JPS58184053A - Method for controlling bending of roll of continuous casting machine - Google Patents

Method for controlling bending of roll of continuous casting machine

Info

Publication number
JPS58184053A
JPS58184053A JP6850482A JP6850482A JPS58184053A JP S58184053 A JPS58184053 A JP S58184053A JP 6850482 A JP6850482 A JP 6850482A JP 6850482 A JP6850482 A JP 6850482A JP S58184053 A JPS58184053 A JP S58184053A
Authority
JP
Japan
Prior art keywords
roll
rolls
bending
fluctuation
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6850482A
Other languages
Japanese (ja)
Inventor
Teruhisa Komori
照久 小森
Koji Kawamura
河村 皓二
Hiroshi Nishikawa
広 西川
Mitsuhiro Ota
大田 光広
Shigeaki Ogibayashi
荻林 成章
Masayoshi Usuki
臼杵 正好
Hiroshi Nomura
野村 弘
Masayuki Kobayashi
雅行 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6850482A priority Critical patent/JPS58184053A/en
Publication of JPS58184053A publication Critical patent/JPS58184053A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To obtain an ingot having uniform quality without giving any abnormal fluctuation in stress to the ingot, by detecting the fluctuation in the displacement of support rolls for the ingot, etc. and correcting the bending of the rolls in the direction where the rate and period of bending of the rolls are made uniform. CONSTITUTION:Displacement meters 1, 2 for the rear surfaces of support rolls 8, 9 for an ingot of a continuous casting machine which detect the bending of said rolls, load cells 4, 5, 6, 7 which measure the reaction in roll chock parts, a displacement meter 3 between the roll chocks which measures the fluctuation in the gap between the roll chocks, and a target 3' thereof, etc. are provided to detect the fluctuation in stress, the fluctuation in displacememnt or the rate relating to these fluctuations owing to the bending of the rolls. When the detected values exceed set values, cooling water is sprayed from cooling water headers 12, 13 for correcting upper and lower rolls to the projecting parts of the rolls 8, 9 during the time when the recesses of said rolls are in contact with the ingot 14 under drawing. The bending of the rolls is thus corrected and the gap between the rolls in the axial direction of the rolls is made roughly constant.

Description

【発明の詳細な説明】 本発明は、溶融金属の連続鋳造において鋳片支持ロール
の上ロール曲9と下ロール曲)の曲り量の異なシと曲υ
周期の異なシを矯正する曲り制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides continuous casting of molten metal in which the upper roll curve 9 and the lower roll curve of the slab support roll have different bending amounts and curves υ.
The present invention relates to a bending control method for correcting curves with different periods.

周知のように連続鋳造においては鋳型内に注入された溶
融金属は鋳11によりて冷却されある一定の凝固殻を形
成した後、鋳片支持ロール群内を冷却されながら引抜か
れ完全凝固後に所定の長さに切断される。
As is well known, in continuous casting, the molten metal injected into the mold is cooled by the caster 11 and forms a certain solidified shell, and then is drawn out while being cooled within a group of slab support rolls, and after completely solidified, the molten metal is poured into a mold. cut to length.

この様な連続鋳造作業において、鋳片支持ロールから、
鋳片に加わる圧力のコントロールは特に鋳片内部にまだ
未凝固部がある範囲において、鋳片の部分的濃厚偏析、
中心割れなどの発生に関連して鋳片品質管理上非常に重
要な事である。
In such continuous casting operations, from the slab support roll,
Controlling the pressure applied to the slab is particularly effective in areas where there are still unsolidified parts inside the slab, which can prevent partial thickening and segregation of the slab.
This is extremely important in terms of slab quality control in relation to the occurrence of center cracks, etc.

従来鋳片支持ロールから鋳片に加わる圧力のコントロー
ルは相対向する1対のロール間隔をある一定値に制御す
る方法(これを以後定位制御方法という)か、あるいは
1対のロールの内可動ロール(非固定ロール)に加える
押圧力を一定値に制御する方法(これを以後定圧制御方
法という)が一般的に用いられている。この様な鋳片の
圧力コントロールにおいてロール曲りがない場合はロー
ル軸方向、すなわち鋳片巾方向に一様な圧力コントロー
ルが出来るがロール曲シがある場合は定位制御方法であ
れ定圧制御方法であれ鋳片巾方向の圧力分布は一定にな
らずロール曲シの凸側か鋳片に接するときには、鋳片中
央部に加わる圧力が過大とな9又、ロール曲りの凸側か
鋳片の反対側におるときは鋳片バルジングが大きくなっ
たりする事から、とくに鋳片内部に未凝固部がある範囲
において、上記の様な状態が生じるとバルジングとの相
互作用によシ中心割れ又は中心偏析の部分濃化を生じた
りする問題がありた。父上ロールと下ロール独立に曲り
が生じ例えば鋳片を上下ロール関に噛み込んだ状態で引
抜速度を低下させた少停止したとすると上ロールは鋳片
面から見て上方に曲り、下ロールは鋳片面から見て下方
向に曲る事になシ、以後引抜を開始すると上、下ロール
は180度周期が異なるすなわち下ロール曲す凸部が上
向(鋳片面方向)Kある時上ロールan凸部は下向(鋳
片面方向)にあ)周期的に鋳片が上、下ロール凸側で押
え付けられた)凹部で鋳片押え力が減じたシすることに
なるロー想的にはこの様な状態を生じない様にするには
上下ロールの曲シも制御し両方共に曲りのない状態とす
ることが必要である。上記、制御方法については、すで
に特願昭55−13870号として出願済であるが、さ
らに発明者等は実用的な制御方法について種々検討した
結果、上ロールと下ロールの曲υ周期と曲す量をほぼそ
ろえる事によシロール曲りがあってもロールの1回転に
わたυロール間ギヤ、fがロール軸方向にほぼ均一であ
れば鋳片に異常応力変動をあたえる事なく十分に目的を
九りせられ良好な内部品位スラブを得る事が出来るとの
知見を得た。
Conventionally, the pressure applied to the slab from the slab supporting rolls is controlled by controlling the distance between a pair of opposing rolls to a certain constant value (hereinafter referred to as the positioning control method), or by using a movable roll within the pair of rolls. A method in which the pressing force applied to a non-fixed roll is controlled to a constant value (hereinafter referred to as a constant pressure control method) is generally used. When controlling the pressure of slabs like this, if there is no roll bending, it is possible to control the pressure uniformly in the roll axis direction, that is, in the width direction of the slab, but if there are roll bends, it is possible to control the pressure uniformly in the direction of the roll axis, that is, in the slab width direction. The pressure distribution in the width direction of the slab is not constant, and when the slab comes into contact with the convex side of the roll bend, the pressure applied to the center of the slab becomes excessive. If the above condition occurs, especially in areas where there are unsolidified parts inside the slab, the interaction with the bulging may cause center cracking or center segregation. There was a problem that partial concentration occurred. If the father roll and the lower roll are bent independently, for example, if the slab is caught between the upper and lower rolls and the drawing speed is reduced to a short stop, the upper roll will bend upwards when viewed from the surface of the slab, and the lower roll will bend. It should not be bent downward when viewed from one side.Afterwards, when drawing starts, the upper and lower rolls have a 180-degree difference in cycle.In other words, when the lower roll bends the convex portion upward (in the direction of the slab surface), the upper roll The convex part is located downward (in the direction of the slab surface), and the slab is periodically pressed down by the convex sides of the upper and lower rolls.The concave part reduces the pressing force of the slab. In order to prevent such a situation from occurring, it is necessary to control the bending of the upper and lower rolls so that both rolls are not bent. The above control method has already been filed as Japanese Patent Application No. 55-13870, but as a result of further studies on various practical control methods, the inventors determined that the curve υ period of the upper roll and lower roll Even if the rolls are bent, if the gears and f between the rolls are approximately uniform in the axial direction of the rolls, the purpose can be achieved without causing abnormal stress fluctuations to the slab. It was found that it is possible to obtain a slab with good internal structure.

本発明は上記の点Kf111み鋳片引抜中に上ロールと
下ロールの曲)量と周期の不一致信号を検出し、ロール
曲プによる胃−ル関ギヤ、fがほぼ最大となる前後にロ
ール外部に配設したロール水冷へ。
The present invention detects the discrepancy signal in the amount and cycle of the upper roll and lower roll during drawing of the slab during the above-mentioned point Kf111, and detects the discrepancy signal in the amount and cycle of the upper roll and lower roll, and rolls the roll before and after the roll-related gear, f, due to the roll bending is almost maximum. To the roll water cooling installed outside.

グーより上ロールと、下ロールの片方又は両方のロール
を一定タイイングで水冷する事により曲りを矯正し結果
として、上ロールと下ロールの曲り量と周期を概略−門
させる事により、・−一間ギャッグをロール軸方向全域
にわたってロール回転にかかわらずほぼ一定とし、もっ
て引抜中の鋳片に加わる圧力をF!!は一様になるよう
コントロールする様にしたものであゐ。
By water-cooling one or both of the upper roll and lower roll with constant tying, the bends are corrected, and as a result, the amount and period of bending of the upper roll and lower roll are roughly adjusted. By keeping the gap gag almost constant over the entire roll axial direction regardless of roll rotation, the pressure applied to the slab during drawing is reduced to F! ! It is controlled so that it is uniform.

以下本発明を図面に示す実施例にも−とずき詳細に説明
する。第1図は対向する1対のロール配置及びロール曲
り検出センサーの配置図を示すものである。第1図にお
いて、lは上ロール80曲り変化を検出するロール背面
変位針であり、2は下ロール90曲〕変化を検出するロ
ール背面変位針である。又4,5.6.7はロールチ、
、り部に取付たロードセルで、各ロー゛ルチ、ツク部の
反力を計測する装置でib抄、いずれの出力もほぼ同等
な出力形態であり1個で代表させる事も可能である。1
2.13はロールの曲りを制御するためのロール矯正用
水冷ヘッダーであシ、3はロールチ1、り関ギャッグ変
動を計測するロールチ冒、り関変位針であり3′は3の
ロールチ冒ツク間変位針のターグットを示す上ロール8
が曲りた場合又は下ロール9が曲りた場合あるいはその
両方が曲りた場合いずれにおいても各々のロールが回転
に伴なって三角函数的な応力、又は変位変化を生じた時
、上下各ロール径がほぼ同じであるのでロール回転に伴
なう出力は下ロールのロール回転に伴なうロール曲りK
よる応力又は変位の変化位相と上ロールのロール回転に
伴なうロール曲りKよる応力又は変位の変化位相とが異
なってもロードセル465.617の出力とロールチ1
.り間変位計3の各出力は合成された1つの三角函数的
な出力とし変化を生じる。i−ル背面変位計1及び2は
上ロール8及び下ロール9のそれぞれの曲りに対応した
ロール回転に伴なう曲り変動出力を生じるがこの変位針
1と26出力変動値の和がロールチョ、り間変位計3の
変動値とほぼ等価な変動となる(以下ロール間ギャップ
変位出力と呼ぶ)。以上述べた様に各ロードセル4,5
,6.7及びロール間ギヤ、デ変位出力の変動は上ロー
ルと下ロールの曲゛シが合成された結果の出力となり該
合成された出力の形態はいずれも同じである。本発明の
目的は咳合成された結果の応力変動又は変位変動が鋳片
引抜中に生じない様にロール曲りを矯正制御しようとす
るものである。
The invention will now be explained in more detail with reference to embodiments shown in the drawings. FIG. 1 shows the arrangement of a pair of opposing rolls and the arrangement of a roll bending detection sensor. In FIG. 1, 1 is a roll back displacement needle that detects a change in the upper roll's 80 bends, and 2 is a roll back displacement needle that detects a change in the lower roll's 90 bends. Also, 4, 5, 6, 7 is Rollch,
It is a device that measures the reaction force of each lower arm and puller with a load cell attached to the shoulder.The outputs of both are almost the same, and it is possible to use one as a representative. 1
2.13 is a water-cooled header for roll straightening to control the bending of the roll, 3 is a roll chute 1, a roll chute for measuring gag fluctuation, and a gag displacement needle, and 3' is a roll chute for 3. Upper roll 8 showing the target of the inter-displacement needle
If the lower roll 9 is bent, or if the lower roll 9 is bent, or if both are bent, when each roll generates a trigonometric stress or displacement change as it rotates, the diameter of each of the upper and lower rolls will change. Since they are almost the same, the output due to roll rotation is the roll bending K due to roll rotation of the lower roll.
Even if the phase of change in stress or displacement due to roll rotation of the upper roll is different from the phase of change in stress or displacement due to roll bending K due to roll rotation of the upper roll, the output of load cell 465.617
.. Each output of the distance displacement meter 3 is combined into one trigonometric function output and changes. The i-le back displacement meters 1 and 2 produce bending fluctuation outputs as the rolls rotate corresponding to the bends of the upper roll 8 and lower roll 9, respectively, and the sum of the displacement needles 1 and 26 output fluctuation values is the roll cho, The fluctuation value is approximately equivalent to the fluctuation value of the roll gap displacement meter 3 (hereinafter referred to as the roll gap displacement output). As mentioned above, each load cell 4, 5
, 6.7 and the inter-roll gear, the fluctuation of the displacement output is the result of combining the bending of the upper roll and the lower roll, and the form of the combined output is the same for both. An object of the present invention is to correct and control roll bending so that stress fluctuations or displacement fluctuations as a result of cough synthesis do not occur during slab drawing.

以下ロードセルによりても変位針によりてもほは同等に
制御可能であるが目的は鋳片に及ぼすロール曲りKよる
応力変動を均一にするととKあるのでロードセルによる
場合に9いてさらに詳細に説明する。
In the following, although it is possible to control equally with a load cell or with a displacement needle, the purpose is to equalize the stress fluctuations caused by roll bending on the slab, so the case using a load cell will be explained in more detail in 9. .

第2図はロールチョックに取付たロード竜ル出力のロー
ル回転に伴なう応力変動を示すもので第2図においてピ
ーク点P 1  (P’s  e P’s・・・)はロ
ール1勤によりて上ロールと下ロールの合成反力が最大
となる点すなわち等価的最大ロール曲りの凸側(以下上
ロールと下ロールの曲りによる合成反力を等価的ロール
曲如と云う)が鋳片面に接している時t1(t’l@t
へ・・・)Kおけるロール反力に対応し、ピーク点P雪
(P’s  s v’雪・・・)は等価的ロール曲〕の
凸側か鋳片と正反対側にある時tl (t/、 s t
’s )におけるロール反力に対応するものであ如、周
期T(T’、T’・・・)け′ロールの1回転又は篭価
的ロール曲如1回転に要する時間に対応するものである
。又振巾P(P’、P’・・・)は等価的ロール曲すの
凸側か鋳片面に接している時のロール反力と尋価的ロー
ル−bの凸側が鋳片面と正反対側&Cある時のロール反
力の差に対応するものでこれは、上下ロールの自)Kよ
る合成ロール曲りの大きさに対応するものである。
Figure 2 shows the stress fluctuation of the load torque output attached to the roll chock as the roll rotates. The point where the combined reaction force of the upper roll and lower roll is maximum, that is, the convex side of the equivalent maximum roll bending (hereinafter, the combined reaction force due to the bending of the upper roll and lower roll is referred to as equivalent roll bending) is on the slab surface. When touching t1 (t'l@t
When the peak point P snow (P's s v' snow...) is on the convex side of the equivalent roll curve] or on the opposite side of the slab, tl ( t/, s t
It corresponds to the roll reaction force at period T (T', T'...), and corresponds to the time required for one rotation of the roll or one rotation of the roll in a conventional manner. be. Also, the swing width P (P', P'...) is the roll reaction force when the convex side of the equivalent roll bends or is in contact with the slab surface, and the roll reaction force when the convex side of the equivalent roll -b is on the opposite side to the slab surface. This corresponds to the difference in roll reaction force when &C exists, and this corresponds to the magnitude of the resultant roll bending due to K of the upper and lower rolls.

一方ロールの回転角度は鋳片引抜速度を!、ロール径を
Dとすると回転角ghは と表わせる。そこでロール回転角の起算点を第2図に示
した時効’s (t’s e t%・・・)すなわち等
価的なロール曲りの凸側か鋳片に接した時とし、(1)
式によって得られる回転角度ムが1800土θ(但し土
θは後述するロール水冷へ、グーの水の通水を行うロー
ル回転角度範囲)となる時間帯にロールを外部冷却する
冷却水を通水する。この時間帯は等価的ロール曲りのt
!i′1:、IIが鋳片側にあるので該凹側が鋳片から
の熱伝達によって膨張し、この時凸側は外部水冷により
縮小する。これをロールの回転毎に繰返すことによシ勢
価的ロール曲りが矯正されることになる(この時外部水
冷は同じ信号で上ロール下ロール同時に行なりても良く
、等価的曲りによる応力変動はロードギヤ、!間変動が
一定値以上になった時鋳片の反対側一定範囲に凸部が来
た時、上下ロールを同時に水冷すると下ロール、上ロー
ルの単独での曲り制御をする時に比し、2倍の速*(’
Aの制御回数)で一定値以下の変動に出来る。上部ロー
ルの外部水冷水が鋳片にかからない様な配慮をしなけれ
ば鋳片冷却ムラの原因となシ品質上問題を生じる場合が
あるので実用的には下部ロールのみの矯正制御を行なう
)。
On the other hand, the rotation angle of the roll depends on the slab drawing speed! , when the roll diameter is D, the rotation angle gh can be expressed as follows. Therefore, the starting point of the roll rotation angle is set as the aging time shown in Fig. 2 (t's et t%...), that is, when the convex side of the equivalent roll bend contacts the slab, and (1)
Cooling water is passed to externally cool the rolls during the time period when the rotation angle obtained by the formula is 1800 degrees θ (where θ is the range of roll rotation angles in which water is passed through to the roll water cooling, which will be described later). do. During this period, the equivalent roll bending t
! Since i'1: and II are on the casting side, the concave side expands due to heat transfer from the slab, and at this time, the convex side contracts due to external water cooling. By repeating this every time the roll rotates, stress roll bending will be corrected (at this time, external water cooling may be performed on the upper roll and lower roll at the same time with the same signal, and stress fluctuations due to equivalent bending) is the load gear, and when the fluctuation between ! exceeds a certain value, and when a convex part comes to a certain range on the opposite side of the slab, cooling the upper and lower rolls with water at the same time will cause the bending to be lower than when controlling the bending of the lower and upper rolls individually. and twice as fast *('
It is possible to make the fluctuation below a certain value by controlling the number of times A). If care is not taken to prevent the external cooling water of the upper roll from coming into contact with the slab, it may cause uneven cooling of the slab and cause quality problems, so in practice straightening control is performed only on the lower roll.)

以下、本発明を下ロールのみの制御の場合で説明する。Hereinafter, the present invention will be explained in the case of controlling only the lower roll.

ここで前記の角度θは90°以下であれば1抄矯正効果
があるが、実用的には45°以下の方がより矯正効率が
高い。すなわち等価的なロール曲りの凸側が鋳片の反対
側で90・(回転角にしてA=180・+45°)の角
度範囲にある間に前記冷却水を通水するのが効果的であ
る0以上の様にして応力変動が一定値以下になるまで何
度か制御すると結果として下ロールの曲〉量と周期が上
ロールの曲〉量と周期がほは勢しい方向となりロール回
転に伴なう応力変動は少なくなりロール間ギヤ、ゾがロ
ール回転に伴なって変動しない方向となり鋳片内質にロ
ール回転に伴なうロール曲りによる応力変動を一定値以
下に押え良好な品質を確保出来る事になるO又、制御を
しすぎると逆方向に曲る事になるので等価的mb量に応
じて水量を調整するか、水量一定で冷却角度範囲を変え
るか、又は1回の水冷での端正能力の最小短位を適切に
選定し、数回くりかえすととにより目標値以内に制御す
る様にし目標値をこえると又制御する様にする。又この
制御結果はロールの熱変形のみでなくロールの反力によ
る弾性タワ電も含めて制御された結果となる。つぎに実
際の作用について第3図の制御フローを第3図によりて
説明する。
Here, if the angle θ is 90° or less, there is a one-sheet straightening effect, but in practical terms, the straightening efficiency is higher when it is 45° or less. In other words, it is effective to pass the cooling water while the convex side of the equivalent roll bend is within an angular range of 90° (A=180° +45° in rotation angle) on the opposite side of the slab. If the stress fluctuation is controlled several times in the manner described above until it falls below a certain value, as a result, the amount and period of the lower roll's curvature will become stronger and the amount and period of the upper roll's curvature will become stronger as the roll rotates. This reduces the stress fluctuations caused by the rotation of the rolls, and the gear between the rolls does not fluctuate as the rolls rotate, ensuring good quality by keeping the stress fluctuations caused by roll bending in the slab internal to a certain value or less. Also, if you control too much, it will bend in the opposite direction, so either adjust the water amount according to the equivalent mb amount, or change the cooling angle range while keeping the water amount constant, or By appropriately selecting the minimum shortness of the neatness ability and repeating this several times, the control is controlled within the target value, and when the target value is exceeded, the control is resumed. Moreover, this control result is a result of controlling not only the thermal deformation of the roll but also the elastic tower electric current due to the reaction force of the roll. Next, the control flow shown in FIG. 3 will be explained with reference to FIG. 3 regarding the actual operation.

第3図は1つのロールについての制御フローの例を示し
たものである。ロール回転毎にロードセル出力から振巾
Pを検出し該振巾Pが予め定めた一定値(目標値)を超
え九ときからロールが1回転(tは2〜5程度)する間
のロードセルの出力から1個の−一りPs  (又は1
m  )を検出してi個の周期Tを算出し、これから平
的周期Taマ・を算出する。この平均周期Tawは以後
のロール回転毎の通水の停止、再開にあたってロール回
転角度算出時の開始点(リセット時点)を決めるための
ものである。一方1回転目のピーク点pit検出時点を
最初の起点として前記平均周期TaV・毎にロール回転
角度Aを前記(1)式により算出する。そして算出した
ロール回転角fAが通水開始点(=180’−#)にな
った時第1図の水冷へ、メー通水電磁弁15をオンして
下ロール矯正水冷へ、ダー13に通水しロールを外部冷
却する。ロール回転角度Aが通水停止点(=1800十
〇)になりた時水冷へ、グー通水電磁弁15をオフにし
て冷却を停止する。
FIG. 3 shows an example of the control flow for one role. The amplitude P is detected from the output of the load cell every time the roll rotates, and the output of the load cell is performed from when the amplitude P exceeds a predetermined constant value (target value) until the roll makes one rotation (t is about 2 to 5). 1 -1 Ps (or 1
m) to calculate i periods T, and from this calculate the average period Ta. This average cycle Taw is used to determine the starting point (reset point) when calculating the roll rotation angle when stopping and restarting water flow for each roll rotation thereafter. On the other hand, the roll rotation angle A is calculated using the above equation (1) for each of the average periods TaV·, using the peak point pit detection time of the first rotation as the first starting point. When the calculated roll rotation angle fA reaches the water flow start point (=180'-#), the main water flow solenoid valve 15 is turned on to flow the water to the lower roll straightening water cooling to the water cooling shown in FIG. Cool the water roll externally. When the roll rotation angle A reaches the water flow stop point (=180010), water cooling is started and the water flow solenoid valve 15 is turned off to stop cooling.

この操作をロール回転毎に等測的ロール曲りが一定値以
下(振巾Pが一定値以下)になるまで繰返す。
This operation is repeated every time the roll rotates until the isometric roll curvature becomes less than a certain value (the swing width P is less than a certain value).

この場合の制御は一定値をごした時、制御する方式であ
シ1回の水冷で矯正する能力は最小単位を小さくしてあ
り、1回の水冷で逆の方向には曲如得ない様な水量及び
水冷角度をしである。
In this case, the control method is to control when a certain value is exceeded, and the ability to correct with one water cooling is done by making the minimum unit small, so that it will not be possible to bend in the opposite direction with one water cooling. The amount of water and water cooling angle should be adjusted accordingly.

以上の制御70−を−)矯正を必要とする各ロールにつ
いて適用すればよいのであるが、ロールが多数の場合は
各ロールに取付たロードセルの出力から等価的ロールー
シが最も大きいロールを選出し該等価的−ロール曲す最
大のロールについて前記水冷制御を行ない引続き一定時
間毎に同様のことを繰返す方式を取るととKより制御系
のなかの演算装置を1つの装置で共用させ、装置費用を
削減する様に構成しても良い。猶、以上の説明における
制御は上下ロールのいずれのチ、、りにロードセルを付
けても喪〈骸ロードセル出力の1又は複数個で等測的ロ
ール曲りを判断しても良いが実用的には費用等の点から
下ロールの片側チヨ、りに1台設置すれば十分である。
The above control 70-) can be applied to each roll that requires straightening, but if there are many rolls, the roll with the largest equivalent roll is selected from the output of the load cell attached to each roll. Equivalent - If you apply the above water cooling control to the largest roll that bends and then repeat the same process at regular intervals, the calculation device in the control system will be shared by one device, and the device cost will be reduced. It may be configured to reduce the amount. However, the control in the above explanation can be performed even if a load cell is attached to either of the upper or lower rolls.Although one or more load cell outputs may be used to determine isometric roll bending, it is not practical. From the point of view of cost etc., it is sufficient to install one unit on one side of the lower roll.

又ロール間変位を計測して制御する場合も実用的には1
対のロールの両サイトチ1.り関変位を計測して等測的
ロール曲如を検出制御子る事が出来る。又駆動ロールに
対しては駆動ロール駆動電流又は回転トルクの変化等を
検出し、等測的ロール曲如を検出する様にしても良いが
望ましくは鋳片に及ぼす応力の管理制御をする事が目的
であるのでロードセルを使用する方が望ましい。
Also, when measuring and controlling the displacement between rolls, it is practical to use 1
Both sites of paired rolls 1. It is possible to detect and control isometric roll curvature by measuring the displacement of the roll. For the drive roll, it is also possible to detect changes in the drive roll drive current or rotational torque, and to detect isometric roll deformation, but it is preferable to manage and control the stress exerted on the slab. For this purpose, it is preferable to use a load cell.

以上述べた様に本発明においては鋳片引抜中に鋳片支持
ロールの上ロール曲如と下ロール曲)の合成した等測的
な曲りを検出し勢価的な1抄が一定値をζえたときに郷
価的四−ル曲如の凸側が鋳片から離れている間にロール
外部に設けたロール水冷ヘッダーに一時的に通水するこ
とによりてロール自動を矯正し、鋳片引抜中にロールか
ら鋳片に加わる圧力変動を常に一定以下にコントロール
出来ると云う優れた効果を得為事が出来る。さらに付貫
するとロール回転に伴ない生じる応力変動を片備のロー
ル曲りの矯正又は両側のロール曲りの矯正いずれにおい
ても一定値以下とする事が出来る。
As described above, in the present invention, the combined isometric bending of the upper roll bending and lower roll bending of the supporting roll is detected during drawing of the slab, and one stub of force is set at a constant value ζ. When the convex side of the four-rule curve is away from the slab, water is temporarily passed through the roll water-cooling header installed outside the roll to straighten the roll automatically, and while the slab is being pulled out. The excellent effect of being able to always control the pressure fluctuations applied to the slab from the rolls to below a certain level can be achieved. Furthermore, by sticking, the stress fluctuations that occur as the roll rotates can be kept below a certain value in either the correction of one roll bend or the correction of roll bends on both sides.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施態様例を示す図で1対の鋳片支持
ロールの周辺装置を示す正面図、第2図はロールに設け
たロードセルの出力信号の波形例を示す図、第3図は1
つのロールについて水冷制御フローを示す図である。 1 、2 :、ロール背面変位計 3:ロールチW、り関変位針 3′:ロールチ冒ツク関変位計ターr、ト4.5,6,
7:ロードセル 8:上ロール     9:下ロール 10.11:油圧シリンダー 12:上ロール矯正水冷ヘッダー 13二下ロール燭正水冷へ、ダー 14:鋳片 15.16:水冷へ、グー通水電磁弁 第1図 第2図 □時間 第3図 第1頁の続き 0発 明 者 野村弘 0発 明 者 小林雅行 君津型君津1新日本製鐵株式會 社君津製鐵所内
Fig. 1 is a front view showing an example of an embodiment of the present invention, and shows a peripheral device of a pair of slab supporting rolls, Fig. 2 is a diagram showing an example of the waveform of an output signal of a load cell provided on the rolls, and Fig. The figure is 1
FIG. 3 is a diagram showing a water cooling control flow for two rolls. 1, 2:, Roll back displacement meter 3: Roll tip W, Link displacement needle 3': Roll tip displacement meter Tarr, To 4.5, 6,
7: Load cell 8: Upper roll 9: Lower roll 10. 11: Hydraulic cylinder 12: Upper roll straightening water cooling header 13 Two lower roll candles to water cooling, Dar 14: Slab 15. 16: To water cooling, Goo water flow solenoid valve Fig. 1 Fig. 2 □ Time Fig. 3 Continuation of page 1 0 Inventor: Hiroshi Nomura 0 Inventor: Masayuki Kobayashi Kimitsu type Kimitsu 1 Nippon Steel Corporation Kimitsu Works

Claims (1)

【特許請求の範囲】[Claims] 連続鋳造機の鋳片支持ロールにおいて、相対向する一対
のロールのロール曲りによる応力変動又は変位変動又は
前記の変動と関連のある量を鋳片引抜中に検出して、設
定値を越えた場合骸ロールの曲)量と曲り周期をそろえ
る方向にロール曲りを矯正し、該ロールの回転にかかわ
らずロール軸方向のロール間ギャッグをほぼ一定にして
、鋳片に生ずる応力変動又は変位変動を一定値以下にす
る事を特徴とする連続鋳造機のロール曲り制御方法。
When stress fluctuations or displacement fluctuations due to roll bending of a pair of opposing rolls or amounts related to the above fluctuations are detected during slab support rolls of a continuous casting machine and exceed the set value. The roll bending is corrected so that the amount of bending and the bending period of the bulk rolls are made equal, and the gag between the rolls in the roll axis direction is kept almost constant regardless of the rotation of the rolls, thereby making the stress fluctuation or displacement fluctuation that occurs in the slab constant. A method for controlling roll bending in a continuous casting machine, which is characterized by keeping the bending below a certain value.
JP6850482A 1982-04-23 1982-04-23 Method for controlling bending of roll of continuous casting machine Pending JPS58184053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6850482A JPS58184053A (en) 1982-04-23 1982-04-23 Method for controlling bending of roll of continuous casting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6850482A JPS58184053A (en) 1982-04-23 1982-04-23 Method for controlling bending of roll of continuous casting machine

Publications (1)

Publication Number Publication Date
JPS58184053A true JPS58184053A (en) 1983-10-27

Family

ID=13375592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6850482A Pending JPS58184053A (en) 1982-04-23 1982-04-23 Method for controlling bending of roll of continuous casting machine

Country Status (1)

Country Link
JP (1) JPS58184053A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5222546A (en) * 1989-09-07 1993-06-29 Sms Schloemann Siemag Aktiengesellschaft Plant for manufacturing steel strip
US6648059B2 (en) * 2001-02-22 2003-11-18 Aktiebolaget Skf Method for detecting a roller failure
KR100833006B1 (en) * 2002-08-30 2008-05-27 주식회사 포스코 Apparatus and method for controlling twin roll strip casting
KR101203632B1 (en) 2004-12-24 2012-11-23 재단법인 포항산업과학연구원 Measurement of roll gap for the twin roll caster
CN111889513A (en) * 2020-06-30 2020-11-06 武汉钢铁有限公司 Thin slab continuous casting and rolling dummy rolling method and control system thereof
CN113976848A (en) * 2021-11-09 2022-01-28 山东钢铁集团日照有限公司 Method and device for controlling roll gap of sector section of slab continuous casting machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5222546A (en) * 1989-09-07 1993-06-29 Sms Schloemann Siemag Aktiengesellschaft Plant for manufacturing steel strip
US6648059B2 (en) * 2001-02-22 2003-11-18 Aktiebolaget Skf Method for detecting a roller failure
KR100833006B1 (en) * 2002-08-30 2008-05-27 주식회사 포스코 Apparatus and method for controlling twin roll strip casting
KR101203632B1 (en) 2004-12-24 2012-11-23 재단법인 포항산업과학연구원 Measurement of roll gap for the twin roll caster
CN111889513A (en) * 2020-06-30 2020-11-06 武汉钢铁有限公司 Thin slab continuous casting and rolling dummy rolling method and control system thereof
CN113976848A (en) * 2021-11-09 2022-01-28 山东钢铁集团日照有限公司 Method and device for controlling roll gap of sector section of slab continuous casting machine

Similar Documents

Publication Publication Date Title
CN1174821C (en) Edge dam position control method and device in twin roll strip casting process
EP0095352B1 (en) Process and apparatus for the production of rapidly solidified metallic tapes by double-roll system
US5242010A (en) Method for controlling the taper of narrow faces of a liquid-cooled mold
JPS58184053A (en) Method for controlling bending of roll of continuous casting machine
JP6252500B2 (en) Thickness control method in thick plate rolling
JP2971252B2 (en) Continuous casting equipment
JP3506120B2 (en) Method of changing rolling load distribution of tandem rolling mill
TW202023709A (en) Method of casting cast piece
JP3690282B2 (en) Camber and wedge prevention method in hot rolling
JP2000210759A (en) Casting method using twin-drum type continuous casting machine
JP3135282B2 (en) Thin plate continuous casting method
JPH05111716A (en) Method for operating roller leveler
JP4019476B2 (en) Slab cooling method in continuous casting
JPS6239065B2 (en)
JP2710403B2 (en) Water jacket type cooling method of rolling roll and control method thereof
JP2692544B2 (en) Method and device for controlling temperature of hot rolling mill
JP6950838B2 (en) Manufacture method and control device for slabs
JPS6347522B2 (en)
JPH11192510A (en) Method for controlling roll position of roller leveler
JPS63313641A (en) Apparatus for controlling cutting weight of cast slab
JPH0246960A (en) Method and apparatus of continuous casting
JPH0461742B2 (en)
JP2888364B2 (en) Sheet material shape control method
JPS623816A (en) High draft rolling method
JPH0475754A (en) Method for continuously casting steel