JPS60182157A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60182157A
JPS60182157A JP59035915A JP3591584A JPS60182157A JP S60182157 A JPS60182157 A JP S60182157A JP 59035915 A JP59035915 A JP 59035915A JP 3591584 A JP3591584 A JP 3591584A JP S60182157 A JPS60182157 A JP S60182157A
Authority
JP
Japan
Prior art keywords
type
region
film
conductivity type
semiconductor region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59035915A
Other languages
Japanese (ja)
Other versions
JPH0147017B2 (en
Inventor
Daisuke Matsunaga
大輔 松永
Shigeyoshi Koike
小池 重好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59035915A priority Critical patent/JPS60182157A/en
Publication of JPS60182157A publication Critical patent/JPS60182157A/en
Publication of JPH0147017B2 publication Critical patent/JPH0147017B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To effectively prevent the reaction generating between a semiconductor base layer and a metal layer by a method wherein an annealing is performed instantaneously on a high melting point metal silicide. CONSTITUTION:An MoSi2 film 11 is coated on the whole surface of a film whereon a PSG film 10 is covered allover. In the above-mentioned condition, boron is ion-implanted on the whole surface. Then, an annealing is performed instantaneously, i.e., for 10sec or thereabout for example, at the approximate temperature range of 900-1,000 deg.C. Said instantaneous annealing is performed in order to improve the film quality of the MoSi2 film, to activate the ion-implanted boron and to obtain an ohmic contact between the MoSi2 film 11 and p type regions 3 and 4.

Description

【発明の詳細な説明】 発明の技術分野 本発明は半導体装置の製造方法、特に、C−MOS(C
omplementary Metal 0xide 
Sem1conductor)タイプの半導体装置の電
極形成方法に係る。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, particularly a method for manufacturing a C-MOS (C-MOS).
complementary Metal Oxide
The present invention relates to a method for forming electrodes of a semiconductor device of the Sem1conductor type.

従来技術と問題点 C−MO8集積回路(IC)は低消費電力、−高速とい
う特長ケ有し、その応用、開発が盛んである。ところで
、C−MOS ICの電極形成は、例えば、n形シリコ
ン基板内にp形のソース領域およびドレイン領域を形成
すると共に、p形つェルを形成し、その中にn形のソー
ス領域お工びドレイン領域が形成された半導体本体に、
ポリシリコンでゲー)1−形成し、そして電極窓開は全
行なった後、アルミニウム(例えば1%シリコン合金)
層を被着お工びパターニングし、それから例えば450
℃でアニールしてアルミニウムとシリコンとのオーミッ
クコンタクト′f、補償して行なってい−る。この場合
、p影領域およびポリシリコン領域(ゲート)では良好
なオーミックコンタクトが達成されるが、n影領域では
電極窓内にアルミニウムとシリコンの反応、特にアニー
ル過程でのシリコンの溶融・再析出によってp形エピタ
キシャル層が生成されるためか、そのオーミックコンタ
クトは良好ではなく、特に電極窓が小さくなるとその傾
向が著しい。
Prior Art and Problems The C-MO8 integrated circuit (IC) has the features of low power consumption and high speed, and its application and development are active. By the way, electrode formation for a C-MOS IC involves, for example, forming a p-type source region and a drain region in an n-type silicon substrate, forming a p-type well, and inserting an n-type source region and a drain region in the p-type well. A semiconductor body in which a drain region is formed,
After forming the gate electrode with polysilicon and completing all the electrode windows, aluminum (e.g. 1% silicon alloy) is formed.
The layers are deposited and patterned and then e.g.
It is annealed at .degree. C. to compensate for ohmic contact between aluminum and silicon. In this case, good ohmic contact is achieved in the p-shaded region and the polysilicon region (gate), but in the n-shaded region, there is a reaction between aluminum and silicon within the electrode window, especially due to the melting and re-precipitation of silicon during the annealing process. Perhaps because a p-type epitaxial layer is generated, the ohmic contact is not good, and this tendency is particularly noticeable when the electrode window becomes small.

そこで、配線層のアルミニウムと半導体本体のシリコン
の間の反応を防ぐために、それらの間にバリヤ層を設け
ることが知られておジ、バリヤ層としてはモリブデンシ
リサイド+ Mo5i2)等の高融点金属シリサイドが
用いられる。しかし、例えばスパッタ法等によって常法
的に形成される高融点金属シリサイド層はアモルファス
相であり、構成原子の結合が弱くバリヤ層として不適当
である。
Therefore, in order to prevent the reaction between the aluminum of the wiring layer and the silicon of the semiconductor body, it is known to provide a barrier layer between them.The barrier layer is made of high melting point metal silicide such as molybdenum silicide is used. However, a high melting point metal silicide layer that is conventionally formed by, for example, sputtering is in an amorphous phase and is unsuitable as a barrier layer because its constituent atoms have weak bonds.

そこでより強固なシリサイド膜とするため、例えば拡散
炉で900〜1000℃にて20分間のアニールを行な
うと、n影領域、p影領域およびボIJ シIJコン領
域のいずれにおいても良好なオーミックコンタクトが取
れないという間咀が生じる。
Therefore, in order to make a stronger silicide film, for example, if annealing is performed for 20 minutes at 900 to 1000°C in a diffusion furnace, good ohmic contact can be achieved in all of the n-shade region, p-shade region, and IJ silicon region. There is a feeling of being unable to get rid of it.

これに対し、本発明者らは、高融点金塊シリサイド(ア
モルファス相)層形成後に例えばノ・ロゲンランプを用
いて瞬間的に(例えば10秒程度)ア、ニールすると、
n形成予定領域およびポリシリコン領域(n形)に対す
るオーミックコンタクトが安定に再現性良く興されるこ
とを見い出した(未公知)。しかし、この方法でもp形
成予定領域とのオーミックコンタクトは未だ十分ではな
い0 発明の目的 本発明は、以上の如き従来技術に鑑み、C−MO8IC
においてp形半導体領域およびn形半導体領域の両方に
おいて良好な配線(電極)コンタクトを形成することを
目的とする。
On the other hand, the present inventors have found that, after forming a high melting point gold ingot silicide (amorphous phase) layer, if annealing is performed instantaneously (for example, for about 10 seconds) using, for example, a nitrogen lamp,
It has been found (unknown to the public) that ohmic contact can be made stably and with good reproducibility to the n-formation planned region and the polysilicon region (n-type). However, even with this method, the ohmic contact with the p-formation region is still not sufficient.
The purpose is to form good wiring (electrode) contacts in both the p-type semiconductor region and the n-type semiconductor region.

発明の構成 本発明では、上記目的を達成するために、p形半導体領
域およびn形半導体領域の上に高融点シリサイド層(バ
リヤ層)を被着後、高融点シリサイド層を通してp形お
よびn形の両方の半導体領域(単結晶領域および多結晶
領域を含む)にp形不純物をイオン打ち込みし、そして
アニールを行なう工程を有すると共に、上記p形不純物
のn形半導体領域へのイオン打ち込み全相殺するために
、n形半導体領域の形成予定領域にn形不純物を導入す
るに当って、n形不純物金p形不純物打ち込み量に対応
する所定量だけ余分に導入する。
Structure of the Invention In order to achieve the above object, in the present invention, after depositing a high melting point silicide layer (barrier layer) on the p-type semiconductor region and the n-type semiconductor region, the p-type and n-type A step of ion-implanting p-type impurities into both semiconductor regions (including a single crystal region and a polycrystalline region) and performing annealing, as well as completely canceling out the ion implantation of the p-type impurities into the n-type semiconductor region. Therefore, when introducing an n-type impurity into a region where an n-type semiconductor region is to be formed, an extra predetermined amount corresponding to the amount of n-type impurity and gold p-type impurity implanted is introduced.

このバリヤ層被着後の高融点シリサイド層(バリヤ層)
を通したp形不純物打ち込みおよび瞬間的アニールによ
って、高融点シリサイドが安定化して半導体基層と配線
金属層の間の反応を有効に阻止するとともに、高融点シ
リサイドとp形およびn形両方の半導体基層との間の良
好なオーミックコンタクトが達成される。そして、瞬間
的アニール前の高融点シリサイド層を通したp形不純物
の打ち込みは、高融点シリサイド層とp形半導体領域の
オーミックコンタクトを取るためであるから、本来、p
形半導体領域だけに選択的に行なうべきものである。し
かし、そのためには、高融点シリサイド層上に、p形半
導体領域だけにパターニング7行なってB+打ち込み後
レジスト?除去する工程が必要になり、その結果、スル
ープットと歩留りが低下する。そこで、本発明では、高
融点シリサイド層?通したp形不純物の打ち込みを選択
的な領域に行なうのではなく全面に行ない、かつ、この
p形不純物のn形半導体領域への打ち込みの影響を相殺
するために、n形半導体領域にn形不純物を余分に導入
する。n形不純物導入量の増加分は前記p形不純物の打
ち込み分と対応させて、最終的には実験的に決められる
べきである。
High melting point silicide layer (barrier layer) after applying this barrier layer
Through p-type impurity implantation and instantaneous annealing, the high melting point silicide is stabilized to effectively inhibit the reaction between the semiconductor base layer and the interconnect metal layer, and the high melting point silicide and both p-type and n-type semiconductor base layers are A good ohmic contact between the two is achieved. The purpose of implanting p-type impurities through the high melting point silicide layer before instantaneous annealing is to establish ohmic contact between the high melting point silicide layer and the p-type semiconductor region.
This should be done selectively only for semiconductor regions. However, in order to do this, seven patterning steps must be performed on the high melting point silicide layer only in the p-type semiconductor region, and then the resist will be applied after B+ implantation. A removal step is required, resulting in reduced throughput and yield. Therefore, in the present invention, a high melting point silicide layer? In order to implant the p-type impurity into the entire surface of the n-type semiconductor region rather than selectively, and to offset the influence of the p-type impurity implanted into the n-type semiconductor region, the p-type impurity is implanted into the n-type semiconductor region. Introduce extra impurities. The amount of increase in the amount of n-type impurity introduced should be determined experimentally in correspondence with the amount of p-type impurity implanted.

n形半導体領域において不純物濃度が増加して活性化ア
ニールによる不純物の拡散長が不都合に大きい場合には
、活性化アニールを拡散炉アニールではなく瞬間的アニ
ールで行なえばよいであろう。
If the impurity concentration increases in the n-type semiconductor region and the diffusion length of impurities due to activation annealing is undesirably large, activation annealing may be performed by instantaneous annealing instead of diffusion furnace annealing.

なお、本発明では、バリヤ層を介して配線金属層とコン
タクトラ形成すべきp形またはn形の半導体領域は、バ
リヤ層被着前にすでにp形またはn形の領域として形成
されていても、あるいはバリヤ層被着後にp形またはn
形の不純物を打ち込んで形成されてもよく、さらに、p
形半導体領域は、バリヤ層被着後にコンタクト補償用に
打ち込むp形不純物自体によって形成されてもよい。
In the present invention, the p-type or n-type semiconductor region to be formed in contact with the wiring metal layer via the barrier layer may be formed as a p-type or n-type region before the barrier layer is deposited. , or p-type or n-type after barrier layer deposition.
It may be formed by implanting an impurity in the form of p
The type semiconductor region may also be formed by the p-type impurity itself, which is implanted for contact compensation after the barrier layer has been deposited.

本発明において、半導体基層の材質、不純物の種類、配
線金属層の材質等に特に限定されず、また高融点金属シ
リサイドにはモリブデンシリサイド、タングステンシリ
サイド、タンタルシリザイド、チタンシリサイド等が@
まれる。ド間的アニールの方法としては、ハロゲンラン
プアニールや黒体輻射加熱等を用いてもよい。
In the present invention, there are no particular limitations on the material of the semiconductor base layer, the type of impurities, the material of the wiring metal layer, etc., and high melting point metal silicides include molybdenum silicide, tungsten silicide, tantalum silicide, titanium silicide, etc.
be caught. As a method for inter-domain annealing, halogen lamp annealing, black body radiation heating, or the like may be used.

発明の実施例 本発明’(−C−MUS トランジスタに応用する実施
例について説明する。第1図を参照すると、n形シリコ
ン単結晶基板(リンドープ、ρ=10Ω・cm)1のフ
ィールド酸化膜2で囲まれた領域内にp形ソース領域3
およびp形ドレイン領域4(それぞれホウ素ドープ、I
 X 1015cm−2)が形成されるとともに、フィ
ールド酸化膜2で囲まれた別の領域内に大きなp形つェ
ル(ホウ素ドープ5X1013cm−2) 5が形成さ
れ、その中にn形ソース領域6およびn形ドレイン領域
7が形成される。このn形ソース領域6およびn形ドレ
イン領域7には、ヒ素’i 8 X 10”cm−のド
ーズ量でドープする。
Embodiments of the Invention An embodiment in which the present invention is applied to a (-C-MUS) transistor will be described. Referring to FIG. The p-type source region 3 is in the region surrounded by
and p-type drain region 4 (respectively boron-doped, I
At the same time, a large p-type well (boron-doped 5 x 1013 cm-2) 5 is formed in another region surrounded by field oxide film 2, and an n-type source region 6 is formed therein. and n-type drain region 7 are formed. The n-type source region 6 and n-type drain region 7 are doped with arsenic 'i 8 × 10'' cm-.

これらの領域6および7のドーズ量は、本発明のように
後工程でp形不純物を打ち込むことがない従来の場合に
は、ヒ素が4 X 1015cm=であった。
The dose of arsenic in these regions 6 and 7 was 4×10 15 cm in the conventional case where p-type impurities were not implanted in a post process as in the present invention.

この実施例では、後工程でこれらの領域6および7にp
形不純物を4 X 1015crrV”のドーズ量で打
ち込むので、巣純にこれらのドーズ量ヲ加算して8X 
10”cm−2を選択しft。
In this example, p is added to these regions 6 and 7 in a later process.
Since the type impurity is implanted at a dose of 4 x 1015crrV, these doses are added to the base to give 8X.
Select 10”cm-2 and ft.

p形およびn形のチャンネル上にはそれぞれゲート酸化
膜8を介してポリシリコン(燐ドープ、15Ω/ )に
、しるゲー)−に極9が形成でれている。
On each of the p-type and n-type channels, a pole 9 is formed in polysilicon (phosphorous doped, 15Ω/2) with a gate oxide film 8 interposed therebetween.

全面全PSG膜10が覆っているが、各ソースおよびド
レイン領域3,4,6.7ならびにゲート電極9直上の
酸fヒ膜およびPSG膜lOには電極膜が開孔されてい
る。
Although the entire surface is covered by the PSG film 10, electrode films are opened in each of the source and drain regions 3, 4, 6.7, the acid film and the PSG film 1O directly above the gate electrode 9.

第2図を参照すると、同時スパッタ型、ホットプレス型
、等のスパッタ等によ!llMo5i2膜11を全面に
厚さ30nm程度被着する。このMoSi2膜11は前
に述べたようにアモルファス相である。
Referring to Figure 2, sputtering such as simultaneous sputtering type, hot press type, etc. can be used! A llMo5i2 film 11 is deposited to a thickness of about 30 nm over the entire surface. As mentioned earlier, this MoSi2 film 11 is in an amorphous phase.

この状態で、全面にホウ素ケ加速電圧例えば70keV
、 ドーズ量例えば4X10”c−程度にイオン打ち込
みする。それから、ノ・ロゲンランブ等で900〜10
00℃程度に例えば10秒程度の瞬間的なアニールを行
なう。この瞬間的アニールはMoSi2膜11の膜質を
改良するとともに、イオン打ち込みしたホウ素全活性化
してMO8i2膜11と膜影領域3,4のオーミックコ
ンタクトi形成するために行なうものである。
In this state, boron is applied to the entire surface at an accelerating voltage of, for example, 70 keV.
, Ion implantation is carried out to a dose of, for example, 4X10"c-. Then, the ions are implanted at a dose of 900 to 10
Instantaneous annealing is performed at about 00° C. for about 10 seconds, for example. This instantaneous annealing is performed to improve the film quality of the MoSi2 film 11 and to fully activate the implanted boron to form ohmic contacts i between the MO8i2 film 11 and the film shadow regions 3 and 4.

第3図全参照すると、アルミニウム質層(シリコン1%
の合金)12を全面に被着し、MoSi211i11を
含めてバターニングして電極および配fff’FC形成
する。こうして、Mo S i 2とp形シリコンとの
オーミックコンタクトが取れる。アルミニウムとMo 
3 i 2は問題なくオーミックコンタクトが取れるし
、しかもMo S i 2膜11は安定1ヒされている
のでMoS i z lli 11下のシリコンがアル
ミニウムと反応することは阻IEされ、アルミニウム配
線とn影領域6.7あるいはポリシリコンとのオーミッ
クコンタクトも良好である。
If you refer to all of Figure 3, the aluminum layer (1% silicon)
(alloy) 12 is deposited on the entire surface and patterned including MoSi211i11 to form electrodes and distribution fff'FC. In this way, ohmic contact can be established between Mo S i 2 and p-type silicon. Aluminum and Mo
3 i 2 can make ohmic contact without any problems, and since the MoSi 2 film 11 is stable, the silicon under the MoSi 2 11 is prevented from reacting with aluminum, and the aluminum wiring and n Ohmic contact with the shadow area 6.7 or polysilicon is also good.

こうして作成されたC−MUS Ict−窒素雰囲気下
500℃の条件下においてコンタクトの劣化を観察した
(加速試験)0その結果、n影領域、p影領域およびn
形ポリシリコン領域のいずれにおいてもコンタクトは長
期間安定であることが示された。なお、従来のバリヤ層
なしのアルミニウム(シリコツ1%合金)配線の場合に
は、同じ加速試験でn影領域およびn形ポリシリコン領
域のコンタクトが直ちに劣(ヒし、使用不能になる。
C-MUS Ict created in this way - Deterioration of the contact was observed under conditions of 500°C in a nitrogen atmosphere (accelerated test) 0 As a result, the n shadow area, p shadow area and n
Contacts were shown to be stable over long periods of time in both shaped polysilicon regions. Note that in the case of conventional aluminum (1% silicon alloy) wiring without a barrier layer, the contacts in the n-shaded area and n-type polysilicon area immediately deteriorate and become unusable in the same accelerated test.

さらに、この実施例、即ち、本発明の方法によれば、M
o5x2 @ 11 f通したホウ素(p形不純物)の
イオン打ち込みは、選択的に行なう必要はなく、全面に
行なうだけでよい。従って、レジスト等のマスクの形成
、バターニングおよび除去の工程が1回分不要になり、
スルーブツトが増加すると共に、マスクバターニングの
ための位置合せが1回減り、歩留りも向上する。
Furthermore, according to this embodiment, ie, the method of the invention, M
The ion implantation of boron (p-type impurity) through o5x2@11f does not need to be performed selectively, but only needs to be performed over the entire surface. Therefore, one step of forming, patterning, and removing a mask such as a resist is no longer necessary.
As throughput increases, yield increases by one less alignment for mask patterning.

なお、n形ソース領域6およびn形ドレイン領域7のコ
ンタクト抵抗はp形不純物を打ち込まない場合に較べて
いくらか増加したが、トランジスタとしての機能は十分
であった。最適「ヒのためには、n形ソース領@6お↓
びn形不純物領域7へのヒ素(n形不純物)のドーズ量
ケ更に多くすることが好ましいと考えられる。
Although the contact resistance of the n-type source region 6 and the n-type drain region 7 increased somewhat compared to the case where no p-type impurity was implanted, the function as a transistor was sufficient. Optimum for H is the n-type sauce area @ 6 ↓
It is considered preferable to further increase the dose of arsenic (n-type impurity) to the n-type impurity region 7.

以上、シリコン基板上にMo S i s膜をバリヤ層
としてアルミニウム質配線を行なう場合を例にして説明
したが、高融点金属シリサイドを瞬間的にアニールする
ことによって半導体基層と金属層の間の反応を有効に阻
止し得るので、本発明は上記例に限らず一般的に応用可
能であることが認められよう。処理条件も適宜変更可能
である。
The above explanation has been given using an example of aluminum interconnection using a MoSiS film as a barrier layer on a silicon substrate. It will be appreciated that the present invention is applicable not only to the above examples but also generally. Processing conditions can also be changed as appropriate.

発明の効果 以上の説明から明らかなように、本発明により、p形お
よびn形の両方の半導体領域に対して良好なオルミック
コンタクトをより簡単な工程で形成することが可能にな
5、C−M(JSの電極(配線)形成などに応用できる
Effects of the Invention As is clear from the above explanation, the present invention makes it possible to form good ohmic contacts with both p-type and n-type semiconductor regions in a simpler process. -M (Can be applied to JS electrode (wiring) formation, etc.

【図面の簡単な説明】 第1図−第3図は本発明の実施例を示す工程順の半導体
装置の断面図である。 1・・・・・・n形基板、2・・・・〜・フィールド酸
化膜、3.4・・・・・・p形ンースお↓びドレイン領
域、5・・・・・・pウェル、6.7・・・・・・n形
ソースおよびドレイン領域、9・・・・・・ポリシリコ
ンゲート電極、11・・・・・・MoSi、 l!、 
12・・・・・・アルミニウム質層。 特許出願人 冨士通株式会社 特許出願代理人 弁理士 青 木 朗 弁理士 西 舘 和 之 弁理士 内 1)幸 男 弁理士 山 口 昭 之
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 3 are cross-sectional views of a semiconductor device in order of steps showing an embodiment of the present invention. 1...N-type substrate, 2...Field oxide film, 3.4...P-type source and drain region, 5...P-well, 6.7...N-type source and drain region, 9...Polysilicon gate electrode, 11...MoSi, l! ,
12...Aluminum layer. Patent Applicant Fujitsu Co., Ltd. Patent Application Agent Patent Attorney Akira Aoki Patent Attorney Kazuyuki Nishidate 1) Yukio Patent Attorney Akira Yamaguchi

Claims (1)

【特許請求の範囲】[Claims] p導電形半導体領域およびn導電形半導体領域の両方に
対して高融点シリサイドからなるバリヤ層を用いてオー
ミック電極コンタクトを形成するために、該p導電形半
導体領域および該n導電形半導体領域の上に高融点金属
シリサイド層を被着し、p導電形不純物を該高融点金属
シリサイド層金通して該p導電形半導体領域および該n
導電形半導体領域にイオン打ち込みし、そしてアニール
を行なうことからなる工程を含み、かつ、前記p導電形
不純物の前記イオン打ち込みによる前記n導電形半導体
領域に対する影響を相殺するために、前記n導電影領域
を形成すべき領域に選択的にn導電形不純物を導入する
に当り、該n轡電形不純物を前記p導電形不純物の前記
イオン打込みの量に対応する所定量だけ余分に導入する
こと全特徴とする半導体装置の製造方法。
In order to form an ohmic electrode contact to both the p-conductivity type semiconductor region and the n-conductivity type semiconductor region using a barrier layer made of high-melting point silicide, a contact layer is formed on the p-conductivity type semiconductor region and the n-conductivity type semiconductor region. A high melting point metal silicide layer is deposited on the high melting point metal silicide layer, and p conductivity type impurities are passed through the high melting point metal silicide layer to form the p conductivity type semiconductor region and the n conductivity type impurity.
implanting ions into a conductive type semiconductor region and annealing the conductive type semiconductor region; When selectively introducing an n-conductivity type impurity into a region where a region is to be formed, an extra amount of the n-conductivity type impurity is introduced by a predetermined amount corresponding to the ion implantation amount of the p-conductivity type impurity. A method for manufacturing a featured semiconductor device.
JP59035915A 1984-02-29 1984-02-29 Manufacture of semiconductor device Granted JPS60182157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59035915A JPS60182157A (en) 1984-02-29 1984-02-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59035915A JPS60182157A (en) 1984-02-29 1984-02-29 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS60182157A true JPS60182157A (en) 1985-09-17
JPH0147017B2 JPH0147017B2 (en) 1989-10-12

Family

ID=12455324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59035915A Granted JPS60182157A (en) 1984-02-29 1984-02-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60182157A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0873879A2 (en) * 1991-12-25 1998-10-28 Canon Kabushiki Kaisha An ink jet recording apparatus
CN112768354A (en) * 2020-12-30 2021-05-07 济南晶正电子科技有限公司 Annealing method, composite film and electronic element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0873879A2 (en) * 1991-12-25 1998-10-28 Canon Kabushiki Kaisha An ink jet recording apparatus
EP0873879B1 (en) * 1991-12-25 2002-04-17 Canon Kabushiki Kaisha An ink jet recording apparatus
CN112768354A (en) * 2020-12-30 2021-05-07 济南晶正电子科技有限公司 Annealing method, composite film and electronic element

Also Published As

Publication number Publication date
JPH0147017B2 (en) 1989-10-12

Similar Documents

Publication Publication Date Title
JP2819240B2 (en) Method of manufacturing MOS transistor having source / drain regions and silicide with shallow junction
JP2891092B2 (en) Method for manufacturing semiconductor device
EP0689237B1 (en) Method of forming metal silicide films on source and drain regions
US4551908A (en) Process of forming electrodes and interconnections on silicon semiconductor devices
JPH07112062B2 (en) Fabrication of MOS integrated circuit devices
JPS6072272A (en) Manufacture of semiconductor device
JPH0564456B2 (en)
US5654241A (en) Method for manufacturing a semiconductor device having reduced resistance of diffusion layers and gate electrodes
JP3313432B2 (en) Semiconductor device and manufacturing method thereof
JPS60182157A (en) Manufacture of semiconductor device
JPH06140519A (en) Semiconductor device and manufacture thereof
JPS60169169A (en) Semiconductor device and manufacture thereof
JPS60138916A (en) Manufacture of semiconductor device
US20020106850A1 (en) Method of fabricating deep sub-micron CMOS source/drain with MDD and selective CVD silicide
JP2817518B2 (en) Semiconductor device and manufacturing method thereof
JPS60198814A (en) Manufacture of semiconductor device
JP2569809B2 (en) Method for manufacturing semiconductor device
JPS6165470A (en) Semiconductor ic device
JP3020729B2 (en) Method for manufacturing semiconductor device
JPH06163576A (en) Manufacture of semiconductor device
JPH06177067A (en) Manufacture of semiconductor integrated circuit device
JPS60138962A (en) Semiconductor device and manufacture thereof
JPS5988868A (en) Manufacture of semiconductor device
JPH04307741A (en) Manufacture of semiconductor device
JPH0795535B2 (en) Method for manufacturing semiconductor device