JPS60185351A - Charged particle beam control method - Google Patents

Charged particle beam control method

Info

Publication number
JPS60185351A
JPS60185351A JP4038284A JP4038284A JPS60185351A JP S60185351 A JPS60185351 A JP S60185351A JP 4038284 A JP4038284 A JP 4038284A JP 4038284 A JP4038284 A JP 4038284A JP S60185351 A JPS60185351 A JP S60185351A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
sample
positive
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4038284A
Other languages
Japanese (ja)
Inventor
Hifumi Tamura
田村 一二三
Toru Ishitani
亨 石谷
Kaoru Umemura
馨 梅村
Yoshimi Kawanami
義実 川浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4038284A priority Critical patent/JPS60185351A/en
Publication of JPS60185351A publication Critical patent/JPS60185351A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/252Tubes for spot-analysing by electron or ion beams; Microanalysers
    • H01J37/256Tubes for spot-analysing by electron or ion beams; Microanalysers using scanning beams

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Abstract

PURPOSE:To perform observation of the specimen surface and analysis simultaneously by taking positive and negative beams alternatively as the primary charged particle beam while detecting the positive or negative ion selectively as the secondary charged particle signal to be emitted from the specimen. CONSTITUTION:Positive and negative pulse voltage are applied onto a charged particle source 1 such as a duoplasmatron encapsulated with argon to produce a positive ion beam of anode element and an electron beam of cathode element alternatively as the primary charged particle beam 13. Then it is irradiated alternatively onto a specimen 9 through a deflection electrode 15, a focus lens 5, an iris 2 and a beam separation iris 16 to detect the polarity of secondary charged particle flow 14 selectively through a deflection electrode 17 thus to display the secondary ion image and the secondary electron image simultaneously and independently onto CRT 12, 12'. Consequently, highly efficient observation of the specimen picture image and analysis of the specimen element with high resolution can be realized while the image observation and analysis can be performed simultaneously.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は荷電粒子ビーム制御法に係り、特に。[Detailed description of the invention] [Field of application of the invention] The present invention relates to charged particle beam control methods, and more particularly.

荷電粒子源から引出された荷電粒子ビームを試料に照射
し、この試料から二次的に放出される荷電粒子信号を検
出して試料解析情報とする荷電粒子ビーム制御法に関す
るもので9例えば、二次イオン像や二次電子像による高
分解能での試料面観察。
This relates to a charged particle beam control method in which a sample is irradiated with a charged particle beam extracted from a charged particle source, and a charged particle signal secondarily emitted from the sample is detected and used as sample analysis information9. High resolution sample surface observation using secondary ion images and secondary electron images.

二次正負イオンによる高感度質量スペクトル分析等に適
用される。
It is applied to high-sensitivity mass spectrum analysis using secondary positive and negative ions.

〔発明の背景〕[Background of the invention]

従来技術とその問題点を第1図により述べる。 The prior art and its problems will be described with reference to FIG.

第1図は、走査型イオン顕微鏡に関する従来例である。FIG. 1 shows a conventional example of a scanning ion microscope.

本装置は、荷電粒子源(この場合はイオン源)1.絞り
2,3,4.、レンズ系5,6,7゜偏向電極8.試料
9.二次荷電粒子検出器10.走査電源11.像観察用
CRT(陰極線管)12より構成されている。3段レン
ズ系を利用しているのは。
This device consists of a charged particle source (in this case an ion source)1. Aperture 2, 3, 4. , lens system 5, 6, 7° deflection electrode 8. Sample 9. Secondary charged particle detector 10. Scanning power supply 11. It is composed of a CRT (cathode ray tube) 12 for image observation. It uses a three-stage lens system.

縮小率を向上させるためであり、2段レンズ系を利用す
る場合もある。
This is to improve the reduction ratio, and a two-stage lens system may be used.

動作原理は次の通りである。まず、荷電粒子源1より放
出された一次荷電粒子(いまの場合はイオン)ビーム1
3を絞り2,3.4及びレンズ系5゜6.7により細束
化して試料9に照射する。試料9が二次荷電粒子ビーム
13の照射を受りることにより、試料原子に基づく二次
荷電粒子(二次圧イオンまたは二次電子)14が放出さ
れる。二次荷電粒子14は荷電粒子検出器10により検
出され、像観察用CRT12の輝度変調信号として利用
され、試料9の表面の二次イオン像(または二次電子像
)がm察される。この場合、ビーム走査は偏向電極8に
走査電源11より供給される電圧信号によって像111
m用CR′r12と同期させて行なう。
The operating principle is as follows. First, a primary charged particle (ion in this case) beam 1 is emitted from a charged particle source 1.
3 is made into a fine bundle using apertures 2, 3.4 and a lens system of 5°6.7, and is irradiated onto a sample 9. When the sample 9 is irradiated with the secondary charged particle beam 13, secondary charged particles (secondary pressure ions or secondary electrons) 14 based on sample atoms are emitted. The secondary charged particles 14 are detected by the charged particle detector 10 and used as a brightness modulation signal for the image observation CRT 12, so that a secondary ion image (or secondary electron image) on the surface of the sample 9 is observed. In this case, the beam scanning is performed by applying a voltage signal to the deflection electrode 8 from the scanning power source 11.
This is done in synchronization with CR'r12 for m.

しかし、従来法は、荷電粒子源からの二次荷電粒子ビー
ムとして正イオン、負イオン、電子のいずれか一つのみ
が利用可能であることから、検出結果として得られる情
報量が少ないという問題があった。特に、荷電粒子検出
器の出力として特定イオン種を利用する場合、二次イオ
ン種の二次イオン種に対する依存性が大きく、試料元素
の全てに対しては高感度での検出が困難であるという問
題があった。即ち、−次イオン種としてCKのような陽
性イオン種を用いる場合には陰性元素の負−3= の二次イオン強度が高くなるが、陽性元素の二次イオン
は、正負を問わず、著しく低下する。−次イオン種とし
て陰性元素を用いる場合には、上記と全く逆の関係にな
る。
However, with conventional methods, only one of positive ions, negative ions, and electrons can be used as a secondary charged particle beam from a charged particle source, so there is a problem that the amount of information obtained as a detection result is small. there were. In particular, when using specific ion species as the output of a charged particle detector, the dependence of secondary ion species on the secondary ion species is large, making it difficult to detect all sample elements with high sensitivity. There was a problem. In other words, when a positive ion species such as CK is used as the -order ion species, the negative -3= secondary ion strength of the negative element becomes high, but the secondary ion strength of the positive element, regardless of whether it is positive or negative, is significantly descend. - When a negative element is used as the secondary ion species, the relationship is completely opposite to the above.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来技術での上記した問題点を解決し
、−次荷電粒子ビームとして陽性ビームと陰性ビームを
交互に引出し、試料から放出される二次荷電粒子信号と
して正イオン、負イオンあるいは電子を任意に独立にか
つ選択的に検出する方法とすることにより、高分解能で
の試料面観察。
An object of the present invention is to solve the above-mentioned problems in the prior art, to alternately extract positive beams and negative beams as negative charged particle beams, and to generate secondary charged particle signals emitted from a sample by positive ions and negative ions. Alternatively, the sample surface can be observed with high resolution by detecting electrons arbitrarily and independently and selectively.

高感度での分析、さらに、試料面観察と分析との同時遂
行を可能とする荷電粒子ビーム制御法を提供することに
ある。
The object of the present invention is to provide a charged particle beam control method that enables high-sensitivity analysis and simultaneous performance of sample surface observation and analysis.

〔発明の概要〕[Summary of the invention]

本発明においては、上記目的を達成するために。 In the present invention, in order to achieve the above object.

荷電粒子源からビームを引出す電界の極性を周期的に変
換して陽性元素による荷電粒子ビームと陰性元素による
荷電粒子ビームとを交互に発生させて試料に照射し、試
料から二次的に放出される荷4− 重粒子信号の検出極性の変換を、上記ビーム引出し電界
の極性変換と選択的に同期させる制御方法とする。この
場合の二次荷電粒子信号の検出極性の変換は、陽性元素
による荷電粒子ビームの照射に対して陽性元素による二
次信号を検出し、陰性元素による荷電粒子ビームの照射
に対して陰性元素による二次信号を検出するように同期
変換を行なうこともあり、また、陽性元素による荷電粒
子ビームの照射と陰性元素による荷電粒子ビームの照射
のいずれに対しても陽性元素による二次信号と陰性元素
による二次信号とを独立にかつ選択的に検出するように
同期変換を行なうこともある。
The polarity of the electric field that extracts the beam from the charged particle source is periodically changed to alternately generate a charged particle beam due to positive elements and a charged particle beam due to negative elements, which are irradiated onto the sample and are emitted secondarily from the sample. Item 4 - A control method for selectively synchronizing the detection polarity conversion of the heavy particle signal with the polarity conversion of the beam extraction electric field. In this case, the detection polarity of the secondary charged particle signal is converted by detecting a secondary signal due to a positive element when irradiated with a charged particle beam due to a positive element, and detecting a secondary signal due to a negative element when irradiated with a charged particle beam due to a negative element. Synchronous conversion may be performed to detect secondary signals, and for both irradiation with a charged particle beam due to a positive element and irradiation with a charged particle beam due to a negative element, the secondary signal due to the positive element and the negative element Synchronous conversion may also be performed to independently and selectively detect the secondary signal due to the

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第2図により説明する。これは、走
査型電子像と走査型イオン像とを同時に観察する例であ
る。装置は、荷電粒子源1.絞り2.3,4.−次荷電
粒子ビーム集束用のレンズ5.6.7 (磁場、静電の
組合せレンズの場合も含む)、偏向電極8.試料9.正
荷電粒子検出器10及び負荷電粒子検出器10′、走査
電源11.正荷重粒子像観察用CRT12及び負荷電粒
子像観察用CRT1.2’、−次ビームプランキング用
の偏向電極15.ビーム分離用の絞り16.二次信号分
離用の偏向電極17.二次信号分離用絞り18.加速用
高圧電源19及び分圧電源20より構成されている。
An embodiment of the present invention will be described with reference to FIG. This is an example in which a scanning electron image and a scanning ion image are observed simultaneously. The device includes a charged particle source 1. Aperture 2.3, 4. - Lens for secondary charged particle beam focusing 5.6.7 (including the case of a combination lens of magnetic field and electrostatic field), deflection electrode 8. Sample 9. A positively charged particle detector 10, a negatively charged particle detector 10', a scanning power source 11. CRT 12 for positively loaded particle image observation, CRT 1.2' for negatively charged particle image observation, and deflection electrode 15 for -order beam planking. Aperture for beam separation 16. Deflection electrode 17 for secondary signal separation. Secondary signal separation aperture 18. It is composed of an acceleration high voltage power supply 19 and a divided voltage power supply 20.

第2図実施例は次のように動作する。荷電粒子源1とし
てアルゴン導入によるデュオプラズマトロンを採用した
。この荷電粒子源]に、第3図に示すように正及び負の
パルス電圧を印加し、陽性元素による荷電粒子(正イオ
ン)ビームと陰性元素による荷電粒子(電子ビームまた
は負イオンビーム)とを交互に引出す。アルゴンプラズ
マの場合。
The embodiment of FIG. 2 operates as follows. A duoplasmatron with argon introduced was used as the charged particle source 1. As shown in Figure 3, positive and negative pulse voltages are applied to this charged particle source to generate a charged particle (positive ion) beam of positive elements and a charged particle (electron beam or negative ion beam) of negative elements. Pull out alternately. For argon plasma.

負イオン量は極めて微量であり、電子量に比較して無視
できる。引出された荷電粒子ビーム13は。
The amount of negative ions is extremely small and can be ignored compared to the amount of electrons. The extracted charged particle beam 13 is.

偏向電極15と集束レンズ5.絞り2及びビーム分離用
絞り16により、正イオンビーム及び電子ビームとして
周期的に分離して絞り16の下方に取り出される。即ち
、試料9は、正イオンビームと電子ビームにより交互に
照射される。この場合、集束レンズ系のうちのあるレン
ズ系に磁場レンズを併用することにより、電子ビーム径
をより細束化することができる。本実施例では、レンズ
6.7を静電レンズと磁場レンズ両用のハイブリッドレ
ンズとして利用した。即ち、正イオンに対しては2段の
静電Iノンズ5,7(静電レンズ6は動作させず)を利
用し、また電子に刺しては、加速電圧の極性変換に同期
させて静電レンズをオフ状態にし。
Deflection electrode 15 and focusing lens 5. The diaphragm 2 and the beam separation diaphragm 16 periodically separate the beam into a positive ion beam and an electron beam, which are extracted below the diaphragm 16 . That is, the sample 9 is alternately irradiated with a positive ion beam and an electron beam. In this case, by using a magnetic field lens together with a certain lens system of the focusing lens system, the diameter of the electron beam can be made more narrow. In this example, the lens 6.7 was used as a hybrid lens that can be used as both an electrostatic lens and a magnetic field lens. That is, for positive ions, two-stage electrostatic I-nones 5 and 7 (the electrostatic lens 6 is not operated) are used, and for electrons, electrostatic charges are applied in synchronization with the polarity change of the accelerating voltage. Turn off the lens.

3段の磁場レンズを利用した。これにより、試料上での
イオンビーム径及び電子ビーム径としてそわぞれ177
ffl及びO、]、 //II+を得た。
A three-stage magnetic field lens was used. As a result, the ion beam diameter and electron beam diameter on the sample are respectively 177
ffl and O,], //II+ were obtained.

一方、−次荷電粒子ビームの照射によって試料表面で発
生した二次荷電粒子流14の正、負の検出は、偏向電極
17により選択的に行なわれる。本実施例では、上記し
たように一次ビームとして正イオンビームと電子ビーム
を交互に利用し、二次信号としてそれぞれ二次圧イオン
と二次電子を利用することにより、二次イオン像と二次
電子像とを。
On the other hand, positive and negative detection of the secondary charged particle flow 14 generated on the sample surface by the irradiation with the -order charged particle beam is selectively performed by the deflection electrode 17. In this embodiment, as described above, a positive ion beam and an electron beam are used alternately as the primary beam, and secondary pressure ions and secondary electrons are used as the secondary signals, respectively, so that a secondary ion image and a secondary With electronic images.

像観察用CRT]、2及び12′ に、同時にかつ独立
に観察することができる。この場合の一次励起源。
CRT for image observation], 2 and 12' can be observed simultaneously and independently. The primary excitation source in this case.

二次信号の選択、情報の種類及び特徴を表示する7− と第1表のようになる。7- Displaying secondary signal selection, information type and characteristics and as shown in Table 1.

CRT12.12’ により、二次イオン像と二次電子
像とを同時に、独立に観察する場合について述べたが2
本発明によれば、正負の荷電粒子検出器10゜10′及
び正負の像観察用CRT12.12’の検出系のいずれ
か一方、あるいは両方を、質量分析計とすることにより
、CRTによる像観察と質量分析計によるスペクトル分
析とを同時に、あるいは二次圧、負イオンの質量スペク
トル分析を同時に遂行することも可能である。二次圧、
負イオンによる質量スペクトル分析遂行時の一次励起源
、二次信号、情報の種類、それぞれの特徴を第2表に表
示して示す。
We have described the case where a secondary ion image and a secondary electron image are observed simultaneously and independently using a CRT12.12'.
According to the present invention, by using a mass spectrometer as one or both of the detection systems of the positive and negative charged particle detectors 10° 10' and the positive and negative image observation CRTs 12 and 12', image observation using the CRT It is also possible to simultaneously perform spectral analysis using a mass spectrometer, or perform mass spectral analysis of secondary pressure and negative ions at the same time. secondary pressure,
Table 2 shows the primary excitation source, secondary signals, types of information, and their respective characteristics when performing mass spectrometry analysis using negative ions.

8− 極性と二次信号の検出極性を選択的に同期させ。8- Selectively synchronize the polarity and detection polarity of the secondary signal.

それぞれ、正イオンビームの励起に対して正または負の
二次信号を、また負イオンまたは電子励起に対して正負
イオンまたは電子の二次信号を独立にかつ選択的に検出
することが可能となり、これにより、高能率での試料面
像の観察、高分解能での試料元素の分析、さらに、像観
察と分析との同時遂行を可能にする利点がある。
It becomes possible to independently and selectively detect a positive or negative secondary signal for the excitation of a positive ion beam, and a positive or negative ion or electron secondary signal for the excitation of negative ions or electrons, respectively, This has the advantage of enabling highly efficient observation of a sample surface image, high resolution analysis of sample elements, and simultaneous execution of image observation and analysis.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、(1)従来方法に比べて情報量を2倍
に増加させることができ、これにより、より正確な試料
評価が可能になる。(2)二次信号として正イオン、負
イオンまたは電子を任意に取り出して利用でき、高分解
能での試料表面観察、高感度での試料分析が可能となり
、かつ、必要に応じて情報を選択できる。(3)像観察
と分析とを同時に遂行するというように異なったモード
による同時的な解析が可能となる2等の効果を発揮する
According to the present invention, (1) the amount of information can be doubled compared to conventional methods, thereby enabling more accurate sample evaluation. (2) Positive ions, negative ions, or electrons can be extracted and used as secondary signals, making it possible to observe the sample surface with high resolution and analyze the sample with high sensitivity, and to select information as necessary. . (3) A second-class effect is achieved that enables simultaneous analysis in different modes, such as performing image observation and analysis at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の走査型電子顕微鏡の配置図、第2図は本
発明制御法を適用して走査型電子顕微鏡〈符号の説明〉 ■・・・荷電粒子源 2、 3.4.、1.6・・・絞り 5.6.7・・・レンズ 8.15・・・偏向電極 9・・・試料 10、10’・・・荷電粒子検出器 11・・・走査電源 12、12’・・・CRT I3・・・−次荷電粒子ビーム 14・・・二次荷電粒子流 17・・二次信号分離用偏向電極 18・・二次信号勺離用絞り 19・・・加速用高圧電源 20・・・分圧電源 代理人弁理士 中 村 純之助 第3図 正電圧 雪 負電圧 りC1
Fig. 1 is a layout diagram of a conventional scanning electron microscope, and Fig. 2 is a scanning electron microscope using the control method of the present invention. , 1.6... Aperture 5.6.7... Lens 8.15... Deflection electrode 9... Sample 10, 10'... Charged particle detector 11... Scanning power source 12, 12 '...CRT I3...-Secondary charged particle beam 14...Secondary charged particle flow 17...Deflection electrode for secondary signal separation 18...Aperture for secondary signal separation 19...High voltage for acceleration Power supply 20... Partial voltage power supply agent Junnosuke Nakamura Figure 3 Positive voltage Snow Negative voltage C1

Claims (4)

【特許請求の範囲】[Claims] (1)荷電粒子源から引出された荷電粒子ビームを試料
に照射し、試料から二次的に放出される荷電粒子信号を
検出して試料解析情報とする荷電粒子ビーム制御法にお
いて、荷電粒子源からビームを引出す電界の極性を周期
的に変換して陽性元素による荷電粒子ビームと陰性元素
による荷電粒子ビームとを交互に発生させて試料に照射
し、試料から二次的に放出される荷電粒子信号の検出極
性の変換を、」二記ビーム引出し電界の極性変換と選択
的に同期させて行なうことを特徴とする荷電粒子ビーム
制御法。
(1) In a charged particle beam control method in which a sample is irradiated with a charged particle beam extracted from a charged particle source and a charged particle signal secondarily emitted from the sample is detected and used as sample analysis information, By periodically changing the polarity of the electric field that extracts the beam from the sample, a charged particle beam from a positive element and a charged particle beam from a negative element are alternately generated and irradiated onto the sample, and the charged particles are secondarily emitted from the sample. A charged particle beam control method characterized in that the conversion of the detection polarity of a signal is performed selectively in synchronization with the polarity conversion of a beam extraction electric field.
(2)前記二次荷電粒子信号の検出極性の変換が。 陽性元素による荷電粒子ビームの照射に対して陽性元素
による二次信号を検出し陰性元素による荷電粒子ビーム
の照射に対して陰性元素による二次信号を検出するよう
に、前記ビーム引出し電界の極性変換に応じて行なわれ
ることを特徴とする特許請求の範囲第1項記載の荷電粒
子ビーム制御法。
(2) Conversion of the detection polarity of the secondary charged particle signal. polarity conversion of the beam extraction electric field so as to detect a secondary signal due to a positive element when irradiated with a charged particle beam due to a positive element, and to detect a secondary signal due to a negative element when irradiated with a charged particle beam due to a negative element; 2. A charged particle beam control method according to claim 1, wherein the charged particle beam control method is carried out according to the following.
(3)前記二次荷電粒子信号の検出極性の変換が。 陽性元素による荷電粒子ビームの照射と陰性元素による
荷電粒子ビームの照射のいずれに対しても陽性元素によ
る二次信号と陰性元素による二次信号とを独立にかつ選
択的に検出するように、前記ビーム引出し電界の極性変
換に応じて行なわれることを特徴とする特許請求の範囲
第1−項記載の荷電粒子ビーム制御法。
(3) Conversion of the detection polarity of the secondary charged particle signal. The secondary signal due to the positive element and the secondary signal due to the negative element are independently and selectively detected for both the irradiation with the charged particle beam due to the positive element and the irradiation with the charged particle beam due to the negative element. A charged particle beam control method according to claim 1, characterized in that the charged particle beam control method is carried out in response to polarity conversion of a beam extraction electric field.
(4)前記二次荷電粒子信号の検出極性の変換が。 −次荷電粒子ビ・−ムの試料への照射に対して試料から
の二次信号として試料面の像観察用の二次信号と試料元
素分析用の二次信号とを検出するように、前記ビーム引
出し電界の極性変換に応じて行なわれることを特徴とす
る特許請求の範囲第1項記載の荷電粒子ビーム制御法。
(4) Conversion of the detection polarity of the secondary charged particle signal. - detecting a secondary signal for image observation of the sample surface and a secondary signal for sample elemental analysis as secondary signals from the sample when the sample is irradiated with the secondary charged particle beam; 2. A charged particle beam control method according to claim 1, wherein said charged particle beam control method is carried out in response to polarity conversion of a beam extraction electric field.
JP4038284A 1984-03-05 1984-03-05 Charged particle beam control method Pending JPS60185351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4038284A JPS60185351A (en) 1984-03-05 1984-03-05 Charged particle beam control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4038284A JPS60185351A (en) 1984-03-05 1984-03-05 Charged particle beam control method

Publications (1)

Publication Number Publication Date
JPS60185351A true JPS60185351A (en) 1985-09-20

Family

ID=12579103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4038284A Pending JPS60185351A (en) 1984-03-05 1984-03-05 Charged particle beam control method

Country Status (1)

Country Link
JP (1) JPS60185351A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211551A (en) * 1987-02-27 1988-09-02 Hitachi Ltd Charged particle beam device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342096A (en) * 1976-09-28 1978-04-17 Matsushita Electric Ind Co Ltd Ion impulse type mass spectrograph
JPS55133740A (en) * 1979-04-03 1980-10-17 Matsushita Electric Ind Co Ltd Secondary ion mass spectrometer
JPS58158844A (en) * 1982-03-17 1983-09-21 Jeol Ltd Ion gun

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342096A (en) * 1976-09-28 1978-04-17 Matsushita Electric Ind Co Ltd Ion impulse type mass spectrograph
JPS55133740A (en) * 1979-04-03 1980-10-17 Matsushita Electric Ind Co Ltd Secondary ion mass spectrometer
JPS58158844A (en) * 1982-03-17 1983-09-21 Jeol Ltd Ion gun

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211551A (en) * 1987-02-27 1988-09-02 Hitachi Ltd Charged particle beam device

Similar Documents

Publication Publication Date Title
EP1540692B1 (en) Particle-optical device and detection means
US3889115A (en) Ion microanalyzer
Liebl Ion microprobe analysers
JPH0286036A (en) Ion micro-analyzer
JPS5958749A (en) Composite objective and radiation lens
JPH0378742B2 (en)
EP0084850B1 (en) Apparatus for irradiation with charged particle beams
US4841143A (en) Charged particle beam apparatus
US4107527A (en) Ion-emission microanalyzer microscope
JPS54104385A (en) Ion-electron compound analytical apparatus
JPH10154483A (en) Ion detector
JPS60185351A (en) Charged particle beam control method
JPH04122882A (en) Charged particle measuring apparatus and light intensity waveform measuring apparatus
JP2000215841A (en) Composite emission electron microscope for chemical analysis
CN112309822B (en) Ion probe mass spectrometer and imaging method thereof
JP2607573B2 (en) Ion micro analyzer
JP2000215842A (en) In situ observation system in composite emission electron microscope
JP2001167725A (en) Spectrometer object lens of particle beam measuring apparatus
JPS59201357A (en) Secondary ion mass spectrometer
JPS62167452A (en) X-ray photoelectric spectrometer
JPH06318443A (en) Ion beam device
JPH01264153A (en) Electron beam device
JPS58142285A (en) Charged particle detector
JPH06187940A (en) Charged particle detector
JPH0330249A (en) Ion detector