JPH1184013A - Radiation detector - Google Patents

Radiation detector

Info

Publication number
JPH1184013A
JPH1184013A JP23670797A JP23670797A JPH1184013A JP H1184013 A JPH1184013 A JP H1184013A JP 23670797 A JP23670797 A JP 23670797A JP 23670797 A JP23670797 A JP 23670797A JP H1184013 A JPH1184013 A JP H1184013A
Authority
JP
Japan
Prior art keywords
radiation
fluorescent
elements
phosphor
radiation detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23670797A
Other languages
Japanese (ja)
Inventor
Hiromichi Tonami
寛道 戸波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP23670797A priority Critical patent/JPH1184013A/en
Publication of JPH1184013A publication Critical patent/JPH1184013A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a radiation detector excellent in both radiation absorbing efficiency and luminous efficiency. SOLUTION: A fluorescent element is constituted as a double-layer structure wherein fluorescent elements 1 excellent in luminous efficiency are formed on the radiation incidence side, and fluorescent elements 2 excellent in transparency and radiation absorbing efficiency are formed under the elements 1. A photodiode array substrate 3 is formed under the elements 2. The fluorescent elements 1 and the fluorescent elements 2 are arranged in an array type, and shielding material 4 is inserted between the neighboring elements.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、放射線撮影装置等
に使用される放射線検出器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation detector used in a radiographic apparatus and the like.

【0002】[0002]

【従来の技術】例えば、X線断層撮影装置では、被検体
の体軸を中心にして、被検体の周囲を回動するX線管
と、被検体を透過したX線を検出する検出器とを少なく
とも具備し、被検体の体軸を中心として所定の角度ずつ
X線管を回動しながらX線を被検体に曝射し、被検体を
透過するX線を検出した検出器から出力されるデータを
基に画像再構成処理を行って、断層像を得るようにして
いる。
2. Description of the Related Art For example, in an X-ray tomography apparatus, an X-ray tube which rotates around a subject around a body axis of the subject, and a detector which detects X-rays transmitted through the subject are provided. At least, the X-ray tube is rotated at a predetermined angle around the body axis of the subject, and the X-ray tube is irradiated with the X-rays to the subject, and output from the detector that detects the X-rays transmitted through the subject. Image reconstruction processing is performed based on such data to obtain a tomographic image.

【0003】この種の装置では正確な医学的判断を可能
にするために、高品質画像が要求されるが、そのために
は検出器の性能向上が重要である。
[0003] In this type of apparatus, high quality images are required in order to enable accurate medical judgment. For this purpose, it is important to improve the performance of the detector.

【0004】従来、放射線検出器は図3のように構成さ
れている。シンチレータ41と、シンチレータ41下面
に光透過性の良い接着剤42を介して接着されたフォト
ダイオード等の光電変換素子43からなる放射線検出器
を遮蔽板45を介して多数配列して、放射線検出器アレ
イを形成している。
Conventionally, a radiation detector is configured as shown in FIG. A radiation detector comprising a scintillator 41 and a plurality of radiation detectors including photoelectric conversion elements 43 such as photodiodes bonded to the lower surface of the scintillator 41 via an adhesive 42 having a high light transmittance via a shielding plate 45 is arranged. Forming an array.

【0005】放射線がシンチレータ41の上面に入射す
ると、シンチレータ41内で、放射線が光に変換され、
その発光は光電変換素子43で検知され、電気信号に変
換されて、入射放射線量に比例した信号が取り出され
る。
When the radiation enters the upper surface of the scintillator 41, the radiation is converted into light in the scintillator 41,
The emitted light is detected by the photoelectric conversion element 43 and converted into an electric signal, and a signal proportional to the incident radiation dose is extracted.

【0006】このようなシンチレータとしては、Gd2
2 Sを主成分とするセラミックシンチレータか、ある
いは、CdWO4 単結晶シンチレータが用いられてい
る。
As such a scintillator, Gd 2
A ceramic scintillator containing O 2 S as a main component or a CdWO 4 single crystal scintillator is used.

【0007】[0007]

【発明が解決しようとする課題】しかし、Gd2 2
を主成分とするセラミックシンチレータは、CdWO4
単結晶シンチレータよりも放射線による発光効率は高
く、CdWO4 単結晶シンチレータの発光強度の2〜3
倍になるが、シンチレータ内部が不透明であるために、
その厚さを厚くすると、シンチレータ内で発光した光
が、光電変換素子まで到達できないので、あまり厚くす
ることができず、放射線吸収効率は90%程度となっ
て、シンチレータに入射した放射線のすべてを光に変換
することができなかった。
However, Gd 2 O 2 S
The main component of the ceramic scintillator is CdWO 4
The luminous efficiency by radiation is higher than that of the single crystal scintillator, and the luminous intensity of the CdWO 4 single crystal scintillator is 2-3.
Although it is doubled, since the inside of the scintillator is opaque,
If the thickness is increased, the light emitted in the scintillator cannot reach the photoelectric conversion element, so that the thickness cannot be increased too much, and the radiation absorption efficiency becomes about 90%. Could not be converted to light.

【0008】一方、CdWO4 単結晶シンチレータは、
透明性に優れているので、その厚さを厚くして、放射線
吸収効率を100%とすることができ、光への変換効率
は優れたものとなるが、発光効率はGd2 2 Sを主成
分とするセラミックシンチレータの1/2〜1/3程度
であるという問題があった。
On the other hand, CdWO 4 single crystal scintillator
Since it is excellent in transparency, its thickness can be increased to make the radiation absorption efficiency 100%, and the conversion efficiency to light is excellent, but the luminous efficiency is Gd 2 O 2 S. There is a problem that it is about 1/2 to 1/3 of the ceramic scintillator as the main component.

【0009】本発明は、上記課題を解決するために創案
されたもので、放射線吸収効率、発光効率のいずれもが
良い放射線検出器を提供するものである。
The present invention has been made to solve the above problems, and provides a radiation detector having both good radiation absorption efficiency and luminous efficiency.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明の放射線検出器は、放射線により発光する蛍
光体素子と、前記蛍光体素子による蛍光を検出する光電
変換素子とを備えた放射線検出器において、前記蛍光体
素子は、放射線入射側に発光効率の良い蛍光体素子と、
その下側に透明性が良く放射線吸収効率の良い蛍光体素
子との2層構造からなることを特徴としている。
In order to achieve the above object, a radiation detector according to the present invention comprises a phosphor element emitting light by radiation and a photoelectric conversion element detecting fluorescence by the phosphor element. In the radiation detector, the phosphor element is a phosphor element having good luminous efficiency on the radiation incident side,
On the lower side, it has a two-layer structure of a phosphor element having good transparency and good radiation absorption efficiency.

【0011】[0011]

【発明の実施の形態】本発明の一実施例を、以下、図面
に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings.

【0012】図1は本発明による放射線検出器の構成を
示す。
FIG. 1 shows the configuration of a radiation detector according to the present invention.

【0013】1はGd2 2 Sを主成分とするセラミッ
クシンチレータのような放射線発光効率の良い蛍光体素
子、2はCdWO4 単結晶シンチレータのような透明性
が高く、放射線吸収効率の良い蛍光体素子、3は蛍光体
素子からの光を電気信号に変換する光電変換素子として
のフォトダイオードアレイ基板、4はチャネル間のクロ
ストークを防止するための遮蔽材である。
1 is a fluorescent element having good radiation emission efficiency such as a ceramic scintillator containing Gd 2 O 2 S as a main component, and 2 is a fluorescent substance having high transparency and good radiation absorption efficiency such as a CdWO 4 single crystal scintillator. The body element 3 is a photodiode array substrate as a photoelectric conversion element that converts light from the phosphor element into an electric signal, and 4 is a shielding member for preventing crosstalk between channels.

【0014】放射線入射側に蛍光体素子1は配置され、
例えば、その厚さは1〜1.5mmに形成される。この
蛍光体素子1の下側には、光学接着剤を介して蛍光体素
子2が蛍光体素子1よりも厚く、例えば2〜2.5mm
の厚さで形成されており、さらにこの蛍光体素子2の下
側には、フォトダイオードアレイ基板3が形成されてい
る。
A phosphor element 1 is arranged on the radiation incident side,
For example, the thickness is formed to be 1 to 1.5 mm. Under the phosphor element 1, the phosphor element 2 is thicker than the phosphor element 1 via an optical adhesive, for example, 2 to 2.5 mm.
Further, a photodiode array substrate 3 is formed below the phosphor element 2.

【0015】ここで、光学接着剤は、透明で、かつ、蛍
光体素子1と蛍光体素子2との各屈折率の中間の値とな
るものが用いられる。
Here, an optical adhesive which is transparent and has an intermediate value between the refractive indices of the phosphor element 1 and the phosphor element 2 is used.

【0016】蛍光体素子1と蛍光体素子2はアレイ状に
並べられており、隣接する素子の間には、遮蔽材4が挿
入されている。
The phosphor elements 1 and 2 are arranged in an array, and a shielding member 4 is inserted between adjacent elements.

【0017】このように蛍光体素子が2層構造に形成さ
れた放射線検出器の動作を説明する。
The operation of the radiation detector in which the phosphor elements are formed in a two-layer structure will be described.

【0018】例えば、放射線断層撮影装置においては、
撮影モードと、透視モードの両方が使用される。
For example, in a radiation tomography apparatus,
Both the shooting mode and the fluoroscopy mode are used.

【0019】撮影モードは、精度の良い画像を得るため
に、高エネルギー、高線量の放射線を照射するモードで
あるが、蛍光体素子1での放射線吸収効率が例えば、9
0%であっても、残りの10%の放射線は蛍光体素子2
で完全に光に変換される。
The photographing mode is a mode in which high-energy, high-dose radiation is applied in order to obtain a high-accuracy image, but the radiation absorption efficiency of the phosphor element 1 is, for example, 9%.
Even if it is 0%, the remaining 10% of the radiation is
Is completely converted to light.

【0020】そして、蛍光体素子1で発光した光と蛍光
体素子2で発光した光はいずれも透明な蛍光体素子2を
通過してフォトダイオードアレイ基板3に到達し、電気
信号に変換され、放射線吸収のロスがない。
The light emitted from the phosphor element 1 and the light emitted from the phosphor element 2 both pass through the transparent phosphor element 2 and reach the photodiode array substrate 3, where they are converted into electric signals. No loss of radiation absorption.

【0021】一方、透視モードは、被検体を通過した放
射線により、被検体の透視像を得るものなので、なるべ
く、低エネルギー、低線量の放射線が照射されるモード
である。低エネルギー放射線であるために、ほとんど蛍
光体素子1で放射線吸収され、しかも、蛍光体素子1に
は発光効率が良いものを使用しているので、強度の強い
光、例えば、Gd2 2 Sを主成分とするセラミックシ
ンチレータの場合は、CdWO4 単結晶シンチレータの
2〜3倍の発光が得られ、その光は、透明性が非常にす
ぐれている蛍光体素子2を通過するので、光を減衰させ
ることなく、フォトダイオードアレイ基板3に到達させ
ることができ、低線量の放射線であっても、大きな信号
を得ることができるので、高画質の画像を構成すること
ができる。
On the other hand, the fluoroscopic mode is a mode in which a fluoroscopic image of the subject is obtained by the radiation that has passed through the subject, so that low-energy, low-dose radiation is irradiated as much as possible. Since the radiation is low-energy radiation, it is almost completely absorbed by the phosphor element 1, and furthermore, the phosphor element 1 uses a material having good luminous efficiency, so that light having a high intensity, for example, Gd 2 O 2 S In the case of a ceramic scintillator containing as a main component, light emission is obtained two to three times that of a CdWO 4 single crystal scintillator, and the light passes through the phosphor element 2 which is very excellent in transparency. Since the light can reach the photodiode array substrate 3 without attenuation and a large signal can be obtained even with a low dose of radiation, a high quality image can be formed.

【0022】図2に、放射線検出器の製造法を示す。FIG. 2 shows a method of manufacturing a radiation detector.

【0023】5はCdWO4 単結晶シンチレータのよう
な透明性が高く、放射線吸収効率の良い蛍光体、7はG
2 2 Sを主成分とするセラミックシンチレータのよ
うな放射線発光効率の良い蛍光体、6、8、11は放射
線や光の透過性をもつ光学接着剤、9はアルミナ等のセ
ラミックもしくは結晶等からなる放射線透過性の基板ま
たはフィルム、10は切削された溝、3は蛍光体からの
蛍光を電気信号に変換する光電変換素子としてのフォト
ダイオードアレイ基板、4は遮蔽材である。
5 is a phosphor having high transparency and good radiation absorption efficiency, such as a CdWO 4 single crystal scintillator;
Phosphor with good radiation emission efficiency such as a ceramic scintillator containing d 2 O 2 S as a main component, 6, 8, and 11 are optical adhesives having radiation and light transmission properties, and 9 is a ceramic or crystal such as alumina. A radiation-transparent substrate or film made of, 10 is a cut groove, 3 is a photodiode array substrate as a photoelectric conversion element for converting fluorescence from a phosphor into an electric signal, and 4 is a shielding material.

【0024】まず、(a)のように、直方体状の蛍光体
7をフィルム9の上に光学接着剤8で接着し、その上に
直方体状の蛍光体5を光学接着剤6で接着する。
First, as shown in FIG. 2A, a rectangular parallelepiped phosphor 7 is bonded onto a film 9 with an optical adhesive 8, and a rectangular parallelepiped phosphor 5 is bonded thereon with an optical adhesive 6.

【0025】次に、(b)のようにマルチワイヤソーや
ダイアモンドカッター等で、蛍光体5、7に平行に多数
の溝10を切削して所定形状の各蛍光体素子1、2を形
成する。このとき、切削加工する溝10は蛍光体7の下
端または光学接着剤8の深さまで、それ以上は切り込み
をいれないようにする。このようにして所定ピッチでア
レイ状に完全に分割された蛍光体素子列が形成される。
Next, a plurality of grooves 10 are cut in parallel with the phosphors 5 and 7 using a multi-wire saw or a diamond cutter as shown in FIG. At this time, the groove 10 to be cut should not be cut to the lower end of the phosphor 7 or the depth of the optical adhesive 8. In this way, phosphor element rows that are completely divided into an array at a predetermined pitch are formed.

【0026】ここで、遮蔽材4を溝10に挿入し固着す
る。
Here, the shielding member 4 is inserted into the groove 10 and fixed.

【0027】そして、(c)に示すように蛍光体5の上
に、さらにフォトダイオードアレイ基板3を光学接着剤
11を介して接着固定すれば放射線検出器が完成する。
Then, as shown in (c), the radiation detector is completed by further bonding and fixing the photodiode array substrate 3 on the phosphor 5 via the optical adhesive 11.

【0028】上記実施例では、蛍光体素子1はGd2
2 Sを主成分とするセラミックシンチレータを用いた
が、その他に例えば、CsI:Tlを主成分とする結晶
等を用いることができる。
In the above embodiment, the phosphor element 1 is Gd 2 O
Although a ceramic scintillator containing 2 S as a main component is used, for example, a crystal or the like containing CsI: Tl as a main component can be used.

【0029】また、上述の実施例では、一次元アレイ状
に並べられた放射線検出器について述べたが、上記蛍光
体5、7に切削された溝に対して、直角な方向に溝を形
成し、この溝にも遮蔽プレートを挿入することにより、
2次元アレイ状の放射線検出器とすることもできる。
In the above-described embodiment, the radiation detectors arranged in a one-dimensional array are described. However, grooves are formed in a direction perpendicular to the grooves cut in the phosphors 5 and 7. , By inserting a shielding plate into this groove,
The radiation detector may be a two-dimensional array.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
放射線吸収効率、放射線発光効率共に高い放射線検出器
を提供できるとともに、高エネルギー、高線量の放射線
を照射する場合であっても、低エネルギー、低線量の放
射線が照射される場合であっても、いずれの場合でも高
画質の画像を得ることができる。
As described above, according to the present invention,
Both radiation absorption efficiency and radiation emission efficiency can provide a high radiation detector, and high energy, even when irradiating high dose radiation, low energy, even when irradiating low dose radiation, In any case, a high-quality image can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の放射線検出器の構成を示す
図である。
FIG. 1 is a diagram showing a configuration of a radiation detector according to one embodiment of the present invention.

【図2】本発明の放射線検出器の製造過程を示す図であ
る。
FIG. 2 is a diagram showing a manufacturing process of the radiation detector of the present invention.

【図3】従来の放射線検出器の構成を示す図である。FIG. 3 is a diagram showing a configuration of a conventional radiation detector.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 放射線により発光する蛍光体素子と、前
記蛍光体素子による蛍光を検出する光電変換素子とを備
えた放射線検出器において、前記蛍光体素子は、放射線
入射側に発光効率の良い蛍光体素子と、その下側に透明
性が良く放射線吸収効率の良い蛍光体素子との2層構造
からなることを特徴とする放射線検出器。
1. A radiation detector comprising: a fluorescent element that emits light by radiation; and a photoelectric conversion element that detects fluorescence by the fluorescent element, wherein the fluorescent element has fluorescent light with high emission efficiency on a radiation incident side. A radiation detector comprising a two-layer structure of a body element and a phosphor element having a high transparency and a high radiation absorption efficiency below the body element.
JP23670797A 1997-09-02 1997-09-02 Radiation detector Pending JPH1184013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23670797A JPH1184013A (en) 1997-09-02 1997-09-02 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23670797A JPH1184013A (en) 1997-09-02 1997-09-02 Radiation detector

Publications (1)

Publication Number Publication Date
JPH1184013A true JPH1184013A (en) 1999-03-26

Family

ID=17004580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23670797A Pending JPH1184013A (en) 1997-09-02 1997-09-02 Radiation detector

Country Status (1)

Country Link
JP (1) JPH1184013A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311779A (en) * 2000-03-07 2001-11-09 Marconi Medical Systems Inc X-ray detector
JP2013019913A (en) * 2012-10-29 2013-01-31 Hamamatsu Photonics Kk Radiation detector
JP2013019914A (en) * 2012-10-29 2013-01-31 Hamamatsu Photonics Kk Radiation detector
US8552390B2 (en) 2007-10-01 2013-10-08 Hamamatsu Photonics K. K. Radiation detector
JP2015190853A (en) * 2014-03-28 2015-11-02 日立金属株式会社 Method of manufacturing scintillator array
KR101909822B1 (en) * 2017-05-30 2018-10-18 한국과학기술원 A radiation image sensing apparatus, method of operating the same, and method of preparing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311779A (en) * 2000-03-07 2001-11-09 Marconi Medical Systems Inc X-ray detector
US8552390B2 (en) 2007-10-01 2013-10-08 Hamamatsu Photonics K. K. Radiation detector
JP2013019913A (en) * 2012-10-29 2013-01-31 Hamamatsu Photonics Kk Radiation detector
JP2013019914A (en) * 2012-10-29 2013-01-31 Hamamatsu Photonics Kk Radiation detector
JP2015190853A (en) * 2014-03-28 2015-11-02 日立金属株式会社 Method of manufacturing scintillator array
KR101909822B1 (en) * 2017-05-30 2018-10-18 한국과학기술원 A radiation image sensing apparatus, method of operating the same, and method of preparing the same

Similar Documents

Publication Publication Date Title
EP1876955B1 (en) Double decker detector for spectral ct
JP6010051B2 (en) Single or multi energy vertical radiation sensitive detector array and radiation detection method
US5712483A (en) X-ray grid-detector apparatus
US4187427A (en) Structure for collimated scintillation detectors useful in tomography
JP3332200B2 (en) Radiation detector for X-ray CT
JPS61110079A (en) Radiation detector
US4415808A (en) Scintillation detector array employing zig-zag plates
US6452186B1 (en) Detector for the detection for electromagnetic radiation
JP2001311779A (en) X-ray detector
JP2014510902A5 (en)
JP2008538966A (en) Detector array for spectral CT
JP2008510131A (en) Arrangement of scintillator and anti-scatter grid
JP5016180B2 (en) X-ray image acquisition device
US7211801B2 (en) Radiation detector
JPH04290983A (en) Scintillator block for radiation sensor
JPH0511060A (en) Two-dimensional mosaic scintillation detector
US4621194A (en) Radiation detecting apparatus
JPH1184013A (en) Radiation detector
JP2720159B2 (en) Multi-element radiation detector and manufacturing method thereof
US5013921A (en) X-ray detector
JP4451112B2 (en) Radiation detector and radiation image diagnostic apparatus using the same
JP2840941B2 (en) Multi-element radiation detector and manufacturing method thereof
JP3704799B2 (en) Manufacturing method of radiation detector array
JPS58118977A (en) Detector of radiant ray
JP2019163970A (en) Scintillator array, radiation detector, and radiation computer tomography apparatus