JPS59116011A - Measuring method of size and shape by robot - Google Patents

Measuring method of size and shape by robot

Info

Publication number
JPS59116011A
JPS59116011A JP23337582A JP23337582A JPS59116011A JP S59116011 A JPS59116011 A JP S59116011A JP 23337582 A JP23337582 A JP 23337582A JP 23337582 A JP23337582 A JP 23337582A JP S59116011 A JPS59116011 A JP S59116011A
Authority
JP
Japan
Prior art keywords
locus
sensor
robot
inspected
trajectory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23337582A
Other languages
Japanese (ja)
Inventor
Shinichiro Kimura
新一郎 木村
Haruhiko Matsushima
松島 晴彦
Kazuyoshi Inouchi
井内 和義
Toshio Hirokawa
広川 登志男
Yoshihisa Nagahama
長濱 好久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP23337582A priority Critical patent/JPS59116011A/en
Publication of JPS59116011A publication Critical patent/JPS59116011A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To improve the degree of accuracy in measurement by correcting an intended locus according to the positional deviation between the intended locus and the surface of a material to be inspected, and measuring the size and shape of the surface of the object to be inspected from the corrected locus and the spacing between the corrected locus and the surface of the material to be inspected. CONSTITUTION:A gap sensor 20 is first moved at an intended locus 32 and the deviation in a measuring object is known from the result of the measurement with the sensor. More specifically, a peak part is determined from an actually measured curve 36, and a deviation l is determined in terms of the difference between the X value thereof and the X value in the intended peak part. A command is then given to a robot to shift and locus 32 by the distance l. If the gap is measured by moving the sensor along the corrected locus 33, the surface shape and size of a steel pipe are exactly measured by the measured gap and the locus 33. The correct measurement having the actual bead part 31 at the center of the locus is made possible. The accuracy in the measurement is thus improved.

Description

【発明の詳細な説明】 本発明は、産業用ロボットによるUO鋼管などの大型部
材の寸法形状測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the size and shape of large members such as UO steel pipes using an industrial robot.

UO鋼管は厚鋼板をパイプ状に曲げ、両側縁を突合せ溶
接してなるが、品質確保のため造管後にビード幅、ビー
ド高さ、管径などを測定し、許容範囲内か否かをチェッ
クする。ビード幅などのビード部測定は、管を水平に寝
かした状態でヒート部が真上にくるようにして行ない(
必ずしも真上でなくてもよい)、管径測定は垂直線に対
して45°をなす2直径上で行ない、更にその位置より
45°管を回転させたのち再び垂直線に対して45°を
なす2直径上で測定し、これらの測定値を管径とする。
UO steel pipes are made by bending a thick steel plate into a pipe shape and butt-welding the edges on both sides.To ensure quality, bead width, bead height, pipe diameter, etc. are measured after pipe making to check whether they are within acceptable ranges. do. Measurement of the bead area, such as bead width, is carried out by laying the tube horizontally with the heated part directly above it (
Measure the pipe diameter at two diameters at 45° to the vertical line (not necessarily directly above), then rotate the pipe 45° from that position, and then measure the pipe diameter at 45° to the vertical line again. Measure on two diameters of the tube, and use these measurements as the tube diameter.

これはUO鋼管は大径なので横におくと撓む1頃向があ
り、このため管径測定は中立点である上記位置で行うよ
うにするものである。またUO鋼管は多数本継ぎ合せて
パイプラインを構成する等の用途に供されることが多く
、か\る場合は管端を開先加工しておくが、製品検査で
はその開先形状の測定、検査も重要である。従来はか\
る測定、検査を人手により行なっていた。しかしこれで
は測定、検査結果に個人差が入り、高精度を維持しにく
\、また省力化にもそわない。産業用ロボットを用いて
力弓る測定、検査を行なうことができれば、この種の問
題は一挙に解決できる。
This is because the UO steel pipe has a large diameter, so if it is placed horizontally, it will bend in the first direction, and for this reason, the pipe diameter should be measured at the above-mentioned position, which is the neutral point. In addition, UO steel pipes are often used for purposes such as connecting multiple pieces together to construct a pipeline, and in such cases, the pipe ends are beveled, but the shape of the bevel is measured during product inspection. , inspection is also important. Traditionally?
Measurements and inspections were performed manually. However, this method introduces individual differences in measurement and test results, making it difficult to maintain high accuracy and is not suitable for saving labor. If industrial robots could be used to perform force measurements and inspections, these types of problems could be solved at once.

ロボットでか\る測定検査を行なうには溶接後または更
に開先加工を済ませたUO鋼管をロボット設置箇所へ移
送し、そこでロボットを動作させ測定検査させることが
考えられる。この場合U。
In order to carry out measurement and inspection using a robot, it is conceivable to transport the UO steel pipe that has been welded or beveled to a robot installation location, and then operate the robot there to perform measurement and inspection. In this case U.

鋼管は大径、長尺なので移動、回転各停止位置に精度を
出しにくい(高精度にするには大きな設備投資が必要)
。しかし一般にロボットはティーチングバック方式をと
っており、教えたことを何度もそのま\繰り返して所要
の動作をする。そこでUO鋼管が予定とは異なる位置に
移動、回転停止すると、ロボソ1〜は該鋼管の予定外の
所を測定、検査することになる。
Steel pipes have large diameters and long lengths, so it is difficult to achieve precision in movement and rotation stop positions (large capital investment is required to achieve high precision).
. However, robots generally use a teaching-back method, in which they repeat what they have been taught over and over again to perform the required movements. Therefore, when the UO steel pipe moves to a different position than planned and stops rotating, Roboso 1~ will measure and inspect the unplanned part of the steel pipe.

ロボットで寸法、形状測定をするにはギャップセンサを
ロボット腕先に取付け、該センサを被検材表面に沿う一
定の軌跡上で移動させ、該センサと被検材表面との間隔
を測定する方式が有効である。この場合上記軌跡はロボ
ットにティーチングしたものであり、一定であるから、
被検材位置がずれると該軌跡が被検材被測定部位から外
れるという問題が生じると共に、センサば該軌跡の一端
で起動し、他端で停止し、その起動停止部の測定精度は
よくないので測定は軌跡中間部で行なうのが好ましく、
このため被検材の被測定部位が1lilL跡中間にある
ようにするのがよいが、か−る条件が満たされなくなる
という問題が生じる。
To measure dimensions and shapes with a robot, a gap sensor is attached to the robot's arm, and the sensor is moved along a fixed trajectory along the surface of the material to be inspected to measure the distance between the sensor and the surface of the material to be inspected. is valid. In this case, the above trajectory is the one taught to the robot and is constant, so
If the position of the material to be inspected shifts, there will be a problem that the trajectory will deviate from the part to be measured of the material to be inspected, and the sensor will start at one end of the trajectory and stop at the other end, resulting in poor measurement accuracy at the starting and stopping part. Therefore, it is preferable to perform measurements in the middle of the trajectory.
For this reason, it is preferable that the part to be measured of the material to be measured be located in the middle of the 1 lil trace, but a problem arises in that this condition is no longer satisfied.

本発明はか\る問題に対処しようとするものである。即
ち産業用ロボットの腕先にギャップセンサを搭載し、大
径UO鋼管などの大型部材を寸法形状測定するに当り、
該大型部材の停止精度不良、ロボットの起動時及び停止
時の測定精度不良問題を解決しようとするものである。
The present invention seeks to address such problems. In other words, when installing a gap sensor on the arm of an industrial robot to measure the dimensions and shape of large components such as large diameter UO steel pipes,
This is an attempt to solve the problem of poor stopping precision of large members and poor measurement precision when starting and stopping a robot.

本発明は多関節ロボソl−の腕先にギャップセンサを取
付け、これを被検材表面上の予定の軌跡に沿って移動さ
せながら該センサと被検材表面との間隔を測定し、該軌
跡と間隔とから被検材表面の寸法形状を測定する方法に
おいて、予定軌跡上で該センサを移動させて被検材表面
形状を測定して該予定軌跡と被検材表面との位置ずれを
求め、該位置ずれに従って該予定軌跡を修正し、修正し
た軌跡に沿って該センサを移動させて該修正軌跡と被検
材表面との間隔測定を行ない、該間隔と修正11i1を
跡とから被検材表面の寸法形状を測定することを特徴と
するが、次に図面を参照しながらこれを詳細に説明する
In the present invention, a gap sensor is attached to the arm of an articulated robosol l-, and the distance between the sensor and the surface of the material to be inspected is measured while moving it along a predetermined trajectory on the surface of the material to be inspected. In the method of measuring the dimensions and shape of the surface of the material to be inspected from , correct the planned trajectory according to the positional deviation, move the sensor along the corrected trajectory, measure the distance between the corrected trajectory and the surface of the material to be inspected, and measure the distance and correction 11i1 from the trace. The method is characterized by measuring the dimensions and shape of the material surface, which will be explained in detail below with reference to the drawings.

第1図はロポッ]・による寸法形状測定要領を示し、1
0は多関節型産業ロボットで、台座部11、腕部12〜
14を備え、台座部は水平面上で一方向に移動(前進、
後退)可能、腕12は垂直に起立し、垂直軸を中心に回
転可能、腕13.14は腕12.13に枢着されていて
その枢着軸を中心に回動可能である。これらの移動、回
動はいずれも各々のモータにより行なわれる。ロボット
の腕の先端にはギャップセンサ2oが回動可能に取付け
られ、被検材本例でばUO鋼管3oの図面」二所定軌跡
に沿って移動し、該センサと細管表面との間隔を測定す
る。ギャップセンサ2oとしては本出願人が別途出願し
た明細stニア説明したし・−ザビーム利用のものの他
、適宜のものを利用できる。
Figure 1 shows the procedure for measuring the dimensions and shape by
0 is an articulated industrial robot, with a pedestal part 11, arm parts 12 ~
14, the pedestal moves in one direction on a horizontal plane (forward,
arm 12 stands vertically and is rotatable about a vertical axis; arm 13.14 is pivotally connected to arm 12.13 and rotatable about its pivot axis; Both of these movements and rotations are performed by respective motors. A gap sensor 2o is rotatably attached to the tip of the robot's arm, and moves along a predetermined trajectory of the object to be inspected, in this example, a UO steel pipe 3o, to measure the distance between the sensor and the surface of the thin tube. do. As the gap sensor 2o, in addition to the gap sensor 2o described in the specification filed separately by the present applicant, other suitable sensors can be used.

セン号移動軌跡はロボットに与える指令信号により定ま
り、ロボット側において把握されており、その既知の軌
跡からの鋼管表面までの間隔がセンサ20により測定さ
れ\ば、鋼管表面形状は容易に求まる。
The movement trajectory of the robot is determined by a command signal given to the robot, and is grasped by the robot. If the distance from the known trajectory to the steel pipe surface is measured by the sensor 20, the steel pipe surface shape can be easily determined.

第2図でこれを説明すると、3oば前記006m管、3
1は溶接部に生じたヒートである。32はセンサ軌跡で
あり、本例ではUo鋼管3oと同心の且つ径は該鋼管の
径より大にした円弧にしている。ロボットに与える指令
信号はロボットの各関節毎の回動角指令信号であり、5
軸型ロボソ1−ならx、y、z、  α、βなどとして
表わせるものである。円軌跡32はか\る指令信号で指
示されるが、直線、円弧などは容易に発生できる軌跡の
1つである。1lNt跡32が定まり、センサ2oが該
軌跡と鋼管表面との間隔δl、δ2・・・・・・を測定
すれば、鋼管表面形状が求まり、ビード部などもその通
りに把握されるから、当該測定データよりビード幅、ヒ
ート高さなどを算出することができる。
To explain this with reference to Figure 2, 3o is the 006m pipe, 3
1 is the heat generated in the welded part. 32 is a sensor locus, which in this example is an arc concentric with the Uo steel pipe 3o and having a diameter larger than the diameter of the steel pipe. The command signal given to the robot is a rotation angle command signal for each joint of the robot.
If it is an axis type robot 1-, it can be expressed as x, y, z, α, β, etc. Although the circular locus 32 is instructed by a command signal, a straight line, an arc, etc. are types of trajectories that can be easily generated. Once the 11Nt trace 32 is determined and the sensor 2o measures the distances δl, δ2, etc. between the trace and the surface of the steel pipe, the shape of the surface of the steel pipe can be determined, and the bead etc. can also be grasped accordingly. Bead width, heat height, etc. can be calculated from the measurement data.

なお図ではセンサ20が測定する間隔は垂直方向でのも
のとした。これはセンサが常に垂直方向を向くように姿
勢制御されるからで、センサが鋼管30の中心を向くよ
うに姿勢制御すれば測定される間隔は半径方向のもので
ある。但し軌跡32と鋼管30とのずれを考えると、セ
ンサが鋼管中心を向くようにする姿勢制御はがなり厄介
なものになる。
In the figure, the distance measured by the sensor 20 is in the vertical direction. This is because the attitude of the sensor is controlled so that it always faces in the vertical direction, and if the attitude of the sensor is controlled so that it faces the center of the steel pipe 30, the distance measured is in the radial direction. However, considering the deviation between the locus 32 and the steel pipe 30, attitude control to direct the sensor toward the center of the steel pipe becomes very difficult.

前述のようにUO鋼管の停止精度はよくない。As mentioned above, the stopping accuracy of UO steel pipes is not good.

そこで第2図に示すように予定ではヒートが31′で示
すように最上方に来るべきものが31で示すようにずれ
ることがある。ずれが大きくて軌跡32の範囲を越えて
しまう場合はビード部測定は不能となり、またずれがそ
れ程大きくなくても軌跡32の始、終端に来てしまうと
測定精度が悪化する。
Therefore, as shown in FIG. 2, the heat that should be at the top, as indicated by 31', may be shifted as indicated by 31. If the deviation is large and exceeds the range of the trajectory 32, measurement of the bead portion will be impossible, and even if the deviation is not so large, if the deviation is at the beginning or end of the trajectory 32, the measurement accuracy will deteriorate.

本発明はカミる問題に対処しようとするものであり、先
ず予定の軌#32でセンサを移動し、測定させてその測
定結果より測定対象部のずれを知る。即ち第3図に示す
ように軌跡32の始端をXo、終端をXnとし、縦軸に
測定されたギャップ長Gをとると、位置ずれがなければ
曲線35が予想される測定結果であるが、実際に測定さ
れた結果は曲線36であったとすれば距%lllffが
ずれ量である。
The present invention is intended to deal with the problem of deviation, and first, the sensor is moved on a scheduled track #32 and measured, and the deviation of the part to be measured is determined from the measurement results. That is, as shown in FIG. 3, if we take the starting end of the trajectory 32 as Xo and the ending end as Xn, and take the measured gap length G on the vertical axis, a curve 35 is the expected measurement result if there is no positional deviation, but, If the actually measured result is the curve 36, the distance %llllff is the amount of deviation.

距離lは実測データよりピーク部を求めそのX値と予定
のピーク部のX値との差として求まる。か\る距離lが
求まれば、ロボットに軌跡32を距l1ittpだけシ
フトするよう指令する。このようにすれば軌跡は第2図
の33に変り、この修正軌跡に沿ってセンサを移動させ
てギャップ測定すれば、その測定結果つまりギャップと
該修正軌跡とから鋼管表面形状、寸法の正確な測定が可
能になる。
The distance l is determined by determining the peak portion from the actual measurement data and finding it as the difference between the X value of the peak portion and the expected X value of the peak portion. Once the distance l is determined, the robot is instructed to shift the trajectory 32 by the distance l1ittp. In this way, the trajectory changes to 33 in Figure 2, and if the sensor is moved along this corrected trajectory to measure the gap, the measurement result, that is, the gap and the corrected trajectory, can be used to determine the exact surface shape and dimensions of the steel pipe. Measurement becomes possible.

実際のヒート部31を軌跡中心に収めた正しい測定を行
なうことができる。
Correct measurement can be performed with the actual heat section 31 centered on the trajectory.

シフト量βば本例では円弧32を単純にその円弧方向に
長さβだけ移動させるものであるが、半径方向のシフト
を加えたものでもよい。即ち曲線35と36を比較すれ
ば、円周方向のずれと共に半径方向のずれも求まる(G
の大、小により)から、そのずれにより軌VIF32を
鋼管半径方向に移動させてもよく、このようにすれば軌
跡と鋼管表面との間隔も予定値にして正体な測定を行な
うことができる。
In this example, the shift amount β is simply moving the circular arc 32 by a length β in the direction of the circular arc, but it is also possible to add a shift in the radial direction. That is, by comparing curves 35 and 36, the deviation in the radial direction as well as the deviation in the circumferential direction can be determined (G
The trajectory VIF 32 may be moved in the radial direction of the steel pipe according to the deviation (depending on the magnitude or smallness of the curve), and in this way, accurate measurement can be performed with the distance between the trajectory and the surface of the steel pipe set to a predetermined value.

従来のティーチングプレイバンク方式のロボットは対象
材を所定の位置に正確に止めておく必要があるが、鉄鋼
業などでは対象材が大型、大重量なため、対象相の位置
決めが精度よくできない。
Conventional teaching playbank type robots need to accurately stop the target material in a predetermined position, but in the steel industry, etc., the target material is large and heavy, so it is not possible to accurately position the target phase.

この点手先にセンサを取付け、予め与えた軌跡の始端及
び方向を変更して作業を行える知能ロボットは甚だ有効
である。
In this respect, intelligent robots that have sensors attached to their hands and can perform tasks by changing the starting point and direction of a predetermined trajectory are extremely effective.

第4図は上述の制御を行なう装置の構成を示すブロック
図である。4oはロボット1oの制御部で指令値発生部
41、比較器42、D/A変換器43、ザーポアンプ4
4、カウンタ45、座標変換装置46を備える。15ば
ロボットの各関節を駆動するモータ、16は各関節の回
動量を測定して出力するエンコーダである。これらは図
では1個のみ示すが、実際には関節数だけある。ロボッ
ト腕先従ってセンサ2oの位置を各関節の駆動指令信号
X、  ’y、  Z、 α、β(5軸型の場合)とし
て指令値発生部41より比較器42に与えると、該信号
はD/A変換器43でアナログ量に変換された後ザーポ
アンプ44に入力し、増幅されてモータ15に加わる。
FIG. 4 is a block diagram showing the configuration of a device that performs the above-mentioned control. 4o is a control unit of the robot 1o, which includes a command value generation unit 41, a comparator 42, a D/A converter 43, and a servo amplifier 4.
4, a counter 45, and a coordinate conversion device 46. 15 is a motor that drives each joint of the robot, and 16 is an encoder that measures and outputs the amount of rotation of each joint. Although only one of these is shown in the figure, there are actually the same number of joints. When the position of the robot arm tip, that is, the sensor 2o, is given to the comparator 42 from the command value generator 41 as drive command signals X, 'y, Z, α, β (in the case of 5-axis type) for each joint, the signal becomes D. After being converted into an analog quantity by the /A converter 43, the signal is input to the ZARPO amplifier 44, where it is amplified and applied to the motor 15.

モータの回転量従って関節回動量はエンコーダ16によ
り検出され、パルス数の形で出力される。このパルスを
カウンタ45が計数し、その計数値つまり前記回動量を
比較器42に帰還する。比較器42はこの帰還信号と指
令値との差を出力し、該差が零になるまでモータ15を
駆動するので結局センサ20は指令値通りの運動をする
。カウンタ45の出力は座標変換装置46へも与えられ
、こ\でセンサ現在位置の座標が求められる。
The amount of rotation of the motor and therefore the amount of joint rotation is detected by the encoder 16 and output in the form of a pulse number. A counter 45 counts these pulses and feeds back the counted value, that is, the rotation amount to the comparator 42. The comparator 42 outputs the difference between this feedback signal and the command value, and drives the motor 15 until the difference becomes zero, so that the sensor 20 eventually moves according to the command value. The output of the counter 45 is also given to a coordinate conversion device 46, which determines the coordinates of the current sensor position.

また50は寸法形状演算装置で、A/D変換器51、ヒ
ート位置識別装置52、ビード位置比較装置53、ビー
ド位置基準値出力装置54、及びシフ+−i演算装置5
5を備える。前述のようにセンサは軌跡と鋼管表面との
間隔を測定し、これはA/D変換器でデジタル値に変換
されたのち、ビード位置識別装置52に入力する。この
識別装置52へは座標変換装置46の出力つまりセンザ
軌跡も入力され、これらより調香表面形状を求め、次い
でビード位置を求める。検出されたビード位置は比較装
置53へ入力され、基準値出力装置54からのビード基
準位置と比較される。比較装置53はこれらの差つまり
前述のずれlを出力し、これを受けて演算装置55は軌
跡シフト量を計算する。前述のx、y、z・・・・・・
の形で表わされたシフト量は指令値発生部41または比
較器42に入力し、軌跡をシフトする。
Further, 50 is a dimension/shape calculation device, which includes an A/D converter 51, a heat position identification device 52, a bead position comparison device 53, a bead position reference value output device 54, and a shift +-i calculation device 5.
5. As described above, the sensor measures the distance between the locus and the surface of the steel pipe, which is converted into a digital value by the A/D converter and then input to the bead position identification device 52. The output of the coordinate conversion device 46, that is, the sensor locus is also input to the identification device 52, from which the perfume surface shape is determined, and then the bead position is determined. The detected bead position is input to a comparison device 53 and compared with a bead reference position from a reference value output device 54. The comparator 53 outputs the difference between them, that is, the above-mentioned deviation l, and in response to this, the arithmetic unit 55 calculates the trajectory shift amount. The aforementioned x, y, z...
The shift amount expressed in the form is input to the command value generation section 41 or the comparator 42, and the locus is shifted.

以上説明したように本発明によれば被検材停止精度が悪
(て予定位置からのずれが生じる場合でもティーチング
プレイパンク方式のロボソ1−で精度よく寸法形状測定
ができる。
As explained above, according to the present invention, even if the object to be inspected has poor stopping accuracy and deviates from the planned position, it is possible to measure the dimensions and shape with high accuracy using the teaching play puncture type robot saw 1-.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はロボットによる寸法形状測定の要領を示す説明
図、第2図は位置ずれの説明図、第3図は位置ずれ修正
法の説明図、第4図は本発明の1実施例装置の構成を示
すブロック図である。 図面で、jOは多関節ロボット、20ばギャソプセンザ
、32は予定軌跡、δ1.δ2は間隔、lは位置ずれ、
33ば修正軌跡である。 出 願 人   新日本製鐵株式会社 代理人弁理士  青  柳    稔
Fig. 1 is an explanatory diagram showing the procedure for dimension and shape measurement by a robot, Fig. 2 is an explanatory diagram of positional deviation, Fig. 3 is an explanatory diagram of a method for correcting positional deviation, and Fig. 4 is an illustration of an apparatus according to an embodiment of the present invention. FIG. 2 is a block diagram showing the configuration. In the drawing, jO is an articulated robot, 20 is a gasop sensor, 32 is a planned trajectory, and δ1. δ2 is the interval, l is the positional deviation,
33 is the corrected trajectory. Applicant Nippon Steel Corporation Representative Patent Attorney Minoru Aoyagi

Claims (1)

【特許請求の範囲】 多関節ロボットの腕先にギヤツブセンサを取付け、これ
を被検材表面上の予定の軌跡に沿って移動させながら該
センサと被検材表面との間隔を測定し、該軌跡と間隔と
から被検材表面の寸法形状を測定する方法において、 予定軌跡上で該センサを移動させて被検材表面上状を測
定して該予定軌跡、と被検材表面との位置ずれを求め、
該位置ずれに従って該予定軌跡を修正し、修正した軌跡
に沿って該センサを移動させて該修正軌跡と被検材表面
との間隔測定を行ない、該間隔と修正軌跡とから被検材
表面の寸法形状を測定することを特徴とする、ロボット
による寸法形状測定方法。
[Claims] A gear sensor is attached to the arm of an articulated robot, and the distance between the sensor and the surface of the material to be inspected is measured while moving it along a predetermined trajectory on the surface of the material to be inspected. In the method of measuring the dimensions and shape of the surface of a material to be inspected from seek,
The planned trajectory is corrected according to the positional deviation, the sensor is moved along the corrected trajectory, the distance between the corrected trajectory and the surface of the material to be inspected is measured, and the distance between the corrected trajectory and the surface of the material to be inspected is determined from the distance and the corrected trajectory. A method for measuring dimensions and shapes using a robot, characterized by measuring dimensions and shapes.
JP23337582A 1982-12-22 1982-12-22 Measuring method of size and shape by robot Pending JPS59116011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23337582A JPS59116011A (en) 1982-12-22 1982-12-22 Measuring method of size and shape by robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23337582A JPS59116011A (en) 1982-12-22 1982-12-22 Measuring method of size and shape by robot

Publications (1)

Publication Number Publication Date
JPS59116011A true JPS59116011A (en) 1984-07-04

Family

ID=16954118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23337582A Pending JPS59116011A (en) 1982-12-22 1982-12-22 Measuring method of size and shape by robot

Country Status (1)

Country Link
JP (1) JPS59116011A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222113A (en) * 1986-03-25 1987-09-30 Kitamura Kikai Kk Apparatus for measuring accuracy of nc machine tool
JP2006329903A (en) * 2005-05-30 2006-12-07 Konica Minolta Sensing Inc Three-dimensional measuring method and three-dimensional measuring system
WO2023137939A1 (en) * 2022-01-24 2023-07-27 中铁九桥工程有限公司 Method for controlling movement trajectory of mobile device on circular pipe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164305A (en) * 1979-06-11 1980-12-22 Tokyo Sokuhan Kk Origin setting method and origin setting block of coordinate measuring machine
JPS5794607A (en) * 1980-12-04 1982-06-12 Mitsutoyo Mfg Co Ltd Multidimensional measuring machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164305A (en) * 1979-06-11 1980-12-22 Tokyo Sokuhan Kk Origin setting method and origin setting block of coordinate measuring machine
JPS5794607A (en) * 1980-12-04 1982-06-12 Mitsutoyo Mfg Co Ltd Multidimensional measuring machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222113A (en) * 1986-03-25 1987-09-30 Kitamura Kikai Kk Apparatus for measuring accuracy of nc machine tool
JPH052166B2 (en) * 1986-03-25 1993-01-11 Kitamura Machinery Co Ltd
JP2006329903A (en) * 2005-05-30 2006-12-07 Konica Minolta Sensing Inc Three-dimensional measuring method and three-dimensional measuring system
WO2023137939A1 (en) * 2022-01-24 2023-07-27 中铁九桥工程有限公司 Method for controlling movement trajectory of mobile device on circular pipe

Similar Documents

Publication Publication Date Title
US4447697A (en) Weld gun repositioning system for programmable manipulator
CN104384734B (en) Weld joint tracking and ultrasonic impact system after full automatic welding
JP2651251B2 (en) Mechanism error correction method for SCARA robot
US20170144256A1 (en) System for coordinated stationary tracking with root path memory clocking for cylindrical welding
CN204234993U (en) With weldering ultrasonic impact intelligent robot TT&C system
US4613803A (en) Industrial robot and a method for positioning same
JPS59116011A (en) Measuring method of size and shape by robot
JP3397311B2 (en) Tube section center position measuring method and tube processing guide device
JPS59118278A (en) Treatment of tab plate for uo pipe
JPH0711412B2 (en) Pipe shape measuring device
JPH0285709A (en) Method and instrument for measuring object using multi-articulated robot
JPS59112209A (en) Measuring method of shape of steel tube weld zone
JPS6249405A (en) Teaching method for robot
JPH05240844A (en) Copying method of flaw detecting apparatus for welded part of seam welded pipe
SU797855A1 (en) Device for program control of resistance spot welding industrial robot
JPS5975112A (en) Size and shape measuring device by industrial robot
JPS6036862B2 (en) How to control automatic welding machine
JPS59114406A (en) Automatic measurement of shape of tube end
JPS589012A (en) Measuring device for arc shape
JPS5814006A (en) Apparatus for measuring position of assembled piping
JPH048144B2 (en)
JPH02128113A (en) Apparatus and method for measuring bending of long-sized object
JPS60253910A (en) Measuring instrument of thickness and bend of pipe
JPS625708B2 (en)
JPH01112107A (en) Profile controller for body in optional shape