JPH05104257A - Squeeze quantity measuring and calculating method and control method for resistance welded tube - Google Patents

Squeeze quantity measuring and calculating method and control method for resistance welded tube

Info

Publication number
JPH05104257A
JPH05104257A JP26737091A JP26737091A JPH05104257A JP H05104257 A JPH05104257 A JP H05104257A JP 26737091 A JP26737091 A JP 26737091A JP 26737091 A JP26737091 A JP 26737091A JP H05104257 A JPH05104257 A JP H05104257A
Authority
JP
Japan
Prior art keywords
squeeze
image
calculated
control
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26737091A
Other languages
Japanese (ja)
Other versions
JP2803928B2 (en
Inventor
Masayuki Suehisa
正幸 末久
Hideki Kashiwamura
英樹 柏村
Nobuo Mizuhashi
伸雄 水橋
Hirobumi Okuda
博文 奥田
Kuniomi Sakata
国臣 坂田
Kiyoshi Matsui
清 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26737091A priority Critical patent/JP2803928B2/en
Publication of JPH05104257A publication Critical patent/JPH05104257A/en
Application granted granted Critical
Publication of JP2803928B2 publication Critical patent/JP2803928B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To continuously measure, calculate and control the squeeze quantity during welding by picture-processing an image of a seam convergence part photographed by an image pickup device, obtaining the distance from a V convergence point to the squeeze roll center and an apex angle and calculating the squeeze quantity. CONSTITUTION:In resistance welded tube manufacturing equipment, the seam convergence part 3 is photographed by the image pickup device 7 using an optical lens 6, etc., from above a seam weld zone. This image is inputted to an image analyzer 9 as an analog picture signal, picture processing is performed by utilizing the luminance difference of a picture and the distance L from the V convergence point to the squeeze roll center and the apex angle theta are calculated. The calculated result is inputted to a signal converter 15 having a comparator 14, compared with the preset squeeze quantity and calculated and converted into a control signal to control the squeeze quantity. This control signal is inputted to a squeeze quantity control system 17 to control the squeeze quantity. Accordingly, the squeeze quantity of the resistance welded tube can be measured, calculated and controlled with high accuracy and high efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属帯から連続的にロ
ール成形して溶接する電縫溶接造管のスクイズ量の計測
方法およびその制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the squeeze amount of an electric resistance welded pipe continuously rolled and welded from a metal strip and a control method therefor.

【0002】[0002]

【従来の技術】近年、成形、溶接技術の発展に伴い、炭
素鋼管をはじめステンレス鋼管、Ti管、超合金管など
種々の電縫溶接管が製造されるようになり、その用途は
ラインパイプ、配管、構造用管等と多岐にわたるように
なってきた。これらの電縫溶接管の使用環境条件は年々
苛酷さを増し、溶接部に対する品質要求が厳しくなる傾
向にあり、溶接欠陥の防止が重要な課題となっている。
2. Description of the Related Art In recent years, with the development of forming and welding techniques, various electric resistance welded pipes such as carbon steel pipes, stainless steel pipes, Ti pipes and superalloy pipes have been manufactured. It has come to be used in a wide variety of fields such as pipes and structural pipes. The environmental conditions under which these electric resistance welded pipes are used are becoming more and more severe year by year, and the quality requirements for welded parts tend to be stricter, and the prevention of welding defects has become an important issue.

【0003】一般に金属帯から連続的にロール成形して
溶接する電縫溶接管の製造においては、高周波加熱溶融
後のスクイズ量は溶接欠陥の発生に大きな影響を及ぼ
し、ペネトレーターと称される溶接欠陥の発生量を支配
する。このため溶接中に連続してスクイズ量を高精度に
計測して、適正条件範囲に設定し制御することは、電縫
溶接部の品質管理の上で重要である。
Generally, in the production of an electric resistance welded pipe in which a metal strip is continuously roll-formed and welded, the amount of squeeze after high frequency heating and melting has a great influence on the occurrence of welding defects, and a welding defect called a penetrator. Control the amount generated. Therefore, it is important for quality control of the electric resistance welded portion to continuously measure the squeeze amount with high accuracy during welding and set and control the squeeze amount within an appropriate condition range.

【0004】従来の電縫溶接において一般的なスクイズ
量の設定は、溶接噛止め状態でテープメジャーによりス
クイズロール前後のパイプ外周長差を測定する方法で行
われている。しかし、スクイズロールでは管に円周絞り
的な縮管加工がなされるが、この円周長の絞り量は全て
スクイズアウトに作用するのではなく、衝合部近傍以外
の母材部の変形によっても吸収される。円周長の絞り量
の衝合部近傍と母材部への配分は管外径、材料強度など
が異ると変化し、適切なスクイズ量の設定が難しい。ま
た、この方法では溶接中のスクイズ量の監視ができず、
測定にも長時間を要する問題がある。スクイズ(アプセ
ット)量を自動的に計測する別な方法として、特開昭5
6−4009,特開昭55−48483,特開昭52−
153848号公報等の方法が提案されている。
The conventional setting of the squeeze amount in the electric resistance welding is performed by a method of measuring the difference in the outer peripheral length of the pipe before and after the squeeze roll with a tape measure in a welded state. However, in the squeeze roll, the pipe is subjected to a contraction process like a circumferential drawing, but this drawing amount of the circumferential length does not all act on the squeeze out, but due to the deformation of the base material part other than the vicinity of the abutting part. Is also absorbed. It is difficult to set an appropriate squeeze amount, because the distribution of the amount of reduction of the circumferential length to the vicinity of the abutting part and to the base metal part changes depending on the pipe outer diameter, material strength, etc. In addition, this method cannot monitor the amount of squeeze during welding,
There is also a problem that the measurement takes a long time. As another method for automatically measuring the amount of squeeze (upset), Japanese Patent Laid-Open No. Sho 5
6-4009, JP-A-55-48483, JP-A-52-
Methods such as Japanese Patent No. 153848 have been proposed.

【0005】特開昭56−4009号公報に係る方法は
図3(a),図3(b)に示すように、最終フィンパス
ロール18,18のロール間ギャップG1と、スクイズ
ロール4,4間ギャップG2を測定し、これらの測定値
および上記両ロール18,4のロール孔型諸元W1 ,h
1 ,(H1 =2・h1 +G1 ),W2 ,h2 ,(H2
2・h2 +G2 )に基づいて、スクイズロール4の前後
のパイプの横径と縦径を演算して、スクイズロール前後
の外周長差によりスクイズ量を求める。
As shown in FIGS. 3 (a) and 3 (b), the method according to Japanese Patent Laid-Open No. 56-4009 discloses a gap G1 between rolls of the final fin pass rolls 18, 18 and squeeze rolls 4, 4. The inter-gap G2 was measured, and the measured values and the roll hole type specifications W 1 and h of both rolls 18 and 4 were measured.
1 , (H 1 = 2 · h 1 + G 1 ), W 2 , h 2 , (H 2 =
Based on 2 · h 2 + G 2 ), the horizontal and vertical diameters of the pipe before and after the squeeze roll 4 are calculated, and the squeeze amount is obtained from the difference in outer peripheral length before and after the squeeze roll.

【0006】特開昭55−48483号公報に係る方法
は、スクイズロールの入側のパイプ外周長をオープンパ
イプの横径とエッジ幅(エッジ間隔)を測定した後、ス
プリングバック量を求める式を用いて演算し、スクイズ
ロールの出側の外周長を溶接されたパイプの横径を測定
することによって演算し、それらパイプ外周長の差から
スクイズ量を求める。
The method according to Japanese Patent Laid-Open No. 55-48483 uses a formula for determining the springback amount after measuring the pipe outer peripheral length on the inlet side of the squeeze roll by measuring the lateral diameter and edge width (edge spacing) of the open pipe. The outer peripheral length of the squeeze roll on the outlet side is calculated by measuring the lateral diameter of the welded pipe, and the squeeze amount is obtained from the difference in the outer peripheral lengths of the pipes.

【0007】また、特開昭52−153848号公報に
係る方法は、図4(a)において溶接点〜スクイズロー
ルセンター間距離xとスクイズロールの谷部の半径Rb
をからΔRcを求め、図4(b)に示す溶接点位置の楕
円pの周長Lpとスクイズロールセンター位置の円qの
周長Lqの差を近似式により演算し、スクイズロール前
後の周長差からスクイズ量を求める。
In the method disclosed in Japanese Patent Laid-Open No. 52-153848, the distance x between the welding point and the squeeze roll center and the radius Rb of the valley portion of the squeeze roll in FIG.
.DELTA.Rc is calculated from and the difference between the perimeter Lp of the ellipse p at the welding point position and the perimeter Lq of the circle q at the squeeze roll center position shown in FIG. Calculate the squeeze amount from the difference.

【0008】これらの方法によると溶接中にスクイズ量
を自動計測することはできるが、測定原理が従来から一
般的に行われているスクイズ前後のパイプ外周長差を計
測するものと同じであり、管外径、材料強度などが変わ
った場合に適正スクイズ量の設定が難しいという問題が
ある。
According to these methods, the amount of squeeze can be automatically measured during welding, but the principle of measurement is the same as that for measuring the difference in pipe outer peripheral length before and after squeezing, which is generally performed conventionally. There is a problem that it is difficult to set an appropriate squeeze amount when the pipe outer diameter, material strength, etc. change.

【0009】[0009]

【発明が解決しようとする課題】本発明は、このような
従来法の欠点をなくするためになされたもので、シーム
溶接部の上方に設置した撮像装置等を用いて電縫溶接管
のシーム収束部の像を撮影し、その像を画像解析装置に
よって画像処理して、V収束点からスクイズロールセン
ター間の距離Lとアペックス角度θを求め、スクイズ量
を演算することによって、溶接中に連続してスクイズ量
を高精度に能率良く計測演算・制御する方法を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in order to eliminate the drawbacks of the conventional method. The seam of an electric resistance welded pipe is obtained by using an image pickup device installed above the seam weld. An image of the converging portion is photographed, the image is image-processed by an image analysis device, the distance L between the squeeze roll centers and the apex angle θ are obtained from the V converging point, and the squeeze amount is calculated to continuously perform the welding. It is an object of the present invention to provide a method for measuring, calculating and controlling the squeeze amount with high accuracy and efficiency.

【0010】[0010]

【課題を解決するための手段および作用】本発明者らは
ビデオカメラおよび画像解析装置を利用して種々の実験
を重ねた結果、以下の知見を得た。溶接欠陥の発生は、
図5に示すように溶接部HAZのメタルフロー立上り角
度と深い関係がある。溶接欠陥は、メタルフロー立上り
角度が50度以下のスクイズ量不足の場合と80度以上
でオフセットが生じている場合に多い。従って溶接欠陥
を防止するためには、メタルフロー立上り角度を50〜
80度の適正域に設定し、制御すればよいことを見出し
た。
Means and Actions for Solving the Problems The present inventors have obtained the following findings as a result of various experiments using a video camera and an image analysis device. The occurrence of welding defects
As shown in FIG. 5, there is a deep relationship with the metal flow rising angle of the welded portion HAZ. There are many welding defects when the squeeze amount is insufficient when the metal flow rising angle is 50 degrees or less and when the offset occurs when the squeeze amount is 80 degrees or more. Therefore, in order to prevent welding defects, the metal flow rising angle should be 50-
It has been found that it is sufficient to set and control the proper range of 80 degrees.

【0011】このメタルフロー立上り角度は、図6に示
すように管の外径、強度に関係なくV収束点からスクイ
ズロールセンター間の距離Lとアペックス角度θから演
算式SQc =2Ltanθ/2で幾何学的に算出したス
クイズ量SQc と相関関係があり、このスクイズ量SQ
c を指標として高精度に制御できることを見出した。
As shown in FIG. 6, the rising angle of the metal flow is calculated from the distance L from the V convergence point to the squeeze roll center and the apex angle θ, regardless of the outer diameter and strength of the pipe, by the equation SQ c = 2Ltan θ / 2. There is a correlation with the squeeze amount SQ c calculated geometrically, and this squeeze amount SQ c
We found that c can be controlled with high precision using the index.

【0012】以下、本発明を図面により詳細に説明す
る。図1において金属帯の両エッジ1,1がV字状に収
束しながらコンタクトシュー2,2から供給される高周
波電流により加熱溶融されて、シーム収束点3で衝合
し、スクイズロール4,4で加圧されて溶接がなされ
る。この電縫溶接管製造設備において、シーム溶接部上
方からシーム収束部を撮影できるように光学レンズ6等
を用いた撮像装置7を配置する。この時、光学レンズ6
と撮像装置7を管5の軸方向に移動させると共に撮像装
置を管5の軸方向に傾斜させて撮像してもよい。その場
合には像の角度補正を行う。図1の場合、シーム収束部
の像を光学レンズ6と撮像装置7により直接撮像する例
を示しているが、ファイバースコープや反射鏡等により
像を伝送して撮像する方法も適用でき、特に制限するも
のではない。また、撮像装置は高周波のノイズが入りに
くいCCD(固体撮像素子)カメラが好ましく、撮影条
件はV収束部の静止像を得るためには高速のシャッター
速度を選択することが好ましい。この方法で溶接中にシ
ーム収束部を撮像すると、撮像装置のモニター8には金
属帯両エッジ1,1が高周波電流により加熱され、金属
帯両エッジ1,1の輝度が高い像が得られる。
The present invention will be described in detail below with reference to the drawings. In FIG. 1, both edges 1, 1 of the metal strip are converged in a V shape and are heated and melted by a high frequency current supplied from the contact shoes 2, 2 and abutted at a seam convergence point 3 to squeeze rolls 4, 4. It is pressurized and welded. In this electric resistance welded pipe manufacturing facility, an image pickup device 7 using an optical lens 6 and the like is arranged so that the seam convergent portion can be photographed from above the seam welded portion. At this time, the optical lens 6
The imaging device 7 may be moved in the axial direction of the tube 5 and the imaging device may be tilted in the axial direction of the tube 5 for imaging. In that case, the angle of the image is corrected. In the case of FIG. 1, an example in which the image of the seam converging portion is directly captured by the optical lens 6 and the imaging device 7 is shown, but a method of transmitting the image by a fiberscope, a reflecting mirror, or the like can also be applied, and is particularly limited. Not something to do. Further, the image pickup device is preferably a CCD (solid-state image pickup device) camera in which high frequency noise is hard to enter, and it is preferable to select a high shutter speed as a photographing condition in order to obtain a still image of the V converging portion. When the seam converging portion is imaged during welding by this method, both edges 1 and 1 of the metal strip are heated by the high frequency current on the monitor 8 of the imaging device, and an image with high brightness on both edges 1 and 1 of the metal strip is obtained.

【0013】このようにして得た像は図1の撮像装置7
からアナログ映像信号として画像解析装置9に入力され
る。なお画像解析装置9への映像信号の入力はビデオデ
ッキや光磁気ディスクレコーダ等の録画装置10に録画
後行ってもよい。この画像解析装置9に入力されたアナ
ログ映像信号はアナログ/デジタル変換器(A/D変換
器)11でデジタル映像信号に変換されて、画像メモリ
12に一時格納される。13は演算回路(CPU)で、
画像メモリ12の映像信号を取込み画像の輝度差を利用
して画像解析を行う。画像解析の方法は、まず図2のよ
うに任意の位置に設定した直線X1 −X2 ,X3 −X4
とエッジとの交点の座標a,b,c,dを求め、線分a
cとbdから交点(V収束点)の座標を推定してV収束
点からスクイズロールセンター間距離Lとアペックス角
度θを算出する。次にこれらの値を用いてスクイズ量S
c =2Ltanθ/2を演算する。なお、V収束点か
らスクイズロールセンター間の距離Lとアペックス角度
θの検出は、前述以外の方法で行ってもよく、特に制限
を加えるものではない。
The image thus obtained is the image pickup device 7 of FIG.
Is input to the image analysis device 9 as an analog video signal. The video signal may be input to the image analysis device 9 after recording on the recording device 10 such as a video deck or a magneto-optical disk recorder. The analog video signal input to the image analysis device 9 is converted into a digital video signal by an analog / digital converter (A / D converter) 11 and temporarily stored in the image memory 12. 13 is an arithmetic circuit (CPU),
The image signal of the image memory 12 is taken in and the image analysis is performed by utilizing the difference in brightness of the image. The image analysis method is as follows. First, straight lines X 1 -X 2 and X 3 -X 4 set at arbitrary positions as shown in FIG.
The coordinates a, b, c, d of the intersection of
The coordinates of the intersection (V convergence point) are estimated from c and bd, and the squeeze roll center distance L and the apex angle θ are calculated from the V convergence point. Next, using these values, the squeeze amount S
Calculate Q c = 2 Ltan θ / 2. The distance L between the squeeze roll centers and the apex angle θ from the V convergence point may be detected by a method other than the above, and there is no particular limitation.

【0014】引続き演算結果は図1の比較回路14を持
つ信号変換装置15に入力されて、前もって設定された
スクイズ量と比較、演算され、スクイズ量を制御するた
めの制御信号に変換される。この制御信号をスクイズ量
制御系17に入力して、スクイズ量の制御を行う。以上
の方法によると電縫溶接管のスクイズ量が高精度、かつ
高能率に計測演算および制御ができる。
Subsequently, the calculation result is input to the signal conversion device 15 having the comparison circuit 14 of FIG. 1, compared with the preset squeeze amount, calculated, and converted into a control signal for controlling the squeeze amount. This control signal is input to the squeeze amount control system 17 to control the squeeze amount. According to the above method, the squeeze amount of the electric resistance welded pipe can be measured and calculated with high accuracy and efficiency.

【0015】[0015]

【実施例】図1に示す装置を用いて電縫鋼管を製造し
た。表1に鋼帯の化学成分を示し、表2に造管条件を示
す。金属帯には強度レベルの異なるAPI規格、5LX
−X52と5LX−X70の2種類を用い、造管サイズ
は外径の異なる216.3mmφ×9.5mmtと406.
4mmφ×9.5mmtの2水準とした。表2の実験No.1
〜4は本発明例で、図1の方法により目標スクイズ量S
o を4.0mmとして自動制御した。実験No.4〜8は
比較例で本溶接前に仮溶接を行い、スクイズ前後の外周
長差を板厚の70%となる6.7mmに設定した。その他
の溶接条件は実験No.1〜8共にアペックス角度=5.
5〜6.0°、造管速度=25m/min、溶接入熱=4
50kVAと標準的な条件とし、各条件60m長さの造管
を行った。
EXAMPLE An electric resistance welded steel pipe was manufactured using the apparatus shown in FIG. Table 1 shows the chemical composition of the steel strip, and Table 2 shows the pipe forming conditions. For metal bands, API standards with different strength levels, 5LX
-X52 and 5LX-X70 are used, and the pipe-making sizes are different in outer diameter, 216.3 mmφ x 9.5 mmt and 406.
There were 2 levels of 4 mmφ × 9.5 mmt. Experiment No. in Table 2 1
4 to 4 are examples of the present invention, the target squeeze amount S by the method of FIG.
It was automatically controlled by setting Q o to 4.0 mm. Experiment No. 4 to 8 are comparative examples, in which temporary welding was performed before main welding, and the difference in outer peripheral length before and after squeezing was set to 6.7 mm, which was 70% of the plate thickness. For other welding conditions, see Experiment No. Apex angle = 5.
5 to 6.0 °, pipe making speed = 25m / min, welding heat input = 4
Under the standard condition of 50 kVA, a pipe having a length of 60 m under each condition was produced.

【0016】なお、実験No.1〜4のスクイズ量の計測
は、撮像装置6として高周波ノイズの影響を受けにくい
高速シャッター付きの3板式のCCD(固体撮像素子)
カメラを用い、撮影条件はシャッター速度=1/100
00秒、撮影速度=30コマ/秒で行い、撮像した該像
を光ディスクに録画後、1秒間隔の像をリアルタイムに
画像信号処理装置10に入力し、輝度計測によりV収束
点からスクイズロールセンター間の距離Lとアペックス
角度θを求めて、スクイズ量SQc =2Ltanθ/2
を演算した。
Experiment No. The measurement of the squeeze amount of 1 to 4 is a three-plate CCD (solid-state image sensor) with a high-speed shutter that is not easily affected by high frequency noise as the image pickup device 6.
Using a camera, the shooting conditions are shutter speed = 1/100
Recording is performed for 00 seconds at a shooting speed of 30 frames / second, the captured image is recorded on an optical disc, and images at 1-second intervals are input to the image signal processing device 10 in real time, and luminance measurement measures the squeeze roll center from the V convergence point. The distance L and the apex angle θ are calculated, and the squeeze amount SQ c = 2Ltan θ / 2
Was calculated.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】造管後これらの電縫鋼管について溶接長手
方向10m間隔、5ケ所から管軸に対して直角方向(C
方向)の溶接部顕微鏡観察用ミクロ試料を各1本(計:
5本/条件)採取し、メタルフロー立上り角度を測定し
た。また同じ位置から溶接部に2mmVノッチを入れたC
方向のシャルピー試験片を各10本(計:50本/条
件)製作して、+100℃で試験し延性破壊させた。次
にこのシャルピー試験片の破面を10〜50倍の実体顕
微鏡で観察し、溶接欠陥の面積率を測定した。その結
果、メタルフロー立上り角度および溶接欠陥面積率は表
2および図7に示すように、本発明法による方法はメタ
ルフロー立上り角度の標準偏差(σ)が小さくなり、か
つ溶接欠陥の低減に対して大きな効果を示すことが分か
る。
After pipe forming, these electric resistance welded steel pipes are welded at 10 m intervals in the longitudinal direction, from 5 locations at right angles to the pipe axis (C
Direction) Welded portion microscopic sample for microscopic observation for each (total:
5 pieces / condition) were collected and the rising angle of the metal flow was measured. Also, from the same position, C with a 2 mm V notch in the weld
Ten Charpy test pieces in each direction were produced (total: 50 pieces / condition) and tested at + 100 ° C. to cause ductile fracture. Next, the fracture surface of this Charpy test piece was observed with a stereoscopic microscope of 10 to 50 times, and the area ratio of welding defects was measured. As a result, as shown in Table 2 and FIG. 7, the metal flow rising angle and the welding defect area ratio show that the method according to the present invention reduces the standard deviation (σ) of the metal flow rising angle and reduces the welding defects. It turns out that it shows a great effect.

【0020】[0020]

【発明の効果】本発明によれば、溶接中のスクイズ量を
高精度かつ高能率に計測することができ、この計測技術
を用いてスクイズ量を設定・制御することにより、メタ
ルフロー角度が一定の適正値にコントロールでき、溶接
欠陥の少い電縫溶接管の高能率な製造が可能になる。
According to the present invention, the squeeze amount during welding can be measured with high accuracy and high efficiency, and by setting and controlling the squeeze amount using this measuring technique, the metal flow angle can be kept constant. Can be controlled to an appropriate value, and highly efficient production of ERW pipes with few welding defects becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法の装置配置の一例を示す概略図。FIG. 1 is a schematic view showing an example of an apparatus arrangement of the method of the present invention.

【図2】本発明法の画像解析方法を示す概略図。FIG. 2 is a schematic view showing an image analysis method of the present invention.

【図3】従来のスクイズ量の計測方法を示す概略図。FIG. 3 is a schematic diagram showing a conventional squeeze amount measuring method.

【図4】従来のスクイズ量の計測方法を示す概略図。FIG. 4 is a schematic view showing a conventional squeeze amount measuring method.

【図5】メタルフロー立上り角度と溶接欠陥面積率の関
係を示す図。
FIG. 5 is a diagram showing a relationship between a metal flow rising angle and a welding defect area ratio.

【図6】推定スクイズ量とメタルフロー立上り角度の関
係を示す図。
FIG. 6 is a diagram showing a relationship between an estimated squeeze amount and a metal flow rising angle.

【図7】実施例のメタルフロー立上り角度と溶接欠陥面
積率の測定結果を示す図。
FIG. 7 is a diagram showing measurement results of a metal flow rising angle and a welding defect area ratio in an example.

【符号の説明】[Explanation of symbols]

1 金属帯エッジ 2 コンタクトシュー 3 シーム収束点 4 スクイズロール 5 管 6 光学レンズ系 7 撮像装置 8 モニター 9 画像解析装置 10 録画装置 11 A/D変換器 12 画像メモリ 13 演算回路 14 比較回路 15 信号変換装置 16 スクイズ量設定回路 17 スクイズ量制御系 18 フィンパスロール L V収束点〜スクイズロールセンター間距離 θ アペックス角度 SQc スクイズ量計測値 SQo スクイズ量設定値1 Metal Band Edge 2 Contact Shoe 3 Seam Convergence Point 4 Squeeze Roll 5 Tube 6 Optical Lens System 7 Imaging Device 8 Monitor 9 Image Analysis Device 10 Recording Device 11 A / D Converter 12 Image Memory 13 Arithmetic Circuit 14 Comparison Circuit 15 Signal Conversion Device 16 Squeeze amount setting circuit 17 Squeeze amount control system 18 Fin pass roll LV Convergence point to squeeze roll center distance θ Apex angle SQ c Squeeze amount measured value SQ o Squeeze amount set value

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥田 博文 山口県光市大字島田3434番地 新日本製鐵 株式会社光製鐵所内 (72)発明者 坂田 国臣 山口県光市大字島田3434番地 新日本製鐵 株式会社光製鐵所内 (72)発明者 松井 清 山口県光市大字島田3434番地 新日本製鐵 株式会社光製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hirofumi Okuda 3434 Shimada, Hikari City, Yamaguchi Prefecture, Nippon Steel Works, Ltd., Hikari Steel Works (72) Inventor, Kuniomi Sakata 3434 Shimada, Hikari City, Yamaguchi Prefecture, Japan (72) Inventor Kiyoshi Matsui 3434 Shimada, Hikari City, Yamaguchi Prefecture Nippon Steel Works, Ltd. Hikari Steel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属帯を連続的にロール成形して溶接す
る電縫溶接管の製造において、シーム溶接部の上方に設
置した撮像装置によりシーム収束部の像を撮影し、前記
像を画像解析してスクイズロールセンターからV収束点
間距離Lとアペックス角θを求め、スクイズ量を演算式
SQc =2Ltanθ/2で演算して求めることを特徴
とする電縫溶接造管のスクイズ量の計測演算方法。
1. In the production of an electric resistance welded pipe in which a metal strip is continuously roll-formed and welded, an image of a seam converging portion is taken by an imaging device installed above the seam welding portion, and the image is analyzed. Then, the distance L between the V convergence points and the apex angle θ are calculated from the squeeze roll center, and the squeeze amount is calculated by the calculation formula SQ c = 2Ltan θ / 2. Calculation method.
【請求項2】 請求項1記載の方法で求めたスクイズ量
SQc と前もって設定した目標スクイズ量SQo の値を
比較演算して、スクイズ量を制御することを特徴とする
電縫溶接造管のスクイズ量の制御方法。
2. The electric resistance welded pipe manufacturing method, wherein the squeeze amount SQ c obtained by the method of claim 1 is compared with a preset squeeze amount SQ o to control the squeeze amount. Control method of squeeze amount.
JP26737091A 1991-10-16 1991-10-16 Method of calculating and controlling squeeze amount of ERW pipe Expired - Lifetime JP2803928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26737091A JP2803928B2 (en) 1991-10-16 1991-10-16 Method of calculating and controlling squeeze amount of ERW pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26737091A JP2803928B2 (en) 1991-10-16 1991-10-16 Method of calculating and controlling squeeze amount of ERW pipe

Publications (2)

Publication Number Publication Date
JPH05104257A true JPH05104257A (en) 1993-04-27
JP2803928B2 JP2803928B2 (en) 1998-09-24

Family

ID=17443895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26737091A Expired - Lifetime JP2803928B2 (en) 1991-10-16 1991-10-16 Method of calculating and controlling squeeze amount of ERW pipe

Country Status (1)

Country Link
JP (1) JP2803928B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157422A1 (en) * 2012-04-18 2013-10-24 新日鐵住金株式会社 Electric resistance welding operation management device, electric resistance welding operation management method, and computer program
JP2015166103A (en) * 2014-03-04 2015-09-24 Jfeスチール株式会社 Manufacturing method for electric resistance welded steel pipe
JP2016168604A (en) * 2015-03-12 2016-09-23 Jfeスチール株式会社 Edge position estimation method and device in electroseamed steel pipe
JP2019198878A (en) * 2018-05-16 2019-11-21 日本製鉄株式会社 Metal pipe manufacturing method, management system, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7371070B2 (en) 2003-12-05 2008-05-13 International Business Machines Corporation Operationalizing a learning solution

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157422A1 (en) * 2012-04-18 2013-10-24 新日鐵住金株式会社 Electric resistance welding operation management device, electric resistance welding operation management method, and computer program
JP5510615B2 (en) * 2012-04-18 2014-06-04 新日鐵住金株式会社 ERW Welding Operation Management Device, ERW Welding Operation Management Method, and Computer Program
JPWO2013157422A1 (en) * 2012-04-18 2015-12-21 新日鐵住金株式会社 ERW Welding Operation Management Device, ERW Welding Operation Management Method, and Computer Program
JP2015166103A (en) * 2014-03-04 2015-09-24 Jfeスチール株式会社 Manufacturing method for electric resistance welded steel pipe
JP2016168604A (en) * 2015-03-12 2016-09-23 Jfeスチール株式会社 Edge position estimation method and device in electroseamed steel pipe
JP2019198878A (en) * 2018-05-16 2019-11-21 日本製鉄株式会社 Metal pipe manufacturing method, management system, and program

Also Published As

Publication number Publication date
JP2803928B2 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
US10209199B2 (en) Surface inspection method, surface inspection device, manufacturing system, method of identifying defect formed area, and manufacturing method of steel pipe
JP5828817B2 (en) Shape inspection method for steel bars
JP2515460B2 (en) ERW welded pipe manufacturing method
JP2012236215A (en) Surface inspection method and surface inspection device for scarfed steel material
JPH05104257A (en) Squeeze quantity measuring and calculating method and control method for resistance welded tube
JP3568871B2 (en) Degradation evaluation method for inspection of pipe inner surface corrosion
JP5909873B2 (en) Weld defect detection system, method for manufacturing ERW steel pipe, and method for manufacturing welded product
JP2018020356A (en) Weldment monitoring method in electroseamed steel pipe welding process and weldment monitoring device
JP5909872B2 (en) WELDING DEFECT DETECTING METHOD AND SYSTEM, ELECTRIC SEWING TUBE MANUFACTURING METHOD, AND WELDED PRODUCT MANUFACTURING METHOD
JP6060935B2 (en) Method and apparatus for detecting welded seam portion of ERW steel pipe
JP3423034B2 (en) Apparatus for detecting the amount of pressure contact in the high-frequency electric resistance welding process
JP3612154B2 (en) Hole-expansion test method for hole-expanded metal plate
JP5909870B2 (en) WELDING DEFECT DETECTING METHOD, ERW TUBE MANUFACTURING METHOD, AND WELDED PRODUCT MANUFACTURING METHOD
JP7435930B1 (en) ERW steel pipe welding management device, ERW steel pipe welding management method, ERW steel pipe manufacturing method, and ERW steel pipe welding management system
JP2541078B2 (en) ERW pipe defect discrimination method
WO2024090051A1 (en) Electrical resistance welded steel pipe welding management device, electrical resistance welded steel pipe welding management method, electrical resistance welded steel pipe manufacturing method, and electrical resistance welded steel pipe welding management system
JPH05240620A (en) Instrument for measuring outer diameter and wall thickness of pipe
JP2000111328A (en) Method for inspecting welding part of welding pipe
KR100325353B1 (en) An apparatus and method of estimating welding quality by detecting width of the heat effective region in a flash butt welding device
JPH04301709A (en) Measuring method for butted shape of seam converging part of metal pipe
JP2023182081A (en) Welding management device for erw steel pipes, welding management system, welding management method for erw steel pipes, and method for manufacturing erw steel pipes
JP2003232618A (en) Method and device for measuring diameter of crystal grain of metal plate including steel plate
JPH09182984A (en) Method and device for manufacturing welded tube
JP2023007638A (en) Welding management device of electric welded tube, welding management method of electric welded tube, manufacturing method of electric welded tube and welding management system of electric welded tube
JPH0740049A (en) Method and device for detecting weld zone of uo steel pipe

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980616