JPS60181651A - Automatic calibration in ultrasonic flaw detection apparatus of pipe to be inspected - Google Patents

Automatic calibration in ultrasonic flaw detection apparatus of pipe to be inspected

Info

Publication number
JPS60181651A
JPS60181651A JP59037570A JP3757084A JPS60181651A JP S60181651 A JPS60181651 A JP S60181651A JP 59037570 A JP59037570 A JP 59037570A JP 3757084 A JP3757084 A JP 3757084A JP S60181651 A JPS60181651 A JP S60181651A
Authority
JP
Japan
Prior art keywords
flaw
gate
defect
wth
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59037570A
Other languages
Japanese (ja)
Inventor
Katsuyuki Nishifuji
西藤 勝之
Hideaki Fujimoto
英晃 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP59037570A priority Critical patent/JPS60181651A/en
Publication of JPS60181651A publication Critical patent/JPS60181651A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0618Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
    • G01N29/0627Cathode-ray tube displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/38Detecting the response signal, e.g. electronic circuits specially adapted therefor by time filtering, e.g. using time gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4454Signal recognition, e.g. specific values or portions, signal events, signatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/48Processing the detected response signal, e.g. electronic circuits specially adapted therefor by amplitude comparison
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable automatic calibration, by automatically performing gate setting under an optimum condition corresponding to the shape of an actual pipe. CONSTITUTION:A beam distance Wth making the outer or inner surface flaw echo S12 of a welded part max. is calculated by a predetermined formula corresponding to the number of skips of a probe of which the position is set. Around the point on the CRT time axis of a flaw detection apparatus corresponding to said distance Wth, a flaw gate FG1 with predetermined widths a, b is set. A flaw gate start point pulse FGS1 is used in forming the gate FG1 and S11 is a surface echo. The comparison test piece collected from an actual pipe or each probe head is relatively moved to perform the calibration of sensitivity. In this case, a beam distance Wact, when the position of the probe is adjusted so as to make the flaw echo S12 max. in the comparison test piece, is different from the distance Wth of the predetermined formula. Therefore, a flaw peak position SP is detected and the width of the flaw gate starting point pulse FGS2 is widened by the shift amount delta with the distance Wth in the comparison test piece to move FG1 and a flaw gate FG2 is set to take out a flaw signal.

Description

【発明の詳細な説明】 本発明は、実管形状に応じてR′f適条件でダート設定
を行なって欠陥信号を取り出す被検管超音波探傷装置に
於ける自動較正方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic calibration method for an ultrasonic flaw detection apparatus for a tube to be inspected, which extracts a defect signal by performing dart setting under appropriate R'f conditions according to the shape of the actual tube.

一般に、被検管例えば溶接管の超音波探傷手段は、第1
図に示す如く検査対象となる溶接管1の溶接線2を挾ん
で特定位置(スキップ位置)に2個ずつ探触子JA、J
Cおよび3B、3Dを配置するとともに、その一方に位
置す°る探触子、?A、JCよ多発生せられた超音波ビ
ーム4゜4を溶接部2a一方の内面および外面に当て、
同様に他方に位置する探触子3B、3Dよ多発生せられ
た超音波ビーム4,4を溶接部2a他方の内面および外
面に当てるようにしている。
In general, ultrasonic flaw detection means for testing tubes, such as welded tubes,
As shown in the figure, two probes JA and J are placed at specific positions (skip positions) across the weld line 2 of the welded pipe 1 to be inspected.
C, 3B, and 3D, and a probe located on one of them, ? A, JC multiple ultrasonic beams 4°4 are applied to one inner and outer surface of the welded part 2a,
Similarly, the ultrasonic beams 4, 4 generated by the probes 3B, 3D located on the other side are applied to the inner and outer surfaces of the other welded part 2a.

そして、以上のような探触手配ff1Kよる探傷手段を
用いて例えば第2図のような探傷波形が得られたとする
と、との探傷波形に対し、次のようなダート設定を行な
って欠陥信号を取り出している。即ち、このダート設定
手段としては、溶接線2から1スキップ位置に配置され
た溶接部外面ねらいの糧触子31.3Bに対し、そのス
キップ位置での欠陥信号(欠陥波)が最高となる時間軸
上の点を中心として所定幅の外面欠陥ゲートG1を設定
し、捷だ溶接線2から1.57キツプ位置に配置された
溶接部内面ねらいの仮触子3C,3Dに対しては、当該
スキップ位置での欠陥信号が最高となる時間軸上の点を
中心として所定幅の内面欠陥ゲートG2を設定すること
により、欠陥信号を検出している。第2図においてSl
は表面エコー、S2は外面欠陥エコー、S3は内面欠陥
エコーである。Wl。
For example, if a flaw detection waveform as shown in Fig. 2 is obtained using the flaw detection means with the probe arrangement ff1K as described above, the following dart settings are performed for the flaw detection waveform to obtain a defect signal. I'm taking it out. In other words, this dart setting means determines the time at which the defect signal (defect wave) at the skip position reaches its maximum for the feed probe 31.3B that is placed at one skip position from the weld line 2 and aims at the outer surface of the weld. An outer surface defect gate G1 of a predetermined width is set around a point on the axis, and for the temporary contactors 3C and 3D aiming at the inner surface of the weld part placed at a position of 1.57 kip from the twisted weld line 2, A defect signal is detected by setting an internal defect gate G2 of a predetermined width centered on a point on the time axis where the defect signal at the skip position is the highest. In Figure 2, Sl
is a surface echo, S2 is an external defect echo, and S3 is an internal defect echo. Wl.

W2け超音波が鋼管表面から欠陥に述するまでの時間、
即ち距離に対応するものであってビーム路程と呼ば11
.る。
The time it takes for the ultrasonic wave to reach the defect from the surface of the steel pipe,
In other words, it corresponds to the distance and is called the beam path11
.. Ru.

以」二のような探触子の配置及びダート設定手段は、探
傷装置の感度及び欠陥判定レベルの設定等の較正に先立
って実施され、通常、泥3図のような較正操作手順によ
って行なわれる。
The arrangement of the probe and the dart setting means as described below are carried out prior to the calibration of the sensitivity of the flaw detection equipment and the setting of the defect judgment level, etc., and are usually carried out by the calibration operation procedure as shown in Figure 3. .

(1)先ず、A1操作でけ探傷条件をグリセットする。(1) First, reset the flaw detection conditions using A1 operation.

即ち、探傷装置のダート設定を含む較正操作において、
被検制寸法及び感度、判定レベル、使用対比欠陥等の探
傷基準よシ々る探偽売件を手動にてプリセットする。
That is, in the calibration operation including the dirt setting of the flaw detection device,
Manually preset inspection criteria such as inspection dimensions, sensitivity, judgment level, use comparison defects, etc.

(2) 次に、A2操作においては、対比試験片を用い
て、各接触子3A〜3Dを所定のスキップ位偶にセット
する。
(2) Next, in operation A2, each of the contacts 3A to 3D is set at a predetermined skip position using a comparison test piece.

(3)次に、A3操?[では、名探触子毎に対比試験片
に加工された対比欠陥の欠陥エコーの高さが最大と々る
よう探触子位置の′gFA 整を行なう。
(3) Next, A3 manipulation? [Then, the probe position is adjusted so that the height of the defect echo of the control defect processed into the control test piece for each probe is maximized.

(4)A4操作では、探傷波形によるダート設定あるい
はダート設定の補正を行なう。即ち、ここでは、欠陥エ
コーS2.83を中心としである幅での外面欠陥ダート
G1および内面欠陥ゲートG2の設定を行なう。との場
合、内面および外面欠陥検出用のビーム路程Wl 、W
2は、理論的には次の式によってめることができる。
(4) In the A4 operation, dirt setting or correction of dirt setting is performed using the flaw detection waveform. That is, here, the outer surface defect dirt G1 and the inner surface defect gate G2 are set with a certain width centered on the defect echo S2.83. , the beam path lengths Wl, W for inner and outer defect detection
2 can be theoretically determined by the following equation.

・・・・・・・・・(1) 但し、Dは外径、tは肉厚、θは超毛波屈折角、nはス
キップ数である。
(1) where D is the outer diameter, t is the wall thickness, θ is the superhair refraction angle, and n is the number of skips.

しかし、上式は被検管が真円としての理論式であ〕、実
管は必ずしも真円および均肉厚とは限らず、最大欠陥エ
コーを呈するビーム路程は理論式((1)式)によって
めたビーム路程WJ。
However, the above equation is a theoretical equation assuming that the tube to be inspected is a perfect circle], and actual tubes are not necessarily perfect circles and have uniform wall thickness, and the beam path that exhibits the maximum defect echo is determined by the theoretical equation (Equation (1)). The determined beam path WJ.

W2からずれることになる。ゆえに、予め理論計算によ
ってダート設定を行なった場合には、この段階でその補
正を行なう必要がある。
This will deviate from W2. Therefore, if the dirt settings have been made in advance through theoretical calculations, it is necessary to correct them at this stage.

(5)以上のような操作を経た彼、自動感度較正の操作
A5を行・上り。この較正は、対比試験片あるいは探触
子3八〜3Dを保持する探触子ヘッドを相対的に動かし
、対比欠陥からの欠陥エコーを用いて感度調整等につき
自動較正を打順を経て自動較正を行なうものであシ、そ
のうち八1〜A3の操作を手作業で行なうことは納得す
るものの、特に従来技術上、A4操作のダート設定およ
びダート理論設定の補正をも手作業で行なりことに問題
がある。即ち、各橡触子対毎に行なわれる手動ダート設
定には多大な時間を要し、このダート設定を含む較正時
間の増大は探傷装置の稼動率向上に大きな制約となって
いる。さらに、被検管の肉厚が増えてくると、それに伴
なって探触子対の数が多くなシ、益々条件が悪化する。
(5) After performing the above operations, he performed operation A5 for automatic sensitivity calibration. This calibration involves relatively moving the comparison test piece or the probe head holding the probes 38 to 3D, and using the defect echo from the comparison defect to perform automatic calibration for sensitivity adjustment etc. through the batting order. Although it is understandable that operations 81 to A3 should be performed manually, there is a problem with the conventional technology in that the dart settings and dart theory settings for A4 operations are also manually corrected. There is. That is, it takes a great deal of time to manually set the darts for each pair of rod probes, and the increase in the calibration time including the dart settings is a major constraint on improving the operating rate of the flaw detection apparatus. Furthermore, as the wall thickness of the test tube increases, the number of probe pairs increases, and the conditions become worse.

特に、造管の高生産性が要求されている昨今、超音波探
傷装置での較正時間の短縮化は大きな解決課題とされて
いる。
In particular, with the recent demand for high productivity in pipe manufacturing, shortening the calibration time of ultrasonic flaw detection equipment has become a major issue to be solved.

本発明は以上のような点に着目してなされたもので、実
管形状に応じた最適条件でダート設定を自動的かつ迅速
に行ない、しかも自動感度較正と連続化して実施し得る
被検管超音波探傷装置に於ける自動較正方法を提供する
ことにある。
The present invention has been made with attention to the above points, and provides a test tube that can automatically and quickly perform dart setting under optimal conditions according to the actual tube shape, and can be carried out continuously with automatic sensitivity calibration. An object of the present invention is to provide an automatic calibration method in an ultrasonic flaw detection device.

次に、本発明方法の一夾雄側について第4図を参照して
説明する。
Next, the most important aspect of the method of the present invention will be explained with reference to FIG.

(1)先ず、前述した操作A1〜A3を経た後にダート
設定を行なうが、これは次のようにして行なう。即ち、
位置設定された探触子3^〜3Dの2キツプ数r(応じ
て溶接部2aの外面および内面欠陥部分からの外面また
は内面欠陥エコーS12が最大となるビーム路程wth
を理論式である(1)式によってめる。このビーム路程
wthに相応する探傷装置におけるブラウン管の時間軸
上の点を中心に所定幅a、b(例えばa=b=Hスキッ
プ相轟ビーム路程)の欠陥y −トFG1を設定する。
(1) First, after performing the operations A1 to A3 described above, dart setting is performed as follows. That is,
2-kip number r of the positioned probes 3^~3D (correspondingly, the beam path length wth at which the outer surface or inner surface defect echo S12 from the outer surface and inner surface defect portion of the welding part 2a is maximum
is determined by the theoretical equation (1). A defect y-to FG1 having a predetermined width a, b (for example, a=b=H skip phase beam path) is set centered on a point on the time axis of the cathode ray tube in the flaw detection device corresponding to the beam path wth.

この欠陥グー)FGJの作成に際し、欠陥ダート起点A
?ルスFGS 1が使用される。811は表回エコーで
ある。
When creating this defect dart) FGJ, the defect dart starting point A
? Lus FGS 1 is used. 811 is the front echo.

(2) 次に、実管から採取される対比試験片或いは各
探触子3八〜3Dを保持する探触子ヘッドを相対的に移
動させ、感度較正を行なう。この場合、前述′したよう
に対比試験片でその欠陥エコー812が最大となるよう
探触子位置を調整した時のビーム路程Wa c tは(
1)式によ請求めたビーム路程wthとは異なる。、従
って、との感度調整と同時にその欠陥ピーク位置SPを
検出し、対比試験片でのビーム路程wthとのずれ量δ
をめる。
(2) Next, sensitivity calibration is performed by relatively moving the comparison test piece taken from the real tube or the probe head holding each of the probes 38 to 3D. In this case, the beam path length Wa c t when the probe position is adjusted so that the defect echo 812 of the comparison test piece is maximized as described above is (
1) It is different from the beam path length wth calculated by equation. , Therefore, the defect peak position SP is detected at the same time as the sensitivity adjustment is performed, and the deviation amount δ from the beam path length wth in the comparison test piece is determined.
I put it on.

(3)次に、このずれ量δだけ欠陥ダート起点パルスF
GS 2の幅を広げて欠陥ダートFG 1を移動させる
ことによシ欠陥ゲートFG2を設定し、欠陥信号を取シ
出すものである。
(3) Next, the defect dart starting point pulse F by this deviation amount δ
By widening the width of GS2 and moving the defective dirt FG1, a defective gate FG2 is set and a defect signal is output.

なお、欠陥グー)FCの理論設定およびその補正時のダ
ート幅については、ビーム路程wthのずれ量だけシフ
トするようにしたが、被検拐の形状如何によっては異な
るものとする。即ち、理論f−1設定に基づく欠陥グー
)FG 7によって確実に欠陥エコー812のピーク位
置を検出できるので、欠陥f−トFG2を幅広くして・
ダート設定することも可能である。
Note that although the theoretical setting of the defect FC and the dart width at the time of its correction are shifted by the amount of deviation of the beam path length wth, it is assumed that the dart width differs depending on the shape of the defect to be inspected. That is, since the peak position of the defect echo 812 can be reliably detected by the defect echo FG 7 based on the theoretical f-1 setting, the defect echo FG 2 can be widened.
A dart setting is also possible.

従って、以上のような自動較正方法によれば、自動感度
較正と同時に被検管の形状に応じた適正なダート設定を
自動的に実施でき、r−ト設定の繁雑さが避けられ、か
つダート設定時間を大幅に短縮することができる。従っ
て、超音波探傷装置の較正は造管ラインの停止の下に行
なわれる点から考えれば、自動較正化の拡大によって所
要時間を著しい減少し得、生産性の向上に極めて大なる
効果を有する被検管超音波探傷装置に於ける自動較正方
法を提供できる。
Therefore, according to the automatic calibration method described above, it is possible to automatically perform the appropriate dart setting according to the shape of the test tube at the same time as automatic sensitivity calibration, avoid the complexity of the r-t setting, and Setting time can be significantly reduced. Therefore, considering that the calibration of ultrasonic flaw detection equipment is performed while the pipe production line is stopped, the expansion of automatic calibration can significantly reduce the required time, which has an extremely large effect on improving productivity. An automatic calibration method for a tube ultrasonic flaw detection device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は従来方法を説明するために示した
もので、第1図(A)、(B)は被検管上に探触子を配
驚した場合の上面図および側面図、第2図は欠陥エコー
とダート設定との関係を示す図、第3図は較正操作の手
順を示す70−チャート、第4図は本発明方法の要部と
なるダート自動設定方法を説明する図である。 1・・・被検管(溶接管)、2川溶接線、2m・・・溶
接部、JA〜3D・・・探触子。 出願人代理人 弁理士 鈴 江 武 彦第1図 第2図 第3図 第4図 特許庁長官 志 賀 学 殿 1、事件の表示 特願昭59−37570号 2、発明の名称 3、補正をする渚 事件との関係 特許出願人 (412) 日本鋼管株式会社 4、代理人 5、自発補正 7、補正の内容 図面第1図を別紙に朱記して示すようC=「3C」を「
3D」と訂正する。 第1図
Figures 1 to 3 are shown to explain the conventional method, and Figures 1 (A) and (B) are top and side views when the probe is placed above the test tube. , Fig. 2 is a diagram showing the relationship between defective echoes and dart settings, Fig. 3 is a 70-chart showing the procedure of calibration operation, and Fig. 4 explains the dart automatic setting method which is the main part of the method of the present invention. It is a diagram. 1...Test tube (welded pipe), 2 river welding line, 2m...welded part, JA~3D...probe. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 4 Commissioner of the Patent Office Manabu Shiga 1, Indication of the case, Patent Application No. 1983-37570 2, Title of the invention 3, Amendment Relationship with the Nagisa incident Patent applicant (412) Nippon Kokan Co., Ltd. 4, Agent 5, Voluntary amendment 7, Contents of the amendment As shown in Figure 1 of the drawing in red on the attached sheet, C = "3C" was changed to "
3D,” he corrected. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 被検管(対比試験片を含む)寸法および位置設定された
探触子群のスギッf数に応じて欠陥部分からの欠陥信号
が最大となる第1のビーム路程の理論値に基づいて欠陥
ケ°−トを設定する理論ダート設定手段と、動的力感度
較正時に欠陥411号のピーク位置を検出して第2のビ
ーム路程を得、この第2のビーム路程の前記第1のビー
ム路程からのずれ11に応じて前記欠陥ダートの位6・
′Iを自ル;1的に補正して杓ゲート設定を行なうダー
ト設定補正+段とを備えたことを特徴とする被検管超音
波探傷装vK於ける自動較正方法。
Defect detection is performed based on the theoretical value of the first beam path that maximizes the defect signal from the defective part, depending on the dimensions of the test tube (including the comparison test piece) and the Sugit f number of the probe group set in position. A theoretical dart setting means for setting the temperature, and a second beam path is obtained by detecting the peak position of defect No. 411 during dynamic force sensitivity calibration, and the second beam path is derived from the first beam path. The position of the defective dirt is 6.
1. An automatic calibration method for an ultrasonic test tube ultrasonic flaw detection device vK, characterized in that it comprises a dart setting correction + stage for performing a dip gate setting by correcting 'I'.
JP59037570A 1984-02-29 1984-02-29 Automatic calibration in ultrasonic flaw detection apparatus of pipe to be inspected Pending JPS60181651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59037570A JPS60181651A (en) 1984-02-29 1984-02-29 Automatic calibration in ultrasonic flaw detection apparatus of pipe to be inspected

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59037570A JPS60181651A (en) 1984-02-29 1984-02-29 Automatic calibration in ultrasonic flaw detection apparatus of pipe to be inspected

Publications (1)

Publication Number Publication Date
JPS60181651A true JPS60181651A (en) 1985-09-17

Family

ID=12501181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59037570A Pending JPS60181651A (en) 1984-02-29 1984-02-29 Automatic calibration in ultrasonic flaw detection apparatus of pipe to be inspected

Country Status (1)

Country Link
JP (1) JPS60181651A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137560A (en) * 1989-10-24 1991-06-12 Tokimec Inc Ultrasonic flaw detector
WO2002071091A3 (en) * 2001-03-02 2002-11-28 Bosch Gmbh Robert Device for evaluating signals during ultrasound analysis of welded joints

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137560A (en) * 1989-10-24 1991-06-12 Tokimec Inc Ultrasonic flaw detector
WO2002071091A3 (en) * 2001-03-02 2002-11-28 Bosch Gmbh Robert Device for evaluating signals during ultrasound analysis of welded joints
US7036376B2 (en) 2001-03-02 2006-05-02 Robert Bosch Gmbh Device for evaluating signals

Similar Documents

Publication Publication Date Title
CN111458406B (en) Ultrasonic detection method for austenitic stainless steel fillet weld
JPS60181651A (en) Automatic calibration in ultrasonic flaw detection apparatus of pipe to be inspected
CN105466794A (en) Method for evaluating strain ageing degree of pipeline steels after piping
JP2515460B2 (en) ERW welded pipe manufacturing method
CN112719538A (en) Welding method for fan foundation jacket flange and main steel pipe
JP2002071649A (en) Welding monitoring method
JPS60181650A (en) Automatic calibration in ultrasonic flaw detection apparatus of pipe to be inspected
JPH04142456A (en) Ultrasonic flaw detection for metal tube
JPS5856830B2 (en) Kanjiyoubuzaiohihakaiteki ni Kensasur Hohou Oyobi Souchi
JPH07276075A (en) Method for detecting abnormality at welding time
JPS59151046A (en) Inside defect detecting method
US3745449A (en) Method and apparatus for testing welded pipe for anomalies with means to change the sensitivity when testing the welded area
CN117798537B (en) Manufacturing and welding control system for steel structure skeleton of building curtain wall
JP2803956B2 (en) ERW weld pipe edge offset adjustment method and measuring device
JPH05104257A (en) Squeeze quantity measuring and calculating method and control method for resistance welded tube
JPH0562299B2 (en)
CN217180710U (en) Simulation test block for ultrasonic phased array detection of steel pipe arch bridge intersecting line welding seam
CN212341116U (en) Reference block for detecting narrow gap welding butt weld
JPS61153562A (en) Ultrasonic flaw detecting device
JPS60186756A (en) Automatic sensitivity calibrating method of ultrasonic flaw detector for welded pipe
SU920520A1 (en) Method of determination of welded joint melting depth
JPH0424546A (en) Method for inspecting welding of drum of drum can
JPS59116011A (en) Measuring method of size and shape by robot
JPS6037891B2 (en) Automatic condition setting method for ultrasonic flaw detector
Heinrich et al. Mechanized in-service ultrasonic inspection of austenitic welds in nuclear plants