JPS58117476A - Radiation detector - Google Patents

Radiation detector

Info

Publication number
JPS58117476A
JPS58117476A JP7082A JP7082A JPS58117476A JP S58117476 A JPS58117476 A JP S58117476A JP 7082 A JP7082 A JP 7082A JP 7082 A JP7082 A JP 7082A JP S58117476 A JPS58117476 A JP S58117476A
Authority
JP
Japan
Prior art keywords
light
radiation
intensity distribution
luminous
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7082A
Other languages
Japanese (ja)
Inventor
Yujiro Naruse
雄二郎 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP7082A priority Critical patent/JPS58117476A/en
Publication of JPS58117476A publication Critical patent/JPS58117476A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/10Luminescent dosimeters
    • G01T1/11Thermo-luminescent dosimeters
    • G01T1/115Read-out devices

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Radiography Using Non-Light Waves (AREA)

Abstract

PURPOSE:To enable measurment of the spatial intensity distribution of a radiation while enhancing the utilization rate of light by covering material emitting light while being exposed to heating or light irradiated after the irradiation of radiation with more than one layers of material different in the refraction factor therefrom to form a light wave guide. CONSTITUTION:When radiation heat fluorescent material is used, the light source 11 employs CO2 laser or YAG laser while it utilizes a luminous element containing the wavelength of lambda1=365nm in the emission spectrum when a phosphate glass is used. The light source 11 scans a luminous material 7 with a scanner 12 to generate light from the luminous material 7 according to the dose of the radiation irradiated thereon 7. This light is transmitted to a light wave guide made up of the luminous material 7 and a covering material 8 and reaches a photo detector 9. A signal from the photo detector 9 is inputted into a signal analyzer 13, converted to a radiation intensity distribution using a scanning signal and indicated on a radiation intensity distribution display 14.

Description

【発明の詳細な説明】 (発明の属する技術分野) この発明は発光物質を利用した放射線検出器に関する。[Detailed description of the invention] (Technical field to which the invention pertains) The present invention relates to a radiation detector using a luminescent substance.

(従来技術およびその問題・豐求) この発明に関係が深い従来技術例を第1図に示す。図中
、lは発光物質(放射線熱螢光物質(LiF:Mgなど
)あるいは、λ1=365nmの索外纏励起によって橙
色(λ、==500〜7QQntn )の螢光を発する
リン酸塩ガラス)、2は光検出器、3は増幅器、4は電
源、5は熱源あるいは光源、6は線量表示器をそれぞれ
示す。動作原理は1発光物質に照射する放射線量に比例
し丸見光量が得られることを利用しており1発光物質は
図に示されるような測定系に入れたままで使用するかも
しくは単蝕に放射線を照射した後に測定系へ入れられる
。しかるに問題点としては次の点があげられる。
(Prior art and its problems/requests) An example of a prior art that is closely related to this invention is shown in FIG. In the figure, l is a luminescent material (a radiation thermal fluorescent material (LiF:Mg, etc.) or a phosphate glass that emits orange (λ, = 500 to 7QQntn) fluorescence upon excitation of the outer layer at λ1 = 365 nm). , 2 is a photodetector, 3 is an amplifier, 4 is a power source, 5 is a heat source or light source, and 6 is a dose indicator. The operating principle is based on the fact that the amount of radiation irradiated to a single luminescent substance is proportional to the amount of radiation irradiated, and a complete luminous amount can be obtained.The luminescent substance can be used while it is in the measurement system as shown in the figure, or it can be used with a single eclipse of radiation. After being irradiated, it is placed into the measurement system. However, the following problems can be raised.

(1)放射線の空間的強度分布を計測することができな
い。
(1) It is not possible to measure the spatial intensity distribution of radiation.

(2)発光物質から生ずる光を効率よく光検出器へ入射
させることが困難である。
(2) It is difficult to efficiently make light emitted from a luminescent substance enter a photodetector.

(発明の目的) この発明の目的は、放射線の空間的強度分布を計測する
ことができて、しかも光の利用効率が萬い放射線検出器
を提供するにある。
(Object of the Invention) An object of the present invention is to provide a radiation detector that can measure the spatial intensity distribution of radiation and has high light utilization efficiency.

(発明の概4I) 放射線照射後に加熱あるいは光照射することによって発
光する物質を、その屈折率と異なる屈折率を有する一層
以上の物質で被覆して光導波路を構成することによシ、
放射線の空間的強度分布を1測することができ、しかも
光の利用効率の高い放射線検出器を得ることができる。
(Summary of the Invention 4I) By constructing an optical waveguide by coating a material that emits light by heating or irradiating it with light after irradiation with radiation with one or more layers of material having a refractive index different from that of the material,
It is possible to obtain a radiation detector that can measure the spatial intensity distribution of radiation and has high light utilization efficiency.

(発明の実施例) 本発明の実施例を第2図に示す0図中、7は発光物質(
放射線熱螢光物質あるいはリン酸塩ガラス)、8は被覆
物質(光のとじこめ効果をもたせる丸めに紡紀発光物質
よりは屈折率の小さいポリスチレン樹脂やポリウレタン
樹脂を使用する)。
(Example of the invention) In Figure 2, which shows an example of the invention, 7 is a luminescent substance (
8 is a coating material (polystyrene resin or polyurethane resin, which has a lower refractive index than the bioluminescent material, is used for the rounding that has a light trapping effect).

9□、2は光検出器、101.2は増幅器、11は光源
、12は掃引装置、13は信号解析装置、14は放射線
強度分布表示装置をそれぞれ示す。11の光源は、放射
線熱螢光物質を使用する場合はCO2レーザあるいはY
AGレーザを使用し、リン酸塩ガラスを使用する場合は
1発光スペクトルにλ1=365nmの波長を含む発光
素子を利用する。光源は掃引f&臘によって発光物質を
掃引し、そのときに発光物質に照射された放射線線量に
応じた光が発生する。この光は発光物質と被覆物質とで
形成されている先導波路によって伝送され、光検出器へ
到達する0光検出器からの信号は信号解析装置に入力さ
れ、掃引信号を用いて放射線強度分布に変換され、放射
線強度分布表示装置で表示される。
9□, 2 is a photodetector, 101.2 is an amplifier, 11 is a light source, 12 is a sweep device, 13 is a signal analyzer, and 14 is a radiation intensity distribution display device. The light source 11 is a CO2 laser or Y when using a radiation thermal fluorescent substance.
When using an AG laser and using phosphate glass, a light emitting element including a wavelength of λ1=365 nm in one emission spectrum is used. The light source sweeps the light-emitting substance by a sweep f&, and at that time, light is generated according to the radiation dose irradiated to the light-emitting substance. This light is transmitted by a guiding wave path formed by a luminescent material and a coating material, and the signal from the 0 photodetector that reaches the photodetector is input to a signal analyzer, and a sweep signal is used to analyze the radiation intensity distribution. It is converted and displayed on a radiation intensity distribution display device.

(発明の効果) (11放射線の空間的強度分布を測定することかで睡る
0 (2)光導波路構造によって光の利用効率が大幅に向上
する1゜ (発明の変形例・応用例) 第3図は上記実施例で説明した基本単位を多数個並べて
2次元放射線検出器を構成した応用例である。一度発光
物質から逸脱した光が他のシ/チレータ中を伝搬する確
率は非常に少ないので、基本単位間のクロストーク(相
互干渉)は無視できる。
(Effects of the invention) (11) Measuring the spatial intensity distribution of radiation makes it possible to fall asleep (2) Optical waveguide structure significantly improves the efficiency of light utilization 1゜ (Modifications and application examples of the invention) Figure 3 shows an application example in which a two-dimensional radiation detector is constructed by arranging a large number of the basic units explained in the above embodiment.The probability that light once deviated from the luminescent material will propagate through other citricators is very low. Therefore, crosstalk (mutual interference) between basic units can be ignored.

第4図(a) (b) (C)は本発明の変形例で、(
→(鴫は被覆物質8中に二つの発光物質71,72を埋
め込んだ例、(C)は二層の被覆物質81.82を設け
、更にその表面に外部先遣蔽兼、内部光反射用膜15を
掃引光りが掃引する部分を除いて付加するとともに、一
端面に反射膜16を付けて光の利用効率を向上させ、ク
ロストークも抑制した変形例である。(C)の場合、発
光物質7の屈折率をn8、被覆物質S1.S、の屈折率
をそれぞれ町、112とし九とき、ng)n1ンn2と
することが好ましい0その他、湾曲した発光物質を用い
た変形例も考えられる0
FIGS. 4(a), (b), and (C) are modified examples of the present invention, (
→ (Shizu is an example in which two luminescent materials 71 and 72 are embedded in the coating material 8, and (C) is an example in which two layers of the coating material 81 and 82 are provided, and the surface is further coated with a film for external protection and internal light reflection. 15 is added except for the part where the sweeping light sweeps, and a reflective film 16 is attached to one end face to improve the light utilization efficiency and suppress crosstalk.In the case of (C), the luminescent material It is preferable that the refractive index of 7 is n8, and the refractive index of the coating material S1 is 112 and 9, ng)n1 and n2.Other modifications using curved luminescent materials are also possible. 0

【図面の簡単な説明】[Brief explanation of the drawing]

41図は従来例を示す図、第2図は本発明の一貞麿例を
示す図、s3図は本発明の応用例を示す図、l@4図(
4)〜(C)は本発明の変形例を示す図である。 7・・・発光物質、  8・・・被覆物質、9・・・光
検光器、10・・・増幅器、11・・・光源、12・・
掃引装置、 13・・・信号解析装置。 14・・・放射IIa強度分布表示装置。 第2図 14 第8図
Figure 41 is a diagram showing a conventional example, Figure 2 is a diagram showing an example of the present invention, Figure s3 is a diagram showing an application example of the present invention, Figure 1@4 (
4) to (C) are diagrams showing modified examples of the present invention. 7... Luminescent substance, 8... Coating material, 9... Optical analyzer, 10... Amplifier, 11... Light source, 12...
Sweeping device, 13... Signal analysis device. 14... Radiation IIa intensity distribution display device. Figure 2 14 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 放射線照射後に加熱あるいは光照射することによって発
光する物質を、その屈折率と異なる屈折率を有する一層
以上の物質で被覆して先導波路を構成し、外部からの加
熱あるいは光照射によって前記発光物質中で生じた光を
前記光導波路で伝送し、この光を光検出器で検出するこ
とを特徴とする放射線検出器0
A guiding wavepath is constructed by coating a material that emits light by heating or irradiating it with light after irradiation with one or more layers of material having a refractive index different from that of the material. A radiation detector 0 characterized in that the light generated in the above is transmitted through the optical waveguide and this light is detected by a photodetector.
JP7082A 1982-01-05 1982-01-05 Radiation detector Pending JPS58117476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7082A JPS58117476A (en) 1982-01-05 1982-01-05 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7082A JPS58117476A (en) 1982-01-05 1982-01-05 Radiation detector

Publications (1)

Publication Number Publication Date
JPS58117476A true JPS58117476A (en) 1983-07-13

Family

ID=11463915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7082A Pending JPS58117476A (en) 1982-01-05 1982-01-05 Radiation detector

Country Status (1)

Country Link
JP (1) JPS58117476A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03500681A (en) * 1987-10-16 1991-02-14 イーストマン・コダック・カンパニー Powder diffraction inspection device
JP2000162724A (en) * 1998-09-22 2000-06-16 Japan Atom Energy Res Inst Device for reading radiation image of imaging plate and method therefor
JP2002277554A (en) * 2001-03-16 2002-09-25 Wired Japan:Kk Optical fiber and optical fiber cable
US6479829B1 (en) * 1999-02-26 2002-11-12 Agency Of Japan Atomic Energy Research Institute Apparatus and method for detecting radiation that uses a stimulate phosphor
CN110645541A (en) * 2018-06-27 2020-01-03 深圳市绎立锐光科技开发有限公司 Light source device and vehicle lamp

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03500681A (en) * 1987-10-16 1991-02-14 イーストマン・コダック・カンパニー Powder diffraction inspection device
JP2000162724A (en) * 1998-09-22 2000-06-16 Japan Atom Energy Res Inst Device for reading radiation image of imaging plate and method therefor
US6479829B1 (en) * 1999-02-26 2002-11-12 Agency Of Japan Atomic Energy Research Institute Apparatus and method for detecting radiation that uses a stimulate phosphor
US6825479B2 (en) 1999-02-26 2004-11-30 Japan Atomic Energy Research Institute Apparatus and method for detecting radiation that uses a stimulate phosphor
US6998624B2 (en) 1999-02-26 2006-02-14 Japan Atomic Energy Research Institute Apparatus and method for detecting radiation that uses a stimulate phosphor
JP2002277554A (en) * 2001-03-16 2002-09-25 Wired Japan:Kk Optical fiber and optical fiber cable
CN110645541A (en) * 2018-06-27 2020-01-03 深圳市绎立锐光科技开发有限公司 Light source device and vehicle lamp
CN110645541B (en) * 2018-06-27 2021-12-21 深圳市绎立锐光科技开发有限公司 Light source device and vehicle lamp

Similar Documents

Publication Publication Date Title
Huston et al. Remote optical fiber dosimetry
US5560712A (en) Optical systems for sensing temperature and thermal infrared radiation
Bøtter-Jensen et al. Advances in luminescence instrument systems
US5302025A (en) Optical systems for sensing temperature and other physical parameters
Polf et al. Real-time luminescence from Al2O3 fiber dosimeters
JPH05505679A (en) Method and apparatus for optically measuring analyte concentration
JPS6145794B2 (en)
JPH10132941A (en) Radiation detection for radioactive clad scintillating fiber
Ramsey et al. Radiation effects on heated optical fibers
JPH0511060A (en) Two-dimensional mosaic scintillation detector
WO2011050441A1 (en) Fluorescence-based light emitting device
EP0209186A2 (en) Image recording and readout device based on light-stimulable phosphors
JPS60155991A (en) Detection system of neutron or gamma-ray or both neutron andgamma-ray
US4885471A (en) Ultraviolet radiometer
JPS58117476A (en) Radiation detector
Salomoni et al. Photonic crystal slabs applied to inorganic scintillators
US7652764B2 (en) Method for reconstructing a fluorescence-enhanced optic tomography image of an object with any outline
Bøtter-Jensen et al. Optically stimulated luminescence techniques in retrospective dosimetry
Xie et al. Methods to improve light transport efficiency in LYSO crystals based on characteristics of optical reflectance
Tickner et al. PHOTON–An optical Monte Carlo code for simulating scintillation detector responses
JPS58117477A (en) Radiation detector
JP2677369B2 (en) Infrared measuring device
JP3262149B2 (en) Infrared detector and excitation method thereof
JPH02100202A (en) Point light source device
US4232228A (en) Method of lightening radiation darkened optical elements