JPS60184425A - Shape detecting method of pipe in roll type pipe reforming machine and roll position setting method - Google Patents

Shape detecting method of pipe in roll type pipe reforming machine and roll position setting method

Info

Publication number
JPS60184425A
JPS60184425A JP3917384A JP3917384A JPS60184425A JP S60184425 A JPS60184425 A JP S60184425A JP 3917384 A JP3917384 A JP 3917384A JP 3917384 A JP3917384 A JP 3917384A JP S60184425 A JPS60184425 A JP S60184425A
Authority
JP
Japan
Prior art keywords
roll
pipe
amount
residual
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3917384A
Other languages
Japanese (ja)
Inventor
Takeo Yasuda
安田 武生
Munekatsu Furugata
宗勝 古堅
Kazo Kusaka
日下 嘉蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3917384A priority Critical patent/JPS60184425A/en
Publication of JPS60184425A publication Critical patent/JPS60184425A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D3/00Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts
    • B21D3/02Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts by rollers
    • B21D3/04Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts by rollers arranged on axes skew to the path of the work

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To detect a shape of a pipe, and to reform correctly the pipe by derivering a residual bend quantity by a variation of a difference of a load of each roll of the delivery of the pipe, and deriving a residual ellipse factor by a variation of a load of one roll. CONSTITUTION:In a roll type pipe reforming machine which has three pairs or more of a pair of rolls opposed to each other, offsets at least one pair of rolls against other rolls, crushes and moves a pipe by the rolls opposed to each other, and straightens the pipe, load cells 23, 27 are provided through supporting levers 22, 26 on each roll 21, 25, respectively, of a stand 13 positioned at the delivery of a pipe 10, and a load of each roll 21, 25 is detected, and inputted to an operator 33 through amplifiers 31, 32. Also, from a pulse oscillator 24 installed to the roll 21, a pulse signal is inputted to said operator 33 at every one rotation. In the operator 33, from this input signal, a variation quantity of a load difference of each roll 21, 25 and a variation quantity of a load of the roll 25 are calculated, also a residual bend quantity and a residual ellipse factor of the pipe are deived, and an offset quantity and a crush quantity are set.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鋼管等の管を矯正するロール成骨矯正機の管の
形状検出方法及びロール位置設定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting the shape of a tube and a method for setting the roll position of a roll bone straightening machine for straightening a tube such as a steel tube.

〔従来技術〕[Prior art]

各種製管法により製造される鋼管は、所定の品質を得る
ために各種処理を施して精整する必要がある。
Steel pipes manufactured by various pipe manufacturing methods need to be refined through various treatments in order to obtain predetermined quality.

矯正工程はこのような精整工程の一つであり、管の曲り
を除去し、真直とすることを目的とじている。曲げ矯正
方法としては、相対向する1組のロールを3組以」−有
し、少くとも1絹のロールは、他のロールに対して、管
に曲げ加工が与えられるように配設し、各ロールを回転
させ、各組の相対向するロール間に、外圧を与えつつ管
を移動させて管を真直及び真円とするいわゆるL!−ル
式矯iE機が一般的に用いられている。
The straightening process is one of such refinement processes, and its purpose is to remove bends in the pipe and make it straight. The bend straightening method includes three or more pairs of rolls facing each other, and at least one silk roll is arranged so that the pipe is bent with respect to the other rolls, The so-called L! rotates each roll and moves the tube while applying external pressure between each pair of opposing rolls to make the tube straight and perfectly round! - A straightening iE machine is commonly used.

従来、このロール成骨矯正機において、各ロールの位置
を設定する方法としては、管の矯正時における歪、応力
等が実験的、理論的に解明されていないこともあって、
作業者が管の曲りを目視判断して過去のデータを基に、
作業者の経験による方法が一般的であった。このため、
作業者の経験差によって、矯正精度、降伏強度等の管の
品質が変化し、一度の曲げ矯正では所望の品質が得られ
ないために、再度矯正を行う必要がしばしば生じ、また
設定に長時間を要するという不都合があった。
Conventionally, the method of setting the position of each roll in this roll bone straightening machine has been difficult, partly because strain, stress, etc. during straightening of the tube have not been clarified experimentally or theoretically.
Workers visually judge the bending of the pipe based on past data.
The most common method was based on the experience of the worker. For this reason,
The quality of the pipe, such as straightening accuracy and yield strength, changes due to differences in the experience of workers, and since the desired quality cannot be obtained with one bend straightening, it is often necessary to straighten the pipe again, and the setting process takes a long time. There was the inconvenience that it required

〔目的〕〔the purpose〕

本発明は斯かる事情に鑑みてなされたものであり、ロー
ル成骨矯正機において、管の出側に位置する1組のロー
ルに加わる荷重の変動に基づいて、管の残留曲り及び管
の残留楕円率を夫々求めることにより、正確に管の曲り
を捉えることができるロール成骨矯正機の管の形状検出
方法の提供、及びめられた管の残留曲りに基づいてオフ
セット量を定め、また管の残留楕円率に基づいてクラッ
シュ量を定めることにより、上述の不都合を解消し、製
品の品質向上が図れると共に、作業時間の短縮を可能と
したロール成骨矯正機におけるロール位置設定方法の提
供を目的とする。
The present invention has been made in view of the above circumstances, and uses a roll straightening machine to correct the residual bending of the tube and the residual bending of the tube based on the fluctuation of the load applied to a set of rolls located on the exit side of the tube. To provide a method for detecting the shape of a tube in a roll osteotomy straightening machine that can accurately detect the bending of a tube by determining the ellipticity, and to determine the amount of offset based on the residual bending of the inserted tube. By determining the amount of crush based on the residual ellipticity of purpose.

〔原理〕〔principle〕

次に本発明の詳細な説明する。 Next, the present invention will be explained in detail.

第1図はロール成骨矯正機による管の矯正状態を示す模
式図、第2図は第1図のn−n線における拡大断面模式
図である。このロール成骨矯正機は、各軸を相互に傾斜
させて相対向する上下各1個の鼓型ロールを有するスタ
ンドを3組並設した、いわゆる2−2−2型と呼ばれて
いるものであり、第1図に白抜矢符で示すように図面の
左側から右側へ管10が回転されつつ移動させられる。
FIG. 1 is a schematic view showing the state of correction of a tube by a roll osteotomy correction machine, and FIG. 2 is an enlarged schematic cross-sectional view taken along line nn in FIG. 1. This roll bone straightening machine is of the so-called 2-2-2 type, in which three sets of stands each having one upper and lower drum-shaped roll facing each other with their axes tilted to each other are arranged side by side. The tube 10 is rotated and moved from the left side of the drawing to the right side as shown by the white arrow in FIG.

左側の第1スタンド11及び右側の第3スタンド13の
各ロールに対し、中央の第2スタンド12の各ロールは
、管10に曲げ加工を与えるべく、上方に平行移動させ
られた、いわゆるオフセント状態とされており、そのオ
フセント量はδ。で示される。
In contrast to each roll of the first stand 11 on the left side and the third stand 13 on the right side, each roll of the second stand 12 in the center is translated upward in order to bend the pipe 10, which is a so-called offset state. The amount of offset is δ. It is indicated by.

また、各スタンドII、12.13の各ロール間間隙は
、管10に外圧を与えるべく、管10の真円外径(製品
目標外径)よりも若干小さく設定されて、管10はいわ
ゆるクラッシュされており、このため管10は第2図に
示すように偏平楕円状となる。クラッシュ量δCは、真
円外径(管10の周長によって定まる真円の外径)dと
ロール間距離(従って偏平楕円となった管の短径)との
差によって表わされる。
In addition, the gaps between the rolls of each stand II, 12.13 are set slightly smaller than the perfect circular outer diameter (product target outer diameter) of the tube 10 in order to apply external pressure to the tube 10, so that the tube 10 has a so-called crush Therefore, the tube 10 has a flat elliptical shape as shown in FIG. The amount of crush δC is expressed by the difference between the outer diameter of the perfect circle (the outer diameter of the perfect circle determined by the circumferential length of the tube 10) d and the distance between the rolls (therefore, the minor axis of the tube that has become a flat ellipse).

第3図は各ロールから管10に加わる荷重の状態を示す
模式図である。第1スタンド11における各ロールのク
ラッシュにより管10には上、下側の各ロールにて下、
上各方向への等しい大きさのクラッシュ荷重Pc1が加
わっており、第2スタンド】2及び第3スタンド13に
も同様に、夫々等しい大きさのクラッシュ荷重Pc21
 P c 3が、上、下側の各ロールにより下、上各方
向へ加わっている。
FIG. 3 is a schematic diagram showing the state of the load applied to the tube 10 from each roll. Due to the crash of each roll in the first stand 11, the tube 10 is
A crush load Pc1 of equal magnitude is applied in each direction above, and a crush load Pc21 of equal magnitude is applied to the second stand 2 and third stand 13 as well.
P c 3 is applied in the downward and upward directions by the upper and lower rolls.

次に第2スタンド12のオフセットによる荷重、即ちオ
フセント荷重について考えると、ロールがオフセットさ
れた第2スタンド12では下側のロールよりオフセット
荷重Po2が上方に向って加わり、第1.第3の各スタ
ンド11.13では、上側のロールから下方への荷1i
po1+PO3が夫々前わる。
Next, considering the load due to the offset of the second stand 12, that is, the offset load, in the second stand 12 where the rolls are offset, the offset load Po2 is applied upward from the lower roll, and the offset load Po2 is applied upward from the lower roll. In each third stand 11.13, the load 1i is loaded downward from the upper roll.
po1+PO3 come first.

各オフセント荷重Po 1. Po 21 Po 3は
、平衡状態であるため、Po 2 =Po 1+Po 
3となる。今、第2スタンドをオフセットさせた2−2
−2型の、管10の出側にあたる第3スタンド13の各
ロールに荷重計を設置して各ロールに加わる荷重を測定
すれば、第3スタンド13におけるオフセント荷重Po
3は、上側のロールの荷重(P03+PC3)と、下側
のロールの荷重(Pc 3 )との差で表わされ、また
クラッシュ荷重Pc3は下側のロールの荷重(Pc 3
 )と等しくなる。なお、対向する3組のロールの出側
下側にさらに一個のロールを設置したl−2−2−1型
と呼ばれるものにおいては、その最小側の下側ロールに
荷重計を設置すれば残留曲り検出のための情報を得るこ
とができる。
Each offset load Po 1. Since Po 21 Po 3 is in equilibrium, Po 2 = Po 1 + Po
It becomes 3. Now, 2-2 with the second stand offset
-2 type, if a load meter is installed on each roll of the third stand 13 on the exit side of the pipe 10 and the load applied to each roll is measured, the offset load Po on the third stand 13
3 is expressed as the difference between the load on the upper roll (P03+PC3) and the load on the lower roll (Pc 3 ), and the crush load Pc3 is the load on the lower roll (Pc 3 ).
) is equal to In addition, in the type 1-2-2-1, which has one roll installed below the exit side of three sets of opposing rolls, a load meter can be installed on the smallest roll to reduce the residual amount. Information for bend detection can be obtained.

次に、オフセット荷重POの変動と残留曲りの関係につ
いて説明する。外径60璽1、厚さ5龍のSTB 42
鋼管により、ロール1回転当りのオフセット荷重Poの
変動と残留曲りとの関係について行った実験結果を第4
図に示す。このグラフにより残留曲りが大きい場合には
オフセント荷重Poの変動が大きくなることがわかる。
Next, the relationship between fluctuations in offset load PO and residual bending will be explained. STB 42 with outer diameter 60 mm and thickness 5 mm
The results of an experiment conducted on the relationship between the fluctuation of offset load Po per roll rotation and residual bending using steel pipes are summarized in the fourth section.
As shown in the figure. It can be seen from this graph that when the residual bending is large, the variation in the offset load Po becomes large.

従ってオフセント荷重Poの変動と残留曲りとの関係を
予めめておけば、ロール1回転当りのオフセント荷重P
Therefore, if the relationship between the fluctuation of the offset load Po and the residual bending is determined in advance, the offset load P per one rotation of the roll can be
.

の変動を検出することにより管に生じている曲り量がめ
られる。
By detecting fluctuations in the amount of bending in the pipe, the amount of bending occurring in the pipe can be determined.

さらにクラッシュ荷重Pcの変動と楕円率との関係につ
いて説明する。外径60龍、厚さ5II+lのSTB 
42鋼管により、ロール1回転当りのクラッシュ荷重P
cの変動と楕円率との関係について行った実験結果を第
5図に示す。ロール1回転当りのクラッシュ荷重Pcの
変動と楕円率はほぼ比例関係にある。従ってロール1回
転当りのクラッシュ荷重Pcの変動と楕円率との関係を
予めめておけば、クラッシュ荷重Pcの変動により管の
楕円率をめることができる。
Furthermore, the relationship between fluctuations in crush load Pc and ellipticity will be explained. STB with outer diameter 60mm and thickness 5II+l
42 steel pipe, crush load P per roll rotation
FIG. 5 shows the results of an experiment conducted regarding the relationship between the variation of c and the ellipticity. The variation in crush load Pc per rotation of the roll and the ellipticity are approximately proportional to each other. Therefore, if the relationship between the variation in the crush load Pc per rotation of the roll and the ellipticity is determined in advance, the ellipticity of the pipe can be determined by the variation in the crush load Pc.

次にオフセント量及びクラッシュ量と矯正後の残留曲り
の関係について説明する。外径60鶴、厚さ5 inの
STB 42鋼管のオフセントと残留曲りとの関係うを
調べるべく実験を行った。即ち、鋼管の矯正前の曲りを
2van / mとし、またクラッシュ量を一定として
、オフセント量を変化させて矯正した場合における鋼管
の残留曲りを測定した。この場合、各オフセット量に対
して生じる残留曲りは第6図のようになった。また、同
様の条件の鋼管を、オフセント量を一定とし、クラッシ
ュ量を変化させて矯正した結果を第7図に示す。曲り矯
正は主にオフセットにて実現でき、クラッシュは曲り矯
正に寄与するが明確な傾向はない。第6図から明らかな
ように、オフセット量が1(ln以下であれば残留曲り
はオフセット量に反比例するが、10鶴を超えると残留
曲りは増加する傾向がある。従ってこの条件の場合には
、オフセント量を10鶴程度とすれば、曲り矯正は最も
効果的となる。このように、管の寸法、材質等及び初期
曲り量(矯正前の曲り量)に対して、曲り矯正が最も効
果的となるオフセント量が存在し、管の寸法、材質等及
び初期曲り量に対するオフセット量と残留曲りとの関係
について予めめておけば、曲り矯正に最も効果的なオフ
セント量が容易にめられる。
Next, the relationship between the amount of offset, the amount of crush, and the residual curvature after correction will be explained. An experiment was conducted to investigate the relationship between the offset and residual bending of STB 42 steel pipe with an outer diameter of 60 mm and a thickness of 5 inches. That is, the residual curvature of the steel pipe was measured when the curvature of the steel pipe before straightening was set to 2 van/m, the amount of crush was kept constant, and the amount of offset was changed and the steel pipe was straightened. In this case, the residual bending that occurs for each offset amount is as shown in FIG. Further, FIG. 7 shows the results of straightening a steel pipe under similar conditions by keeping the amount of offset constant and varying the amount of crush. Curd correction can be achieved mainly by offset, and crush contributes to bend correction, but there is no clear tendency. As is clear from Fig. 6, if the offset amount is less than 1 (ln), the residual bending is inversely proportional to the offset amount, but if it exceeds 10 cranes, the residual bending tends to increase. , bend correction is most effective when the amount of offset is about 10 cranes.In this way, bend correction is most effective depending on the pipe dimensions, material, etc., and initial bend amount (bending amount before correction). If there is a target offset amount, and the relationship between the pipe size, material, etc. and the offset amount with respect to the initial bending amount and the residual bending is determined in advance, the most effective offset amount for bend correction can be easily determined.

従って、オフセント量を定めるに際し、原管(矯正前の
管)の寸法、材料1曲り量に対して、オフセット量と残
留曲りとの関係を示す資料を予め蓄積しておいて、これ
を利用すればよい。
Therefore, when determining the amount of offset, it is necessary to accumulate data in advance that shows the relationship between the amount of offset and the residual bend for the dimensions of the original pipe (pipe before straightening) and the amount of bend per piece of material, and use this. Bye.

さらにクラッシュ量と矯正後の残留楕円率との関係につ
いて説明する。第8図は、外径6011、厚さ5flの
STB 42鋼管について矯正前の楕円率を3〜4%、
オフセント量を一定とした場合のクラッシュ率(クラッ
シュ量δCと外径dとの比δC/d)と残留楕円率との
関係を示すグラフである。
Furthermore, the relationship between the amount of crush and the residual ellipticity after correction will be explained. Figure 8 shows the ellipticity of STB 42 steel pipe with an outer diameter of 6011 and a thickness of 5 fl before straightening at 3 to 4%.
It is a graph showing the relationship between the crush rate (the ratio δC/d of the crush amount δC and the outer diameter d) and the residual ellipticity when the offset amount is constant.

クラッシュ率δc / dと残留楕円率とは略反比例の
関係にあり、楕円矯正はクラッシュ率が大きいほど効果
的となるが、鋼管の硬度は増加し、品質は劣化する。従
って管の寸法、材質等及び初期楕円率(矯正前の楕円率
)に対してクラッシュ率と残留楕円率との関係を予めめ
ておき、管の硬度増加を考慮すれば、管の偏平に対する
矯正に対して最も効果的なりラッシュ率がめられ、クラ
ッシュ量が定められる。このようにクラッシュ量を定め
るに際し、原管の寸法、材料、楕円率に対して、クラッ
シュ率と残留楕円率との関係を示す資料を予め蓄積して
おき、これを利用すればよい。
The crush rate δc/d and the residual ellipticity are approximately inversely proportional, and the higher the crush rate, the more effective the ellipse correction becomes, but the hardness of the steel pipe increases and the quality deteriorates. Therefore, if the relationship between the crush rate and residual ellipticity is determined in advance based on the pipe dimensions, material, etc. and initial ellipticity (ellipticity before correction), and the increase in hardness of the pipe is taken into consideration, it is possible to correct the flatness of the pipe. The most effective rush rate is determined and the amount of crash is determined. In determining the amount of crush in this way, data showing the relationship between the crush rate and the residual ellipticity with respect to the dimensions, materials, and ellipticity of the original tube may be accumulated in advance and used.

〔構成〕〔composition〕

本発明は以上のような原理に着眼してなされたものであ
り、相対向する1組のロールを3組以上有し、少くとも
1組のロールは他のロールに対してオフセットされてお
り、相対向するロールにて管をクラッシュさせつつ移動
させることにより管を真直とするロール成骨矯正機にお
いて、管の出側に位置する1組のロールに加わる荷重を
検出し、対向する各ロールに加わる荷重の差の変動によ
り管の残留曲り量をめ、一方のロールに加わる荷重変動
により管の残留楕円率をめることにより管の形状を検出
するものであり、まためられた管の残留曲り量に基づい
てオフセント量を定め、求められた管の残留楕円率に基
づいてクランシュ量を定めるようにしたものである。
The present invention has been made with attention to the above principle, and has three or more sets of rolls facing each other, at least one set of rolls is offset with respect to the other rolls, In a roll straightening machine that straightens a tube by moving the tube while crushing it with opposing rolls, the load applied to a set of rolls located on the exit side of the tube is detected, and the load applied to each of the opposing rolls is detected. The shape of the pipe is detected by determining the amount of residual bending in the pipe based on the variation in the difference in the applied load, and the residual ellipticity of the pipe based on the variation in the load applied to one roll. The amount of offset is determined based on the amount of bending, and the amount of crush is determined based on the determined residual ellipticity of the pipe.

〔実施例〕〔Example〕

次に本発明方法の実施例について説明する。第9図は、
本発明方法の実施に使用する2−2−2型ロ一ル式管矯
正機における出?R1ノの第3スタンド13の正面模式
図である。上側ロール21の支持杆22には管10の移
動により該ロール21に加わる上向きの荷重を検出する
ロードセル23が設けられており、またロール21には
、その1回転毎に所定信号を出力するパルス発振器24
が設けられている。
Next, examples of the method of the present invention will be described. Figure 9 shows
Output in the 2-2-2 roll type tube straightening machine used to carry out the method of the present invention? FIG. 3 is a schematic front view of the third stand 13 of R1. The support rod 22 of the upper roll 21 is provided with a load cell 23 that detects the upward load applied to the roll 21 due to the movement of the tube 10, and the roll 21 is equipped with a pulse that outputs a predetermined signal every rotation. Oscillator 24
is provided.

下側のロール25の支持杆26には管1oの移動により
ロール25に加わる下向きの荷重を検出するロードセル
27が設けられている。
A load cell 27 is provided on the support rod 26 of the lower roll 25 to detect the downward load applied to the roll 25 due to the movement of the tube 1o.

上側のロール21の支持杆22に設けられたロードセル
23の出力は増幅器31を介して演算器33に与えられ
ており、また下側のロードセル27の出力は増幅器32
を介して演算器33にりえられている。さらに」二側の
ロール21に設けられたパルス発振器24の出力も演算
器33に与えられている。
The output of the load cell 23 provided on the support rod 22 of the upper roll 21 is given to an arithmetic unit 33 via an amplifier 31, and the output of the lower load cell 27 is given to an amplifier 32.
The data is sent to the arithmetic unit 33 via. Furthermore, the output of the pulse oscillator 24 provided on the roll 21 on the second side is also provided to the computing unit 33.

演算器33ば、パルス発振器28の信号に基づいて各ロ
ール1回転当りの各ロール21.25に加わる荷重の差
の最大値と最小値の差、即ちロール1回転当りの荷重の
差の変動量を算出し、また下側のロール25の1回転当
りのロール荷重の変動量を算出しており、ロール1回転
当りのロール荷重の差の変動量に基づいて、予め設定さ
れたオフセット荷重と残留曲りとの関係から、管10に
おける残留曲りをめ、その値を残留曲り記録器34に記
録し、さらに下側ロール21の荷重変動量、即ちクラッ
シュ荷重変動量に基づいて、予め設定されたクラッシュ
荷重変動量と楕円率との関係により楕円率を算出し、そ
の値を楕円率記録器35にて記録する。
Based on the signal from the pulse oscillator 28, the calculator 33 calculates the difference between the maximum and minimum differences in the loads applied to each roll 21.25 per rotation of each roll, that is, the amount of variation in the difference in loads per rotation of each roll. It also calculates the amount of variation in the roll load per rotation of the lower roll 25, and calculates the difference between the preset offset load and the residual load based on the amount of variation in the difference in roll load per rotation of the roll. The residual bend in the pipe 10 is determined from the relationship with the bend, and the value is recorded in the residual bend recorder 34. Furthermore, based on the amount of load variation of the lower roll 21, that is, the amount of crash load variation, a preset crash value is determined. The ellipticity is calculated based on the relationship between the load variation amount and the ellipticity, and the value is recorded by the ellipticity recorder 35.

各記録器34 、35にて記録された値から、管10の
形状が判定され、その曲り量は、例えばこの管矯正機に
よる矯正工程の次工程である非破壊検査工程における計
測器の保護に利用でき、また該ロール成骨矯正機におけ
る次パスのオフセット量、り1 ラッシュ量を修正変更するに際し、曲り量は、その管に
対応して予めめられたオフセント量と残留曲りとの関係
を示す資料に基づいてオフセン1−量を得ることに、さ
らに楕円率は、その管に対応して予めめられたクラッシ
ュ量と残留楕円率との関係に基づいてクラッシュを涛る
こ上に利用できる。
The shape of the tube 10 is determined from the values recorded by the recorders 34 and 35, and the amount of bending is used, for example, to protect measuring instruments in the non-destructive inspection process that is the next step after the straightening process using this tube straightening machine. In addition, when correcting and changing the offset amount and lash amount of the next pass in the roll bone straightening machine, the amount of bending is determined based on the relationship between the offset amount and the residual bending, which is predetermined for the tube. In addition to obtaining the offset amount based on the data shown, the ellipticity can be used to calculate the crush amount based on the relationship between the predetermined crush amount and the residual ellipticity corresponding to the pipe. .

なお、上述の実施例では、各ロール21 、25に加わ
る荷重の変動量に基づいて、残留曲り量、残留楕円率を
め、各残留曲り量、残留楕円率からオフセント量、クラ
ッシュ量を夫々求める構成としたが、各ロール位置を設
定する方法としては、各ロール2L25に加わる荷重の
変動量からオフセット量、クラッシュ量を直接求める構
成としてもよい。
In the above embodiment, the residual bending amount and residual ellipticity are calculated based on the amount of variation in the load applied to each roll 21 and 25, and the offset amount and crushing amount are determined from each residual bending amount and residual ellipticity, respectively. However, the method for setting each roll position may be such that the offset amount and crush amount are directly determined from the amount of variation in the load applied to each roll 2L25.

また、上述の実施例では請求められた残留曲り量、残留
楕円率を夫々記録する構成としたが、演算器33により
、残留曲り量、残留楕円率から、オフセント量、クラッ
シュ量を夫々算出し、該算出値にて次パスエ稈における
そのロール成骨矯正機2 のロール位置を自動的に修正変更する構成としてもよく
、この場合は矯正工程の全自動化が可能となる。
In addition, in the above-described embodiment, the requested amount of residual curvature and residual ellipticity are recorded respectively, but the computing unit 33 calculates the amount of offset and the amount of crush from the amount of residual curvature and residual ellipticity, respectively. , the roll position of the roll bone straightening machine 2 in the next pass culm may be automatically corrected and changed based on the calculated value, and in this case, the straightening process can be fully automated.

〔効果〕〔effect〕

本発明は、ロールに加わる荷重の変動により残留曲り量
、残留楕円率をめるものであるので、管の曲り状態を、
正確に捉えることができ、矯正工程における精度の向上
、非破壊検査工程における設備破損防止等が可能になる
。まためられた残留曲り量、残留楕円率からロール成骨
矯正機におけるオフセント量、クラッシュ量を夫々定め
るようにしたものであるので、矯正工程における製品品
質は著しく向上し、ロール位置設定時間が大幅に短縮さ
れる等の優れた効果を奏する。
The present invention calculates the amount of residual bending and residual ellipticity by changing the load applied to the rolls, so the bending state of the pipe can be determined by
It can be accurately captured, making it possible to improve accuracy in the correction process and prevent damage to equipment in the non-destructive inspection process. Since the offset amount and crush amount in the roll straightening machine are determined from the determined residual bending amount and residual ellipticity, the product quality in the straightening process is significantly improved, and the roll position setting time is significantly reduced. It has excellent effects such as being shortened to .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はロール成骨矯正機における管矯正状態を示す模
式図、第2図は第1図の■−■線における拡大断面図、
第3図は矯正時における管に加わる荷重の説明図、第4
図はオフセット荷重変動量と残留曲り量との関係を示す
グラフ、第5図はりラッシュ荷重変動量と残留楕円率と
の関係を示すグラフ、第6図はオフセット量と残留曲り
との関係を示すグラフ、第7図はクラッシュ量と残留曲
りとの関係を示すグラフ、第8図はクラッシュ率と残留
楕円率との関係を示すグラフ、第9図は本発明方法の実
施に使用するロール成骨矯正機の出側スタンドの模式図
である。 10・・・管 II、12.13・・・スタンド 2+
 、 25・・・ロール23、27・・・ロードセル 
24・・・パルス発振器時 許 出1人 住友金属工業
株式会社代理人 弁理士 河 野 登 夫 5 −1 埴 [固 第 2 図 箇 5 日 11;C− 一逮?1番へ
Fig. 1 is a schematic diagram showing the tube straightening state in the roll bone straightening machine, Fig. 2 is an enlarged sectional view taken along the line ■-■ in Fig. 1,
Figure 3 is an explanatory diagram of the load applied to the tube during straightening, Figure 4
Figure 5 is a graph showing the relationship between offset load fluctuation amount and residual bending amount, Figure 5 is a graph showing the relationship between beam lash load fluctuation amount and residual ellipticity, and Figure 6 is a graph showing the relationship between offset amount and residual bending amount. Graph, FIG. 7 is a graph showing the relationship between crush amount and residual bending, FIG. 8 is a graph showing the relationship between crush rate and residual ellipticity, and FIG. 9 is a graph showing the relationship between the crush amount and residual ellipticity. It is a schematic diagram of the exit side stand of a straightening machine. 10...Tube II, 12.13...Stand 2+
, 25...Roll 23, 27...Load cell
24...Pulse oscillator time 1 person Sumitomo Metal Industries Co., Ltd. agent Patent attorney Noboru Kono 5 -1 Hani Go to number 1

Claims (1)

【特許請求の範囲】 1、相対向する1組のロールを3組以上台し、少くとも
1組のロールは他のロールに対してオフセントされてお
り、相対向するロールにて管をクラッシュさせつつ移動
させることにより管を真直とするロール成骨矯正機にお
いて、管の出側に位置する1組のロールに加わる荷重を
検出し、対向する各ロールに加わる荷重の差の変動によ
り管の残留曲り量をめ、一方のロールに加わる荷重変動
により管の残留楕円率をめることを特徴とするロール成
骨矯正機における管の形状検出方法。 2、 相対向する1組のロールを3組以−ト有し、少く
とも1組のロールは他のロールに対してオフセットされ
ており、相対向するロールにて管をクラッシュさせつつ
移動させることにより管を真直とするロール成骨矯正機
において、管の出側に位置する1絹のロールに加わる荷
重を検出し、対向する各ロールに加わる荷重の差の変動
により管の残留曲り量をめ、該残留曲り量に基づいてオ
フセンl−量を定め、また一方のロールに加わる荷重変
動により管の残留楕円率をめ、該残留楕円率に基づいて
クラッシュ量を定めることを特徴とするロール成骨矯正
機のロール位置設定方法。
[Claims] 1. Three or more sets of oppositely facing rolls are installed, at least one set of rolls is offset from the other rolls, and the pipe is crashed by the oppositely facing rolls. In a roll straightening machine that straightens the tube by moving the tube while moving the tube, the load applied to a set of rolls located on the exit side of the tube is detected, and the residual amount of the tube is determined by the fluctuation of the difference in the load applied to each opposing roll. A method for detecting the shape of a tube in a roll bone straightening machine, characterized in that the amount of bending is determined and the residual ellipticity of the tube is determined by varying the load applied to one roll. 2. It has three or more sets of opposing rolls, at least one set of rolls is offset from the other rolls, and the pipe is moved while being crushed by the opposing rolls. In a roll straightening machine that straightens the tube, the load applied to one silk roll located on the exit side of the tube is detected, and the amount of residual bending of the tube is estimated by the fluctuation of the difference in the load applied to each opposing roll. , the amount of offset l- is determined based on the amount of residual bending, the residual ellipticity of the pipe is determined by variation of the load applied to one roll, and the amount of crush is determined based on the residual ellipticity. How to set the roll position of a bone straightening machine.
JP3917384A 1984-02-29 1984-02-29 Shape detecting method of pipe in roll type pipe reforming machine and roll position setting method Pending JPS60184425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3917384A JPS60184425A (en) 1984-02-29 1984-02-29 Shape detecting method of pipe in roll type pipe reforming machine and roll position setting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3917384A JPS60184425A (en) 1984-02-29 1984-02-29 Shape detecting method of pipe in roll type pipe reforming machine and roll position setting method

Publications (1)

Publication Number Publication Date
JPS60184425A true JPS60184425A (en) 1985-09-19

Family

ID=12545721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3917384A Pending JPS60184425A (en) 1984-02-29 1984-02-29 Shape detecting method of pipe in roll type pipe reforming machine and roll position setting method

Country Status (1)

Country Link
JP (1) JPS60184425A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114612A (en) * 1989-09-27 1991-05-15 Daido Kikai Seisakusho:Kk Automatic control method for correction load of straightening machine
JPH0433417U (en) * 1990-07-06 1992-03-18

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114612A (en) * 1989-09-27 1991-05-15 Daido Kikai Seisakusho:Kk Automatic control method for correction load of straightening machine
JPH0433417U (en) * 1990-07-06 1992-03-18

Similar Documents

Publication Publication Date Title
WO2006106834A1 (en) Automatic control method of roll type pipe correction machine
CN108202085A (en) The board thickness control apparatus of cold continuous rolling
US3938360A (en) Shape control method and system for a rolling mill
JPS60184425A (en) Shape detecting method of pipe in roll type pipe reforming machine and roll position setting method
JPS649086B2 (en)
JP3327236B2 (en) Cluster rolling mill and plate shape control method
JPS60184424A (en) Roll position setting method of roll type pipe straightening machine
KR20020002044A (en) A method of controlling roll gap in a rolling machine
JPH0545325B2 (en)
JPS58184053A (en) Method for controlling bending of roll of continuous casting machine
JP6743835B2 (en) Method for rolling shaped steel and method for adjusting leveling amount in rolling shaped steel
JP2737574B2 (en) Metal sheet straightening method and roll straightening machine for straightening metal sheets
JP2001179340A (en) Method for correcting tube by tube corrector with roller system
JPS6111686B2 (en)
JPH01162518A (en) Method for setting controlled variable of hot strainer
JPH06285521A (en) Method and device for measuring dimensional deviation of bar and wire
JPH08257637A (en) Method for flattening tapered thick steel plate
JPS61296912A (en) Method for controlling camber of rolled material on thick plate rolling
JPH11277118A (en) Method for regulating leveling of rolling mill
JP2000158029A (en) Cluster rolling mill and method for controlling sheet shape by using it
JPS63194811A (en) Sheet thickness control method for rolling mill
JPS6163317A (en) Detecting and correcting methods of bend angle
JPH02207921A (en) Straightening method for tube by rotary straightner
JPH0441010A (en) Method for controlling edge drop in cold rolling
JPH05111716A (en) Method for operating roller leveler