method thereof
JPH02252267A (en) Manufacture of semeconductor device
JPS60187057A (en) Semiconductor device
JPS61276261A (en) Manufacture of high-speed bipolar transistor
JPS6357949B2 (en)
JPS60164358A (en) Manufacture of semiconductor device
JPS61280665A (en) Hetero-junction bipolar transistor and manufacture thereof
JP2000353789A (en) Compound semiconductor device and manufacture thereof
JP3137666B2 (en) Semiconductor device and manufacturing method thereof
KR960000384B1 (en) Making method of hbt using emitter re-growth
JPS6222488A (en) Manufacture of gallium arsenide schottky barrier junction gate type field effect transistor
JPH03240269A (en) Bipolar transistor and its manufacture
JPH0373540A (en) Hetero-junction bipolar transistor and manufacture thereof
JPS6182474A (en) Manufacture of hetero junction bipolar transistor
JP2002134525A (en) Hetero junction bipolar transistor and manufacturing method thereof
JP3156279B2 (en) Method for manufacturing semiconductor device
JP2522067B2 (en) Method for manufacturing semiconductor device
JP2002124522A (en) Bipolar transistor and its manufacturing method
JPS59197176A (en) Manufacture of junction gate field-effect transistor
JPH0123955B2 (en)
JPS60160663A (en) Semiconductor device
JPS63252475A (en) Hetero junction bipolar transistor
JPH05335327A (en) Heterojunction bipolar transistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees