JPH03137560A - Ultrasonic flaw detector - Google Patents

Ultrasonic flaw detector

Info

Publication number
JPH03137560A
JPH03137560A JP1276468A JP27646889A JPH03137560A JP H03137560 A JPH03137560 A JP H03137560A JP 1276468 A JP1276468 A JP 1276468A JP 27646889 A JP27646889 A JP 27646889A JP H03137560 A JPH03137560 A JP H03137560A
Authority
JP
Japan
Prior art keywords
flaw detection
display
signal
skip
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1276468A
Other languages
Japanese (ja)
Other versions
JP2713477B2 (en
Inventor
Masahiko Matsuura
雅彦 松浦
Akio Onimaru
鬼丸 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokimec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokimec Inc filed Critical Tokimec Inc
Priority to JP1276468A priority Critical patent/JP2713477B2/en
Publication of JPH03137560A publication Critical patent/JPH03137560A/en
Application granted granted Critical
Publication of JP2713477B2 publication Critical patent/JP2713477B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To rapidly and properly discriminate or evaluate a flaw even when the angle of refraction of a probe or the thickness of a material to be inspected changes by respectively setting the angle of refraction of the probe and the thickness of the material to be inspected and generating the discrimination signal corresponding to a skip distance. CONSTITUTION:When the angle theta of refraction of the ultrasonic wave incident from a probe 3 is set to the first setting device 8, a conversion signal tan thetais outputted from a function generator 11. The output from the function generator 11 and the output from the second setting device 9 to which the thickness (t) of a material to be inspected are supplied to a multiplier 12 and the skip distance signal corresponding to a skip distance is obtained through a skip output circuit 13. A skip signal circuit 14 generates signals at a skip point and an intermediate point in synchronous relation to the timing signal from a synchronous control part 1. A descrimination signal circuit 15 receives the signals to generate a plurality of discrimination signals within a flaw detection range to display the same on a display device 7. As a result, the discrimination signals showing a flaw detection echo and a skip distance are simultaneously displayed on the display device 7.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は例えば被検材内へ斜めに超音波を入射し溶接
部からの探傷エコーを表示する超音波探@装置、特に斜
角探傷における探傷エコーとスキップ距離を示す識別信
号との同時表示に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to an ultrasonic detection device that injects ultrasonic waves obliquely into a test material and displays flaw detection echoes from a welded part, particularly in oblique angle flaw detection. This invention relates to simultaneous display of a flaw detection echo and an identification signal indicating a skip distance.

[従来の技術] 第6図は従来の溶接部探傷の一例を示す説明図であり、
3は超音波の送波/受波を行う探触子、30は被検材、
31は溶接部、32は欠陥、33はスキップ点、tは被
検材30の厚さ、Aは超音波の入射点、θは屈折角であ
る。
[Prior Art] FIG. 6 is an explanatory diagram showing an example of conventional welded part flaw detection.
3 is a probe that transmits/receives ultrasonic waves; 30 is a test material;
31 is a welded part, 32 is a defect, 33 is a skip point, t is the thickness of the test material 30, A is an incident point of the ultrasonic wave, and θ is a refraction angle.

従来の超音波探傷装置は上記のように構成され、溶接さ
れた被検材30の溶接部31の割れ、融合不良、スラグ
巻込みやブロホールなどの各種欠陥32の位置、大きさ
、形状の検出には、被検材30に斜めに超音波を入射さ
せその入射点Aならびに屈折角θを変えて斜角探傷が行
われる。
The conventional ultrasonic flaw detection device is configured as described above, and is capable of detecting the position, size, and shape of various defects 32 such as cracks, poor fusion, slag entrainment, and blowholes in the welded part 31 of the welded test material 30. In this method, oblique flaw detection is performed by making ultrasonic waves obliquely incident on the test material 30 and changing the incident point A and the refraction angle θ.

被検材30の入射点Aに配置された探触子3からは屈折
角θをなして超音波が入射され、超音波の中心軸と欠陥
32位置はエコーの大きざが最大になるように整合され
る。
Ultrasonic waves are incident from the probe 3 placed at the incident point A of the test material 30 at a refraction angle θ, and the central axis of the ultrasound waves and the position of the defect 32 are set so that the size of the echo is maximized. Aligned.

入射点Aと溶接部31が近接した位置にあるとき、入射
点Aから直接伝搬された超音波の欠陥32からの反射エ
コーによる探傷の直射法、または溶接部31が入射点A
から離れた位置にあるとき、被検材30へ斜めに入射さ
れた超音波が裏面や探傷面で反射したスキップ点33を
経た欠陥エコーによる探傷の1回反射法などが行われる
When the incident point A and the welding part 31 are located close to each other, the direct method of flaw detection using the reflected echo from the defect 32 of ultrasonic waves directly propagated from the incident point A, or when the welding part 31 is at the incident point A.
A single reflection method of flaw detection is performed using a defect echo after passing through a skip point 33 where an ultrasonic wave obliquely enters the test material 30 and is reflected from the back surface or the flaw detection surface.

このとき被検材30内へ入射された超音波のスキップ距
離や欠陥32までのビーム路程などはつぎのように求め
られる。
At this time, the skip distance of the ultrasonic waves incident on the specimen 30, the beam path to the defect 32, etc. are determined as follows.

1スキップ距離、5=2t−tanθ、1スキツプのビ
ーム路程W1q=2t/cosθ、探触子・欠陥距離y
のときのビーム路程Wγ=y/S inθ、 上式を用いて得られたスキップ距離を示すマークを表示
器のカーソル板などに明示して所定の欠陥エコーの識別
や評価か多く行われている。
1 skip distance, 5=2t-tanθ, 1 skip beam path length W1q=2t/cosθ, probe/defect distance y
Beam path length Wγ = y/S inθ when .

[発明が解決しようとする課題] 上記のような従来の超音波探傷装置では、被検材30内
溶接部31の斜角探傷による欠陥32検出において、溶
接部31からは各種欠陥エコーの他にビードからの反射
エコーなどの妨害エコーからなる探傷エコーが発生して
表示されるので、所定の欠陥エコーの識別やその大きさ
ならびに形状の評価のため、入射点Aヤ屈折角θを変え
たり直射法や1回反射法などが用いられる。
[Problems to be Solved by the Invention] In the conventional ultrasonic flaw detection apparatus as described above, when detecting a defect 32 by oblique flaw detection of a weld 31 in a test material 30, in addition to various defect echoes from the weld 31, Flaw detection echoes consisting of interfering echoes such as reflected echoes from the bead are generated and displayed, so in order to identify a given defective echo and evaluate its size and shape, it is necessary to change the incident point A or the refraction angle θ or direct method, single reflection method, etc. are used.

このときスキップ距離を示すマークと欠陥エコーの表示
位置よりその識別が行われている。
At this time, identification is performed based on the mark indicating the skip distance and the display position of the defective echo.

しかしスキップ距離、探触子・欠陥距離ならびにビーム
路程などは何れも探触子3の屈折角θや被検材30の厚
ざtに依存している。
However, the skip distance, the probe/defect distance, the beam path, etc. all depend on the refraction angle θ of the probe 3 and the thickness t of the material 30 to be inspected.

従って探触子3の屈折角θヤ被検材30の厚さtが異な
る都度、スキップ距離を算出してその記号を表示器の所
定位置へ付与するために時間を要する。
Therefore, it takes time to calculate the skip distance each time the refraction angle θ of the probe 3 or the thickness t of the test material 30 differs and to mark the skip distance at a predetermined position on the display.

また表示器前面に配置されるカーソル板に付与されるス
キップ距離の記号は、欠陥エコーの一部を隠蔽しまた相
互に視差を生じて所定の欠陥エコーの識別や評価に障害
となり正しく行えないという問題点があった。
In addition, the skip distance symbol given to the cursor board placed on the front of the display hides a part of the defective echo, and creates parallax between them, which impedes the identification and evaluation of a given defective echo and prevents correct identification and evaluation. There was a problem.

この発明はかかる問題点を解決するためになされたもの
で、探触子3の屈折角θヤ被検材3Oの厚ざtが変って
も、容易にスキップ距離が1%られ探傷エコーと同時に
表示されて、所定の欠陥エコーの識別や評価が同等障害
を受けることなく迅速且つ適正に行える超音波探傷装置
を得ることを目的とする。
This invention was made to solve this problem, and even if the refraction angle θ of the probe 3 or the thickness t of the test material 3O changes, the skip distance can be easily reduced by 1%, and the flaw detection echo can be echoed simultaneously. It is an object of the present invention to provide an ultrasonic flaw detection device that can quickly and appropriately identify and evaluate predetermined defective echoes without suffering similar obstacles.

[課題を解決するための手段] この発明に係わる超音波探傷装置は、被検材へ入射され
る超音波の屈折角を設定する第1設定器と、被検材の厚
さを設定する第2設定器と、第1設定器と第2設定器か
らの信号を受け被検材内を伝mする超音波が裏面又は探
傷面で反射するスキップ距離に応じた信号を発生するス
キップ距離回路と、スキップ距離回路の信号を受け探傷
範囲に亙り複数の識別信号を発生する識別信号回路と、
探傷エコーと識別信号とを同時表示する表示器を設けた
ものである。
[Means for Solving the Problems] An ultrasonic flaw detection device according to the present invention includes a first setter that sets the refraction angle of the ultrasonic waves incident on the test material, and a first setter that sets the thickness of the test material. 2 setting devices, and a skip distance circuit that receives signals from the first setting device and the second setting device and generates a signal corresponding to the skip distance at which the ultrasonic waves transmitted in the test material are reflected on the back surface or the flaw detection surface. , an identification signal circuit that receives a signal from the skip distance circuit and generates a plurality of identification signals over a flaw detection range;
It is equipped with a display that simultaneously displays flaw detection echoes and identification signals.

[作用] この発明においては、溶接部の斜角探傷に用いられる探
触子の屈折角を82定する第1設定器と、)d接された
被検材の厚さを設定する第2股定器を設け、上記設定に
よりスキップ距離回路を経て識別信号回路からは探傷範
囲に亙りスキップ距離毎に識別信号が発生される。探傷
エコーとマーカ、輝点ならびにカラーなどで表示される
識別信号は、表示器に同時表示されるので相互の関係が
容易に把握できる。
[Function] In the present invention, a first setter that determines the refraction angle of the probe used for oblique angle flaw detection of welded parts, and a second setter that sets the thickness of the test material that is in d contact. According to the above settings, an identification signal is generated from the identification signal circuit for each skip distance over the flaw detection range via the skip distance circuit. The flaw detection echo, marker, bright spot, identification signal displayed in color, etc. are displayed simultaneously on the display, so the mutual relationship can be easily understood.

しかし溶接部探傷においては探傷エコーとして割れ、融
合不良、スラブ巻込み、ブロホールなどの各種欠陥エコ
ーの他にピードからの反射エコーなどの妨害エコーが発
生し表示される。
However, during flaw detection of welds, in addition to echoes of various defects such as cracks, poor fusion, slab entrainment, and blowholes, interference echoes such as reflected echoes from the weld are generated and displayed.

探傷エコーの内から所定の欠陥エコーを識別し且つその
位置や大きざ、形状の評価のためには、被検材への超音
波入射点Aの変更、直射法や一回反射法などにより欠陥
に対して超音波を多方向から照射しての探傷が行われ、
このとき表示されるエコーと識別信号との相対位置や屈
折角を考慮して行われる。両者は同一表示面に互いに識
別できるように表示されるので欠陥の識別や評価が迅速
且つ適正にできる。
In order to identify a given defect echo from among the flaw detection echoes and evaluate its position, size, and shape, it is necessary to change the ultrasonic incident point A on the test material, or to identify the defect using the direct irradiation method or single-reflection method. Flaw detection is performed by irradiating ultrasonic waves from multiple directions.
This is done in consideration of the relative position and refraction angle between the echo displayed at this time and the identification signal. Since both are displayed on the same display screen so that they can be distinguished from each other, defects can be identified and evaluated quickly and appropriately.

[実施例] この発明の一実施例を添付図面を参照して詳細に説明す
る。
[Embodiment] An embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第1図はこの発明の一実施例を示すブロック図、 図において、3は上記従来装置と同一で必り、1はタイ
ミング信号を発生する同期制御部、2は送信回路、4は
受信回路、5は走査回路、6はビデオ増幅器、7は表示
器、8は探触子3の屈折角θを設定する第1設定器、9
は被検材30の厚さtを設定する第2設定器、1Ωは第
1設定器8と第2設定器9からの信号を受けてスキップ
距離毎に信号を発生するスキップ距離回路、11は屈折
角θに基づき所定の変換信号を出力する関数発生器、1
2は乗算器、13はスキップ距離に応じた信号を出力す
るスキップ出力回路、14−は探傷範囲をスキップ距離
に応じて区分した信号を発生するスキップ信号回路、1
5はスキップ信号回路−1A−からの出力を受け識別信
号を発生する識別信号回路を示している。
FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, 3 is the same as the conventional device described above, 1 is a synchronization control section that generates a timing signal, 2 is a transmitting circuit, 4 is a receiving circuit, 5 is a scanning circuit, 6 is a video amplifier, 7 is a display, 8 is a first setting device for setting the refraction angle θ of the probe 3, 9
1Ω is a second setting device that sets the thickness t of the material to be inspected 30; 1Ω is a skip distance circuit that receives signals from the first setting device 8 and second setting device 9 and generates a signal for each skip distance; 11 is a skip distance circuit that generates a signal for each skip distance; A function generator that outputs a predetermined conversion signal based on the refraction angle θ, 1
2 is a multiplier; 13 is a skip output circuit that outputs a signal according to the skip distance; 14- is a skip signal circuit that generates a signal that divides the flaw detection range according to the skip distance;
Reference numeral 5 indicates an identification signal circuit that receives the output from the skip signal circuit -1A- and generates an identification signal.

上記のように構成された超音波探傷装置においては、同
期制御部1からのタイミング信号は送信回路2を介して
探触子3を付勢し発生された超音波は被検材30へ斜め
に入射され、超音波は裏面と探傷面のスキップ点33に
て反射しその内部を伝搬する。斜角探傷による溶接部3
1からの欠陥エコーや妨害エコーなどの探傷エコーは、
探触子3にて受波され受信回路4とビデオ増幅器6を経
て、上記タイミング信号と同期した走査回路5による表
示器7へ表示される。
In the ultrasonic flaw detection apparatus configured as described above, the timing signal from the synchronization control section 1 energizes the probe 3 via the transmission circuit 2, and the generated ultrasonic waves are directed diagonally toward the specimen 30. The ultrasonic waves are reflected at the skip points 33 on the back surface and the flaw detection surface and propagate therein. Welded part 3 by angle inspection
Detection echoes such as defect echoes and interference echoes from 1.
The signal is received by the probe 3, passes through the receiving circuit 4 and the video amplifier 6, and is displayed on the display 7 by the scanning circuit 5 synchronized with the timing signal.

探触子3から入射される超音波の屈折角θを第1設定器
8へ設定すると関数発生器11からは変換信号tanθ
が出力される。他方被検材30の厚さtが設定された第
2設定器9からとの両川力は、乗算器12へ供給されス
キップ出力回路13を経てスキップ距離に応じたt−t
anθの1/2スキップ距離信号が得られる。
When the refraction angle θ of the ultrasonic wave incident from the probe 3 is set in the first setting device 8, the conversion signal tanθ is output from the function generator 11.
is output. On the other hand, the Ryokawa force from the second setter 9, in which the thickness t of the test material 30 is set, is supplied to the multiplier 12 and passed through the skip output circuit 13 to produce t-t according to the skip distance.
A 1/2 skip distance signal of anθ is obtained.

スキップ信号回路−工A−は上記タイミング信号と同期
して、スキップ距離信号レベルとゼロレベル間における
積分回路の充放電動作により、スキップ距離Sの0.5
S、13,1.5S・・・相当のスキップ点33ならび
にその中間点にて信号が発生される。上記信号を受け識
別信号回路15の発生する探傷範囲内の複数の識別信号
は表示器7へ表示される。
The skip signal circuit - engineering A- synchronizes with the above timing signal and charges and discharges the integrating circuit between the skip distance signal level and the zero level, thereby increasing the skip distance S by 0.5.
Signals are generated at skip points 33 corresponding to S, 13, 1.5S, and so on, as well as intermediate points therebetween. A plurality of identification signals within the flaw detection range generated by the identification signal circuit 15 upon receiving the above signal are displayed on the display 7.

この結果表示器7には探傷エコーとスキップ距離を示す
識別信号とが同時に表示されるので、入射点Aの変更、
直射法や1回反射法などにより表示される探傷エコーと
の相対位置から、探傷エコー内の欠陥エコーと妨害エコ
ーの識別は勿論所定の欠陥エコーが選択でき、被検材3
0内の欠陥32位置ならびにその大きさや形状などが正
しく把握できる。
As a result, the flaw detection echo and the identification signal indicating the skip distance are displayed simultaneously on the display 7, so that the incident point A can be changed,
From the relative position with the flaw detection echo displayed by the direct radiation method or single reflection method, it is possible to distinguish between defect echoes and interference echoes within the flaw detection echo, as well as select a predetermined defect echo, and
The position of the defect 32 in 0, its size, shape, etc. can be accurately grasped.

第2図は第1図要部のブロック図であり、20は三角関
数信号を出力する第一関数回路、21は他の三角関数信
号を出力する第2関数回路、22は基準電源、23は除
算器、24は出力回路、25はゲート回路、26は積分
回路、27は一致回路、28は選択回路を示している。
FIG. 2 is a block diagram of the main part of FIG. 1, where 20 is a first function circuit that outputs trigonometric function signals, 21 is a second function circuit that outputs other trigonometric function signals, 22 is a reference power supply, and 23 is a 24 is a divider, 24 is an output circuit, 25 is a gate circuit, 26 is an integration circuit, 27 is a matching circuit, and 28 is a selection circuit.

スイッチなどを用いた第1設定器8に探触子3の屈折角
θを設定すると、第1関数回路20からは正弦波信号3
inθが出力され、また第2関数回路21は基準電源2
2と係合し5in(90”−θ)が出力される。両者は
除算器23に加えられてsinθ/CO5θを出力し、
出力回路24からはtanθが得られる。
When the refraction angle θ of the probe 3 is set in the first setting device 8 using a switch or the like, a sine wave signal 3 is output from the first function circuit 20.
inθ is output, and the second function circuit 21 is connected to the reference power supply 2.
2 and outputs 5in (90''-θ). Both are added to the divider 23 to output sinθ/CO5θ,
Tanθ is obtained from the output circuit 24.

スイッチなどを用いた第2設定器9に設定される被検材
30の厚さt信号と上記関数発生器11の出力とは乗算
器12を経て、スキップ出力回路13からt−tanθ
の1/2スキップ距離相当信号Voが得られる。
The thickness t signal of the test material 30 set in the second setting device 9 using a switch or the like and the output of the function generator 11 pass through the multiplier 12, and then the skip output circuit 13 outputs the signal t-tanθ.
A signal Vo corresponding to 1/2 skip distance is obtained.

スキップ信号回路−IA−において、同期制御部1から
のタイミング信号と同期するゲート回路25は探傷範囲
に相当するゲート信号を発生する。例えばフリップフロ
ップにて構成された選択回路28はゲート信号によりセ
ットされ、積分回路26は電源Eに接続され充電される
。充電電位がスキップ距離相当信号Voを超えると一致
回路27は出力し、リングカウンタにて構成された識別
信号回路15か歩進すると同時に選択回路28出力は反
転し、積分回路26は電源−Fに切換えられ放電が開始
される。放電電位がゼロレベルに達すると一致回路27
は再び出力し、識別信号回路15は再び歩進し同時に選
択回路28出力は再び反転し、積分回路26は再び電源
Eに接続されて充電が行われる。
In the skip signal circuit -IA-, a gate circuit 25 synchronized with the timing signal from the synchronization control section 1 generates a gate signal corresponding to the flaw detection range. For example, a selection circuit 28 constituted by a flip-flop is set by a gate signal, and an integration circuit 26 is connected to a power source E and charged. When the charging potential exceeds the skip distance equivalent signal Vo, the matching circuit 27 outputs an output, and at the same time as the identification signal circuit 15 constituted by a ring counter advances, the selection circuit 28 output is inverted, and the integrating circuit 26 is switched to the power supply -F. It is switched and discharge starts. When the discharge potential reaches zero level, the coincidence circuit 27
is output again, the identification signal circuit 15 advances again, and at the same time, the output of the selection circuit 28 is inverted again, and the integration circuit 26 is connected to the power supply E again to perform charging.

これら動作は上記ゲート信号の持続時間即ち探傷範囲に
亙り繰返して行われ、識別回路15から順次スキップ距
離に応じた識別信号が出力される。
These operations are repeated over the duration of the gate signal, that is, over the flaw detection range, and the identification circuit 15 sequentially outputs identification signals corresponding to the skip distance.

第3図は動作波形の一例を示し、■はゲート信号、■は
積分回路26の出力、■はスキップ信号、■、■、■、
■は識別信号回路15の各端子Q1、Q2、Q3、Q4
から順次出力される識別信号を示している。
FIG. 3 shows an example of operating waveforms, where ■ is the gate signal, ■ is the output of the integrating circuit 26, ■ is the skip signal, ■, ■, ■,
■ indicates each terminal Q1, Q2, Q3, Q4 of the identification signal circuit 15
It shows identification signals sequentially output from .

上記のとおり同期制御部1に同期し即ち超音波の放射の
都度、被検材30内超音波伝搬のスキップ距離に応じた
識別信号が順次発生し表示器7に供給されて、スキップ
距離を示すマーカヤ基線上の輝点は探傷エコーと同時表
示される。
As described above, in synchronization with the synchronization control unit 1, each time an ultrasonic wave is emitted, an identification signal corresponding to the skip distance of ultrasonic propagation within the test material 30 is sequentially generated and supplied to the display 7 to indicate the skip distance. The bright spot on the markaya baseline is displayed simultaneously with the flaw detection echo.

上記マーカを信号と逆方向に表示することにより識別が
一層容易にできる。また識別信号をスキップ距離に応じ
てR,G、Bのカラー信号として用いると、探傷エコー
と共にコンポジットビデオ信号を形成してカラー表示器
に供給し、探傷範囲がカラー区分され欠陥エコーの表示
されるカラーからその位置が容易に識別できる。
Identification can be made easier by displaying the marker in the opposite direction to the signal. In addition, when the identification signal is used as R, G, and B color signals depending on the skip distance, a composite video signal is formed together with the flaw detection echo and supplied to a color display, and the flaw detection range is divided by color and the defect echo is displayed. Its location can be easily identified by its color.

第4図はAスコープ表示の一例、第4図(a)はマーカ
表示例、第4図(b)はカラー表示例であり、■は送信
信号、[相]は欠陥エコー、■は識別信号(マーカ)、
@は識別信号(カラー)を示している。
Figure 4 is an example of A scope display, Figure 4 (a) is an example of marker display, and Figure 4 (b) is an example of color display, where ■ is the transmission signal, [phase] is the defect echo, and ■ is the identification signal. (marker),
@ indicates an identification signal (color).

上記のとおりAスコープ表示においてスキップ距離を示
すマーカ、輝点やカラーの識別信号と溶接部31からの
欠陥エコーとが同時に表示され、欠陥エコーと識別信号
との相対関係が正しく把握できるので、所定の欠陥エコ
ーの識別ならびに欠陥32の位置、大きさや形状が容易
に推定できる。
As mentioned above, the marker indicating the skip distance, the bright spot, the color identification signal, and the defect echo from the welding part 31 are displayed at the same time on the A scope display, and the relative relationship between the defect echo and the identification signal can be accurately grasped. The defect echoes can be identified and the position, size, and shape of the defect 32 can be easily estimated.

第5図はBスコープ表示の一例、図において、7、■、
■、[相]、 (1)、 @はAスコープ表示と同一で
あり、 超音波の送波/受波を行ないつつ探触子3を接触媒質を
介して被検材30上を摺動させると、探触子3の移動範
囲と超音波の探傷範囲とにより制限される被検材30の
領域の平面探傷が行われ欠陥32が8スコ一プ表示され
る。
Figure 5 is an example of B scope display. In the figure, 7, ■,
■, [Phase], (1), @ are the same as the A scope display, and the probe 3 is slid over the test material 30 via the couplant while transmitting/receiving ultrasonic waves. Then, planar flaw detection is performed on an area of the test material 30 that is limited by the movement range of the probe 3 and the ultrasonic flaw detection range, and the defect 32 is displayed in eight scopes.

このときAスコープ表示と同様に探傷エコーと識別信号
の同時表示を行うと、探傷範囲は識別信号のマーカヤ輝
点の軌跡よりなる区劃線またはカラー表示によりそれぞ
れ区分される。従って上記表示において被検材30上の
欠陥32位置が容易に識別できる。
At this time, when the flaw detection echo and the identification signal are displayed simultaneously in the same manner as the A-scope display, the flaw detection range is divided by dividing lines or color display consisting of the locus of the marker bright spot of the identification signal. Therefore, the position of the defect 32 on the test material 30 can be easily identified in the above display.

またカラー表示は、探傷エコーのビデオ信号とカラー区
分に用いられる識別信号よりなるコンポジットビデオ信
号を、例えばアクティブマトリクス駆動方式のカラー液
晶表示器に供給して行える。
Color display can be performed by supplying a composite video signal consisting of a video signal of the flaw detection echo and an identification signal used for color classification to, for example, an active matrix drive type color liquid crystal display.

上記表示により欠陥32検出ならびにその評価が迅速且
つ適正に行える。
The above display allows the defect 32 to be detected and evaluated quickly and appropriately.

[発明の効果] この発明は以上説明したとおり、溶接部の斜角探傷に際
し探触子の屈折角ならびに被検材の厚さをそれぞれ設定
し、スキップ距離に応じた識別信号を発生する識別信号
回路を設ける簡単な構造により、 屈折角と厚さを設定するとスキップ距離が自動的に得ら
れる。
[Effects of the Invention] As explained above, the present invention provides an identification signal that sets the refraction angle of the probe and the thickness of the material to be tested during oblique flaw detection of a welded part, and generates an identification signal according to the skip distance. With the simple structure of providing a circuit, the skip distance can be automatically obtained by setting the refraction angle and thickness.

マーカ、輝度、カラーなどのスキップ距離に応じた識別
信号と探傷エコーとは同時に表示できるので、各種欠陥
エコーや妨害エコーなどから所定の欠陥の識別ならびに
その位置、大きざ、形状などの評価が迅速且つ適正に行
えるという効果がおる。
Identification signals according to the skip distance such as marker, brightness, color, etc. and flaw detection echoes can be displayed at the same time, so you can quickly identify a given defect from various defect echoes and interference echoes, and evaluate its position, size, shape, etc. Moreover, it has the effect of being able to be performed properly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示すブロック図、第2図
は第1図要部のブロック図、第3図は動作波形の一例、
第4図はAスコープ表示の一例、第5図はBスコープ表
示の一例、第6図は従来の溶接部探傷の一例を示す説明
図である。 図において、3は探触子、7は表示器、8は第1設定器
、9は第2設定器、ユΩはスキップ距離回路、 11は
関数発生器、12は乗算器、13はスキップ出力回路、
14はスキップ信号回路、15は識別信号回路である。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a block diagram of the main part of FIG. 1, and FIG. 3 is an example of operating waveforms.
FIG. 4 is an example of an A scope display, FIG. 5 is an example of a B scope display, and FIG. 6 is an explanatory diagram showing an example of a conventional welded part flaw detection. In the figure, 3 is a probe, 7 is a display, 8 is a first setting device, 9 is a second setting device, UΩ is a skip distance circuit, 11 is a function generator, 12 is a multiplier, and 13 is a skip output. circuit,
14 is a skip signal circuit, and 15 is an identification signal circuit. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (7)

【特許請求の範囲】[Claims] (1)被検材に斜めに超音波を入射し溶接部からの探傷
エコーを表示する超音波探傷装置において、 被検材に入射する超音波の屈折角を設定する第1設定器
と、被検材の厚さを設定する第2設定器と、上記第1設
定器と上記第2設定器からの信号を受け被検材内を伝搬
する超音波が裏面または探傷面で反射するスキップ距離
に応じた信号を発生するスキップ距離回路と、上記スキ
ップ距離回路の信号を受け探傷範囲に亙り複数の識別信
号を発生する識別信号回路と、上記探傷エコーと上記識
別信号とを同時表示する表示器とを備えたことを特徴と
する超音波探傷装置。
(1) In an ultrasonic flaw detection device that obliquely injects ultrasonic waves into the test material and displays flaw detection echoes from the welded part, there is a first setting device that sets the refraction angle of the ultrasonic waves that enter the test material; A second setting device sets the thickness of the material to be inspected, and a skip distance at which the ultrasonic waves propagating within the material receiving signals from the first setting device and the second setting device is reflected from the back surface or the flaw detection surface. a skip distance circuit that generates a corresponding signal; an identification signal circuit that receives the signal from the skip distance circuit and generates a plurality of identification signals over a flaw detection range; and a display that simultaneously displays the flaw detection echo and the identification signal. An ultrasonic flaw detection device characterized by being equipped with.
(2)識別信号はスキップ距離に応じて表示器の基線上
に表示されるマーカである請求項1記載の超音波探傷装
置。
(2) The ultrasonic flaw detection apparatus according to claim 1, wherein the identification signal is a marker displayed on the base line of the display according to the skip distance.
(3)識別信号はスキップ距離に応じて表示器の基線上
に輝度表示される輝点である請求項1記載の超音波探傷
装置。
(3) The ultrasonic flaw detection apparatus according to claim 1, wherein the identification signal is a bright spot displayed on the base line of the display according to the skip distance.
(4)識別信号はスキップ距離に応じて表示器の表示領
域をカラー区分表示するカラー信号である請求項1記載
の超音波探傷装置。
(4) The ultrasonic flaw detection apparatus according to claim 1, wherein the identification signal is a color signal that displays the display area of the indicator in different colors according to the skip distance.
(5)表示器はAスコープ表示を行う請求項1記載の超
音波探傷装置。
(5) The ultrasonic flaw detection device according to claim 1, wherein the display displays an A-scope display.
(6)表示器はBスコープ表示を行う請求項1記載の超
音波探傷装置。
(6) The ultrasonic flaw detection device according to claim 1, wherein the display displays a B-scope display.
(7)表示器はカラー表示器である請求項1記載の超音
波探傷装置。
(7) The ultrasonic flaw detection device according to claim 1, wherein the display is a color display.
JP1276468A 1989-10-24 1989-10-24 Ultrasonic flaw detector Expired - Lifetime JP2713477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1276468A JP2713477B2 (en) 1989-10-24 1989-10-24 Ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1276468A JP2713477B2 (en) 1989-10-24 1989-10-24 Ultrasonic flaw detector

Publications (2)

Publication Number Publication Date
JPH03137560A true JPH03137560A (en) 1991-06-12
JP2713477B2 JP2713477B2 (en) 1998-02-16

Family

ID=17569871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1276468A Expired - Lifetime JP2713477B2 (en) 1989-10-24 1989-10-24 Ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JP2713477B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5469278A (en) * 1977-11-12 1979-06-04 Tokyo Shibaura Electric Co Ultrasonic diagnostic device
JPS559444U (en) * 1978-07-03 1980-01-22
JPS588152U (en) * 1981-07-09 1983-01-19 株式会社トキメック Ultrasonic flaw detector with CRT
JPS59193347A (en) * 1983-04-19 1984-11-01 Canon Inc Display device of ultrasonic received signal
JPS60181651A (en) * 1984-02-29 1985-09-17 Nippon Kokan Kk <Nkk> Automatic calibration in ultrasonic flaw detection apparatus of pipe to be inspected
JPH0373846A (en) * 1989-08-14 1991-03-28 Hitachi Constr Mach Co Ltd Instrument for measuring ultarsonic wave

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5469278A (en) * 1977-11-12 1979-06-04 Tokyo Shibaura Electric Co Ultrasonic diagnostic device
JPS559444U (en) * 1978-07-03 1980-01-22
JPS588152U (en) * 1981-07-09 1983-01-19 株式会社トキメック Ultrasonic flaw detector with CRT
JPS59193347A (en) * 1983-04-19 1984-11-01 Canon Inc Display device of ultrasonic received signal
JPS60181651A (en) * 1984-02-29 1985-09-17 Nippon Kokan Kk <Nkk> Automatic calibration in ultrasonic flaw detection apparatus of pipe to be inspected
JPH0373846A (en) * 1989-08-14 1991-03-28 Hitachi Constr Mach Co Ltd Instrument for measuring ultarsonic wave

Also Published As

Publication number Publication date
JP2713477B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
US9063059B2 (en) Three-dimensional matrix phased array spot weld inspection system
CN108562647B (en) PA-TOFD combined ultrasonic detection device and method for polyethylene pipeline hot-melt butt joint
CN108414617A (en) Ferrite type steel small diameter tube butt girth welding seam phased array ultrasonic detecting method
JP2007046913A (en) Welded structure flaw detection testing method, and steel welded structure flaw detector
US3178933A (en) Method and apparatus for ultrasonic weld inspection and display
CN105353039A (en) Phased array longitudinal wave testing method of butt weld joints
US7472598B2 (en) Ultrasonic inspection apparatus and method for evaluating ultrasonic signals
US7694566B2 (en) Method of evaluating ultrasonic signals of a flaw in a workpiece
JP2014106130A (en) Ultrasonic inspection method and ultrasonic inspection device
JPH03137560A (en) Ultrasonic flaw detector
CN112534254A (en) Method and device for evaluating joint interface
JPH03122563A (en) Ultrasonic flaw detection apparatus
JP2002243703A (en) Ultrasonic flaw detector
CN107328856A (en) Resistance Welding point tester and detection method based on total focus synthetic aperture technique
JP2747825B2 (en) Ultrasonic tomography detection method and apparatus
JPH11183445A (en) Flaw detector
JP3754669B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JPS63221211A (en) Ultrasonic thickness measuring method for laminar body
JPH0419558A (en) Image processing method for ultrasonic flaw detection test
US6158285A (en) EMAT inspection of welds in thin steel plates of dissimilar thicknesses
JPH09113249A (en) Ultrasonic flaw detecting method
JPS61286747A (en) Three-dimensional probe and three-dimensional imaging apparatus
JPS61118658A (en) Two-probe ultrasonic flaw detection method and apparatus
JPH09229910A (en) Method for ultrasonic angle beam flaw detection
JPH04366761A (en) Method for ultrasonic inspection