JPS6018019B2 - Thermoluminescence dosimetry device - Google Patents

Thermoluminescence dosimetry device

Info

Publication number
JPS6018019B2
JPS6018019B2 JP486980A JP486980A JPS6018019B2 JP S6018019 B2 JPS6018019 B2 JP S6018019B2 JP 486980 A JP486980 A JP 486980A JP 486980 A JP486980 A JP 486980A JP S6018019 B2 JPS6018019 B2 JP S6018019B2
Authority
JP
Japan
Prior art keywords
thermoluminescence
optical waveguide
infrared light
phosphor
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP486980A
Other languages
Japanese (ja)
Other versions
JPS56101577A (en
Inventor
博司 筒井
僖剛 安野
正文 渡
理 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP486980A priority Critical patent/JPS6018019B2/en
Publication of JPS56101577A publication Critical patent/JPS56101577A/en
Publication of JPS6018019B2 publication Critical patent/JPS6018019B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/10Luminescent dosimeters
    • G01T1/11Thermo-luminescent dosimeters
    • G01T1/115Read-out devices

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】 本発明は熱ルミネッセンス線量測定菱直に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to thermoluminescent dosimetry.

ある種の物質(熱ルミネッセンス材料)に放射線を照射
した後、この物質を加熱すると、放射線照射量に応じて
熱ルミネッセンス(略してTLという)を発する。
When a certain type of substance (thermoluminescent material) is irradiated with radiation and then heated, it emits thermoluminescence (abbreviated as TL) in accordance with the amount of radiation irradiation.

このTLを検出することにより放射線の被ばく線量を知
ることができる。この現象を応用したものが熱ルミネッ
センス線量測定装置である。この種の装置においては、
熱ルミネツセンス材料を素子化して用いられる。
By detecting this TL, the radiation exposure dose can be known. A thermoluminescence dosimeter is an application of this phenomenon. In this type of device,
A thermoluminescent material is used as an element.

従来よりこのTLD素子には、粉末状、ガラスアンプル
入り、ディスク状、薄膜状等がある。これらのTLD素
子の中で、薄膜状のTLD素子は、任意の大きさおよび
形状のものが作れ、ま0た、熱容量が小さいために少し
の熱量により昇温することが容易であり、さらにはTL
D素子の微小部分の選択加熱が可館となる。
Conventionally, this TLD element has been available in powder form, glass ampoule, disk form, thin film form, etc. Among these TLD elements, thin-film TLD elements can be made into any size and shape, and because they have a small heat capacity, they can be easily heated with a small amount of heat. T.L.
Selective heating of minute portions of the D element becomes possible.

このようにTLD素子の微少部分の選択加熱が可能とな
ると、面における各部分の放射線被ばく線量の測定夕が
可能となるものである。本発明は上記のような薄膜状の
TLD素子を用いる熱ルミネッセンス線草柳定装魔に関
し、薄膜状のTLD素子の部分選択加熱を高感度で行な
うことができる熱ルミネツセンス線量測定装置を堤0供
するものである。
If it becomes possible to selectively heat minute portions of the TLD element in this manner, it becomes possible to measure the radiation exposure dose of each portion on the surface. The present invention relates to a thermoluminescence dosimeter using a thin film TLD element as described above, and provides a thermoluminescence dosimeter that can perform selective heating of a thin film TLD element with high sensitivity. It is.

薄膜状TLD素子の加熱には、従来より光(赤外光)加
熱法が用いられており、4・ごな薄膜状TLD素子の加
熱には、素子の背後から赤外光を照射して加熱し、前方
から発する熱ルミネッセンタスを測定する方法が用いら
れている。
Conventionally, optical (infrared light) heating methods have been used to heat thin film TLD elements. However, a method is used to measure thermoluminescence emitted from the front.

しかし薄膜状TLD素子の微小部分の選択加熱を行なう
には、後方(素子基板側)からの赤外光による加熱では
、素子基板の熱拡散により、加熱面積の広がりによる加
熱部分のボケが生じる。また、前方(素子蛍光体側)か
らの赤外光による加熱によれば、赤外光の伝送路(軌道
)により、熱ルミネツセンス受光路の形状および面積が
制限されるため、熱ルミネッセンス受光効率が非常に悪
くなる欠点があった。例えば、最も伝送路の効率を向上
させるために、赤外光および熱ルミネツセンスの伝送路
に光ファイバーからなる光導波体を用いた例を第3図に
示す。第3図において、1は熱ルミネッセンス伝送用フ
ァイバー、2は加熱用赤外光伝送用ファイバー、3は薄
膜状TLD素子、4は素子の赤外光による選択加熱部分
、6は光鰭子増倍管、6は赤外光源レーザー、7は集光
レンズである。加熱系は前記実施例と全く同じものを使
用した。この加熱系に適した熱ルミネツセンス伝送用フ
ァイバーの直径は5岬であり、直径0.2豚のファイバ
ーの束ねて直径5肋のファイバー東として使用した。第
3図からわかるように、2種類のファイバーを近接させ
るには限界があり、熱ルミネッセンス伝送用ファイバー
の径を大きくすることができず、すなわち、集光効率を
高めることができない。本発明は上記従来の欠点を解消
し、熱ルミネツセンス受光効率の高い熱ルミネッセンス
線量測定装置を提供するものである。
However, in order to selectively heat a minute portion of a thin-film TLD element, heating with infrared light from the rear (element substrate side) causes blurring of the heated portion due to expansion of the heating area due to thermal diffusion of the element substrate. In addition, when heating with infrared light from the front (device phosphor side), the shape and area of the thermoluminescence light receiving path are limited by the infrared light transmission path (orbit), so the thermoluminescence light receiving efficiency is extremely low. There was a drawback that it got worse. For example, FIG. 3 shows an example in which an optical waveguide made of an optical fiber is used for the transmission path of infrared light and thermoluminescence in order to improve the efficiency of the transmission path. In Fig. 3, 1 is a thermoluminescence transmission fiber, 2 is a heating infrared light transmission fiber, 3 is a thin film TLD element, 4 is a selectively heated part of the element by infrared light, and 6 is a photofin multiplication device. 6 is an infrared light source laser, and 7 is a condenser lens. The heating system used was exactly the same as in the previous example. The diameter of the thermoluminescence transmission fiber suitable for this heating system is 5 capes, and a bundle of fibers with a diameter of 0.2 diameter was used as a fiber east with a diameter of 5 ribs. As can be seen from FIG. 3, there is a limit to how two types of fibers can be brought close to each other, and the diameter of the thermoluminescence transmission fiber cannot be increased, that is, the light collection efficiency cannot be increased. The present invention eliminates the above-mentioned conventional drawbacks and provides a thermoluminescence dosimeter with high thermoluminescence light reception efficiency.

本発明の熱ルミネッセンス線量測定装置は、加熱用赤外
光伝送用光導波体と、熱ルミネッセンス伝送用光導波体
と、受光部および加熱用赤外光源からなるものである。
The thermoluminescence dosimetry device of the present invention includes an optical waveguide for transmitting infrared light for heating, an optical waveguide for transmitting thermoluminescence, a light receiving section, and an infrared light source for heating.

原理は加熱用赤外光源からの赤外光を加熱用赤外光伝送
用光導波体を通してTLD素子の蛍光体に導き、この蛍
光体を照射加熱し、蛍光体からの熱ルミネッセンスを熱
ルミネッセンス伝送用光導波体を通して受光素子に導き
、線量測定を行うものである。以下、図面を用いて本発
明の実施例について詳述する。
The principle is that infrared light from a heating infrared light source is guided to the phosphor of the TLD element through an optical waveguide for heating infrared light transmission, the phosphor is irradiated and heated, and the thermoluminescence from the phosphor is transmitted by thermoluminescence. The radiation is guided to a light receiving element through an optical waveguide, and the dose is measured. Embodiments of the present invention will be described in detail below with reference to the drawings.

本実施例の測定装置を第1図に示す。1は熱ルミネッセ
ンス伝送用光導波体、2は加熱用赤外光伝送用光導波体
、3は熱ルミネッセンス薄膜状素子、4は赤外線による
選択加熱部分、5は受光素子、6は赤外光源、7は赤外
光集光レンズである。
The measuring device of this example is shown in FIG. 1 is an optical waveguide for transmitting thermoluminescence, 2 is an optical waveguide for transmitting infrared light for heating, 3 is a thermoluminescent thin film element, 4 is a selective heating part by infrared rays, 5 is a light receiving element, 6 is an infrared light source, 7 is an infrared light condensing lens.

6の加熱用赤外光源からの赤外光を集光レンズ7で集光
し、加熱用赤外光伝送用光導波体2を通して薄膜状TL
D素子3の表面に照射する。
The infrared light from the heating infrared light source 6 is focused by the condenser lens 7, and passed through the heating infrared light transmission optical waveguide 2 to the thin film TL.
The surface of the D element 3 is irradiated.

赤外光により照射された部分は加熱昇温して熱ルミネツ
センスを発し、熱ルミネツセンス伝送用光導波体1を通
して受光素子5により検出される。なお上記加熱用赤外
光伝送用光導波体2は直径1肋、長さ15仇舷の石英フ
ァイバー、熱ルミネッセンス伝送用光導波体1は直径0
.2側の石英フoアイバーを束ねた直径10脚、長さ1
5W舷のファイバー東を用いた。また赤外光源6にはY
AGレーザー(波長1.06〆m、出力連続5W)を用
い「 この時の選択加熱部分は直径2柵であった。受光
素子5には光電子増倍管を用いた。
The portion irradiated with the infrared light is heated and heated to emit thermoluminescence, which is detected by the light receiving element 5 through the optical waveguide 1 for thermoluminescence transmission. The optical waveguide 2 for transmitting infrared light for heating is a quartz fiber with a diameter of 1 rib and a length of 15 m, and the optical waveguide 1 for thermoluminescence transmission has a diameter of 0.
.. 2 sides of quartz fibers bundled together, 10 legs in diameter, 1 in length
I used fiber east with a 5W port. In addition, the infrared light source 6 has Y
Using an AG laser (wavelength: 1.06 m, continuous output: 5 W), the selectively heated portion at this time had a diameter of 2 bars. A photomultiplier tube was used as the light receiving element 5.

また、夕※1図に示す実施例においては、加熱用赤外伝
送用光導波体2の先端は熱ルミネッセンス伝送用光導波
体翼先端の中央に同一平面となるように配置されている
。上記構造の本実施例によれば、薄膜状素子3のり微小
部分の加熱が可能となるとともに、微小部分から発する
熱ルミネツセンスを高感度で検出できるものである。
Furthermore, in the embodiment shown in Figure 1, the tip of the optical waveguide 2 for heating infrared transmission is arranged so as to be flush with the center of the tip of the optical waveguide for thermoluminescence transmission. According to this embodiment of the above-described structure, it is possible to heat a minute portion of the thin film element 3, and the thermoluminescence emitted from the minute portion can be detected with high sensitivity.

第1図に示す薄膜状TLD素子3を水平移動させること
により、薄膜状TLD素子3の各微小部分、すなわちT
LD素子3の面の各タ微小部分の放射線被ばく線量が測
定できるものである。第2図に上記薄膜状TLD素子3
の構造の拡大図を示す。
By horizontally moving the thin film TLD element 3 shown in FIG.
The radiation exposure dose of each minute portion of the surface of the LD element 3 can be measured. FIG. 2 shows the thin film TLD element 3.
An enlarged view of the structure of is shown.

8は蛍光体粉末、9は基板である。8 is a phosphor powder, and 9 is a substrate.

基板9上に接着された蛍光体粉末8が赤外線を吸収して
発熱し、熱ルミネッセンスを発するものである。第1表
は、従来例および実施例の構成および感度を示している
The phosphor powder 8 bonded onto the substrate 9 absorbs infrared rays, generates heat, and emits thermoluminescence. Table 1 shows the configuration and sensitivity of the conventional example and the example.

第1表からも明らかなように、実施例の方が従来例より
も熱ルミネツセンス伝送用ファイバー(受光用ファイバ
ー)の直径を大きくすることができ、また熱ルミネッセ
ンス伝送用ファイバーの受光端をTLD素子に近接させ
ることが可能となり、熱ルミネッセンス受光感度がよい
ものである。また、本発明による実施例によれば、加熱
用赤外線伝送用ファイバーの出力端面と熱ルミネッセン
ス受光用ファイバーの入力機面を同一平面とすることが
できるために、入出力端の位置合わせが不必要となり、
かつ端面上の汚れのクリーニングが、光学系の保守等が
非常に容易に行なえるものである。
As is clear from Table 1, the diameter of the thermoluminescence transmission fiber (light receiving fiber) can be made larger in the embodiment than in the conventional example, and the light receiving end of the thermoluminescence transmission fiber is connected to the TLD element. This makes it possible to place the thermoluminescence light in close proximity to the surface, resulting in good thermoluminescence light-receiving sensitivity. Furthermore, according to the embodiment of the present invention, the output end face of the heating infrared transmission fiber and the input face of the thermoluminescence receiving fiber can be made on the same plane, so alignment of the input and output ends is unnecessary. Then,
Moreover, cleaning of dirt on the end face and maintenance of the optical system can be performed very easily.

本発明は上記のような構造の熱ルミネッセンス線量測定
装置であり、赤外線により薄膜状TLD素子の部分選択
加熱を高感度で容易に行なうことができる利点を有する
ものである。
The present invention is a thermoluminescence dosimeter having the above-described structure, and has the advantage that selective heating of a thin film TLD element can be easily performed with high sensitivity using infrared rays.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における熱ルミネッセンス線
量測定装置の要部の斜視図、第2図は同装置の熱ルミネ
ッセンス線量計素子の拡大斜視図、第3図は従来例にお
ける同菱贋の要部斜視図である。 1・・・・・・熱ルミネッセンス伝送用光導波体、2…
・・・赤外光伝送用光導波体、3・・・・・・熱ルミネ
ッセンス線量計素子、4・・・・・・選択加熱部分、5
・・・・・・受光素子、6・・・・・・赤外光源、7・
・・・・・集光レンズ、8・・・・・・蛍光体、9・・
・・・・基板。 第1図 第2図 第3図
FIG. 1 is a perspective view of the main parts of a thermoluminescence dosimeter according to an embodiment of the present invention, FIG. 2 is an enlarged perspective view of a thermoluminescence dosimeter element of the same device, and FIG. 3 is a counterfeit of the same in a conventional example. FIG. 1... Optical waveguide for thermoluminescence transmission, 2...
... Optical waveguide for infrared light transmission, 3 ... Thermoluminescence dosimeter element, 4 ... Selective heating portion, 5
...... Light receiving element, 6... Infrared light source, 7.
... Condensing lens, 8 ... Phosphor, 9 ...
····substrate. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1 赤外光源と、この赤外光源からの赤外光を伝送し蛍
光体に照射する赤外光伝送用光導波体と、上記蛍光体か
ら発する熱ルミネツセンスを伝送する熱ルミネツセンス
伝送用光導波体と、上記熱ルミネツセンスを受光計測す
る受光素子とを具備し、上記赤外光伝送用光導波体の蛍
光体照射側の先端面を上記熱ルミネツセンス伝送用光導
波体の蛍光体側受光面内に配置してなる熱ルミネツセン
ス線量測定装置。 2 赤外光伝送用光導波体の蛍光体照射側の先端面を熱
ルミネツセンス伝送用光導波体の蛍光体側受光面の中央
部に配置してなる特許請求の範囲第1項記載の熱ルミネ
ツセンス線量測定装置。 3 赤外光伝送用光導波体の蛍光体照射側の先端面と熱
ルミネツセンス伝送用光導波体の蛍光体側受光面とを同
一平面とした特許請求の範囲第1項記載の熱ルミネツセ
ンス線量測定装置。
[Scope of Claims] 1. An infrared light source, an infrared light transmission optical waveguide that transmits the infrared light from the infrared light source and irradiates it to the phosphor, and a heat waveguide that transmits the thermoluminescence emitted from the phosphor. It comprises an optical waveguide for transmitting luminescence and a light receiving element for receiving and measuring the thermoluminescence, and the tip surface of the optical waveguide for transmitting infrared light on the phosphor irradiation side is connected to the fluorescence of the optical waveguide for transmitting thermoluminescence. A thermoluminescence dosimetry device placed within the body-side light receiving surface. 2. Thermoluminescence dose according to claim 1, wherein the tip surface of the optical waveguide for transmitting infrared light on the phosphor irradiation side is arranged at the center of the light receiving surface of the optical waveguide for transmitting thermoluminescent light on the phosphor side. measuring device. 3. The thermoluminescence dosimetry device according to claim 1, wherein the end surface of the optical waveguide for infrared light transmission on the phosphor irradiation side and the light receiving surface on the phosphor side of the optical waveguide for thermoluminescence transmission are on the same plane. .
JP486980A 1980-01-18 1980-01-18 Thermoluminescence dosimetry device Expired JPS6018019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP486980A JPS6018019B2 (en) 1980-01-18 1980-01-18 Thermoluminescence dosimetry device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP486980A JPS6018019B2 (en) 1980-01-18 1980-01-18 Thermoluminescence dosimetry device

Publications (2)

Publication Number Publication Date
JPS56101577A JPS56101577A (en) 1981-08-14
JPS6018019B2 true JPS6018019B2 (en) 1985-05-08

Family

ID=11595672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP486980A Expired JPS6018019B2 (en) 1980-01-18 1980-01-18 Thermoluminescence dosimetry device

Country Status (1)

Country Link
JP (1) JPS6018019B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906848A (en) * 1984-09-20 1990-03-06 International Sensor Technology, Inc. Apparatuses and methods for laser reading of phosphors
US4638163A (en) * 1984-09-20 1987-01-20 Peter F. Braunlich Method and apparatus for reading thermoluminescent phosphors

Also Published As

Publication number Publication date
JPS56101577A (en) 1981-08-14

Similar Documents

Publication Publication Date Title
CA1185019A (en) Large arrays of discrete ionizing radiation detectors multiplexed using fluorescent optical converters
NL1005370C2 (en) Device for measuring the depth dose.
Archambault et al. Plastic scintillation dosimetry: Optimal selection of scintillating fibers and scintillators
US6087666A (en) Optically stimulated luminescent fiber optic radiation dosimeter
JP3332200B2 (en) Radiation detector for X-ray CT
CA2210085A1 (en) All-optical, rapid readout, fiber-coupled thermoluminescent dosimeter system
JP2001228253A (en) High resolution and high luminance scintillator and radiation imager employing the same
Protopopov et al. Radiation damage in plastic scintillators and optical fibers
JPS6018019B2 (en) Thermoluminescence dosimetry device
US3626312A (en) Laser preamplifier
JPH067160B2 (en) Radiation detector
RU2124035C1 (en) Materials and devices containing luminescent materials
Barish et al. Very large area scintillation counters for hadron calorimetry
JPH10213663A (en) Local dosemeter
KR101320891B1 (en) X-ray detector integrated with grid
US5095212A (en) High-efficiency photon detector
JPH05500446A (en) Fluorescent radiation collector for image scanners
CN104792411A (en) Ultraviolet laser energy measurement method
JP3591275B2 (en) Radiation intensity measurement device
RU2310889C1 (en) Device for measuring dosimetric signal of optically stimulated luminescence
Laguesse et al. Characterization of fluorescent plastic optical fibers for x-ray beam detection
JPS58117476A (en) Radiation detector
JPH1184013A (en) Radiation detector
JPS6052414B2 (en) Radiation image information reading device
JP3262149B2 (en) Infrared detector and excitation method thereof