JPS60180059A - Silver (ii) oxide battery - Google Patents

Silver (ii) oxide battery

Info

Publication number
JPS60180059A
JPS60180059A JP59035029A JP3502984A JPS60180059A JP S60180059 A JPS60180059 A JP S60180059A JP 59035029 A JP59035029 A JP 59035029A JP 3502984 A JP3502984 A JP 3502984A JP S60180059 A JPS60180059 A JP S60180059A
Authority
JP
Japan
Prior art keywords
separator
film
cellophane
silver
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59035029A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Yoshihisa
吉久 洋悦
Tadao Takahashi
忠雄 高橋
Takeisa Yokoyama
横山 武功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP59035029A priority Critical patent/JPS60180059A/en
Publication of JPS60180059A publication Critical patent/JPS60180059A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE:To suppress film resistance when the film is immersed in an electrolyte and improve the storage performance of a secondary battery by laminating a polyethylene semi-transparent film in which an acrylic acid and such are graft- polymerized with the cellophane that forms a separator. CONSTITUTION:A polyethylene semi-transparent film 3 obtained by graft-polymerizing an acrylic or meta-acrylic acid is laminated between the cellophane layers 4 of a separator that makes contact with a positive electrode black mix 1 primarily made of silver (II) oxide. As a result, the separator whose film resistance exceeds 1,000mOMEGA-cm<2> when the film is immersed in a 30-50% caustic alkaline solution at 15-30 deg.C is formed. This protection laminate can provide a silver (II) oxide battery in which the functions of the separator are improved and the storage performance is stabilized.

Description

【発明の詳細な説明】 本発明は酸化第二銀電池の保存性能の向上に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improving the storage performance of a silver oxide battery.

近年小型m帯電子機器の普及に伴ない、小型で大容量の
電池として酸化銀電池が広く用いられるようになり、そ
の正極合剤には酸化銀より単位体積当りの放電容量が2
0〜40%大きい酸化第二銀を用いることが一般的にな
ってきている。ところが酸化第二銀を正極合剤に用いる
電池は、同−条件例えば温度60℃で保存した酸化銀電
池に比べて60〜100日間のうちに電圧不良が発生し
てしまい、25°Cに換算した場合2〜3年の保存にし
かならず、実使用上必要とされる3〜5年の保存にはほ
ど遠いという結果が得られた。前記の如き不良となった
電池を分解してみればすべてセパレータの損傷が奢るし
く内部短絡によるものと判明したが、酸化第二銀を正極
合剤に用いた電池のみに限られ、酸化銀電池では見出し
得なかった。これは酸化第二銀は酸化銀に比べて酸化力
が強く、セパレータを構成するセ田ハンが酸化を受け、
セパレータとしての機能を消失してしまうことに起因す
るためであった。このためセパレータに耐酸化性、耐ア
ルカリ性のポリエチレンを使用し、正極合剤に近い側は
酸化第二銀イオンが透過しにくいようにグラフト化率を
低くシ、負極合剤に近い側はイオン交換性、保水性を良
くするためにグラフト化率を高くシ、順次積層すること
が試みられていた。しかしながら上記の如くグラフト化
率を変えたポリエチレン膜を積層してセパレータとする
方法は、積層工程が複雑になるうえにグラフト化率のバ
ラツキや電解液の濃度や温度により保存性能にバラツキ
が生じる欠点があった。
In recent years, with the spread of small M-band electronic devices, silver oxide batteries have become widely used as small, large-capacity batteries, and the positive electrode mixture has a discharge capacity per unit volume of 2
It is becoming common to use 0-40% larger silver oxide. However, batteries that use ferric oxide as the positive electrode mixture experience voltage failure within 60 to 100 days compared to silver oxide batteries stored under the same conditions, for example at a temperature of 60°C. In this case, the result was that the product could be stored for only 2 to 3 years, which is far from the 3 to 5 years required for practical use. When we disassembled the defective batteries as described above, we found that all the separators were severely damaged and were caused by internal short circuits, but this was limited to batteries that used ferric oxide as the positive electrode mixture; I couldn't find it. This is because ferric oxide has a stronger oxidizing power than silver oxide, and the seta plate that makes up the separator is oxidized.
This was due to the loss of its function as a separator. For this reason, oxidation-resistant and alkali-resistant polyethylene is used for the separator, and the grafting rate is low on the side close to the positive electrode mixture to make it difficult for silver oxide ions to pass through, and on the side close to the negative electrode mixture, ion exchange is performed. In order to improve properties and water retention, attempts have been made to increase the grafting rate and sequentially stack layers. However, as described above, the method of laminating polyethylene membranes with different grafting rates to form a separator has the disadvantage that the lamination process is complicated and storage performance varies depending on the grafting rate and the concentration and temperature of the electrolyte. was there.

本発明は上記欠点を解消するため、セロハンがセパレー
タとしての機能を生かせるように耐酸化性、耐アルカリ
性の膜で保護し、所定の電解液に浸漬時の膜抵抗を規制
することにより、保存性能の向上を図るもので、以下実
施例により詳細に説明する。
In order to solve the above-mentioned drawbacks, the present invention protects cellophane with an oxidation-resistant and alkali-resistant film so that it can utilize its function as a separator, and controls the film resistance when immersed in a predetermined electrolytic solution, thereby achieving storage performance. This will be explained in detail below with reference to Examples.

第1図は本発明の一実施例による酸化第二銀電池の断面
図で、1は酸化第二鎖粗粒と微粒または粉末の酸化銀と
の混合物から成る正極合剤、2は正極端子を兼ねる正極
容儀、3は温度が15〜30℃において40%苛性カリ
溶液浸漬時の電気抵抗が1000 mΩ−Cn?以上と
なるように、ポリエチレンにアクリル酸またはメタアク
リル酸等をグラフト重合させて得たポリエチレン半透過
膜で、例えば米国レイ・リサーチ社製のポリエチレング
ラフト膜のパーミオン等を所定の膜抵抗になるように複
数枚積層して用いている。
FIG. 1 is a cross-sectional view of a silver oxide battery according to an embodiment of the present invention, in which 1 is a positive electrode mixture consisting of a mixture of second oxidation chain coarse particles and fine particles or powdered silver oxide; 2 is a positive electrode terminal; 3, which also serves as a positive electrode, has an electrical resistance of 1000 mΩ-Cn when immersed in a 40% caustic potash solution at a temperature of 15 to 30°C. As described above, a polyethylene semipermeable membrane obtained by graft polymerizing acrylic acid or methacrylic acid, etc. to polyethylene, such as Permion, a polyethylene graft membrane manufactured by Ray Research in the United States, can be used to obtain a predetermined membrane resistance. It is used by laminating multiple sheets.

4はセロハンの層で1例えば米国デュポン社製のPUD
O195またはPUDO134等を1〜2枚積層して用
いている。5は不織布から成るアルカリ電解液を保持さ
せる層、6は活物質である亜鉛と電解液から成る負極合
剤、7は負極端子を兼ねる負極容器、8は合成樹脂製の
ガスケットである。
4 is a layer of cellophane; 1 is, for example, PUD manufactured by DuPont in the United States;
One or two sheets of O195 or PUDO134 or the like are laminated and used. 5 is a layer for holding an alkaline electrolyte made of a non-woven fabric, 6 is a negative electrode mixture made of zinc as an active material and the electrolyte, 7 is a negative electrode container which also serves as a negative electrode terminal, and 8 is a synthetic resin gasket.

次に以上のような構造を有する本発明電池と従来電池と
の保存特性を比較するために、ポリエチレン半透過膜の
積層とセロハンの層を変えてそれぞれ10個ずつ製作し
、60°Cにおいて60日保存後(25℃保存で約3絡
)と100日保存後(25°C保存で約5年)の電圧不
良の個数を調べ、その結果を表−1に示す。供試電池は
TR916Wで、直径が9.41Ellφ、総高1.6
Bで、電解液には苛性カリを使用した。またポリエチレ
ン半透過膜には米国レイ・リサーチ社製のパーミオンP
−229140/60、セロハンには米国デュポン社製
のPUDO193をそれぞれ使用した。
Next, in order to compare the storage characteristics of the batteries of the present invention with the above-described structure and conventional batteries, 10 batteries each were fabricated with different polyethylene semi-permeable membrane layers and cellophane layers. The number of voltage failures was investigated after one day of storage (approximately 3 circuits when stored at 25°C) and after 100 days (approximately 5 years when stored at 25°C), and the results are shown in Table 1. The test battery is TR916W, with a diameter of 9.41Ellφ and a total height of 1.6
In B, caustic potash was used as the electrolyte. In addition, the polyethylene semi-permeable membrane is Permion P manufactured by Ray Research Co., Ltd. in the United States.
-229140/60 and PUDO193 manufactured by DuPont, USA were used as the cellophane.

表−1 表−1において0)、(ロ)は従来電池、(へ)は本発
明電池である。表−1から従来電池&) 、 (I:9
は60”C,60日保存後において、A2のセロハンは
酸化を受けてほとんど消失してしまい、ヒ)は10個中
8個が不良となり、(ロ)は10個中2個が不良となっ
ていた。0)、(ロ)において不良の個数が異なるのは
A49七口、ハンの有無によるもので、60℃100日
保存後において(イ)は全数が不良になるのに対し、(
ロ)は10個中7個の不良にとどまっている。このこと
は(ロ)、(ハ)を比較すれはさらに明確になる。すな
わちA4のセロハンとP−2291とを置換えただけで
60’C,100日保存後において不良の個数が増加す
ることによる。
Table 1 In Table 1, 0) and (b) are conventional batteries, and (f) are batteries of the present invention. From Table 1, conventional batteries &), (I:9
After storage at 60"C for 60 days, most of the cellophane in A2 was oxidized and disappeared, 8 out of 10 items in (e) were defective, and 2 out of 10 items in (b) were defective. The difference in the number of defective pieces in 0) and (b) is due to the presence or absence of A49 seven openings and handles, and while in (a) all of the pieces were defective after 100 days of storage at 60°C, (
(b) Only 7 out of 10 were defective. This becomes even clearer when comparing (b) and (c). That is, simply replacing A4 cellophane with P-2291 increases the number of defective pieces after storage at 60'C for 100 days.

次にに)はA3をセロハンとした場合で、60℃、60
日保存後では不良は発生していないが、60’C,10
0日保存後では半数に不良が発生し、本発明電池(へ)
の如<A4にセロハンを使用すると60°C,100日
保存後においても不良は発生していない。また(ホ)の
如くセロハンを使用しない場合は60℃、60日保存後
において10個中4個が不良となる。(ト)は酸化銀を
正極合剤とする電池の場合で60℃、100日保存後に
おいても不良は発生しなかった。
Next) is when A3 is used as cellophane, 60℃, 60℃
No defects occurred after storage for 60'C, 10 days.
After storage for 0 days, half of the batteries were defective, and the battery of the present invention
When cellophane is used on A4 paper, no defects occur even after storage at 60°C for 100 days. In addition, when cellophane is not used as in (e), 4 out of 10 pieces become defective after being stored at 60°C for 60 days. (G) is a battery using silver oxide as the positive electrode mixture, and no defects occurred even after storage at 60° C. for 100 days.

上記の結果をさらに詳しく分析すれば、七パレータを正
極に近い側のポリエチレン半透過膜の膜抵抗を温度が1
5℃〜30℃において、30〜50%苛性カリ溶液浸漬
時に1[100ffiΩ−cr&以上となるように積層
し、負極に近い側にセロハンを載置して構成すれば保存
性能が向上することがわかる。
A more detailed analysis of the above results shows that the membrane resistance of the polyethylene semi-permeable membrane on the side of the seven-parator near the positive electrode is 1.
It can be seen that the storage performance can be improved if the layers are stacked so that the resistance is 1 [100 ffiΩ-cr& or more when immersed in a 30-50% caustic potassium solution at 5°C to 30°C, and cellophane is placed on the side closer to the negative electrode. .

以上述べたように本発明は同一種類のポリエチレン半透
過膜を積層し、セロハンを載置してセパレータとするの
で単純な工程で製造することができ、しかも保存性能も
安定した酸化第二銀電池を提供することができ、その工
業的価値は大なるものである。
As described above, the present invention uses polyethylene semi-permeable membranes of the same type to be laminated and cellophane is placed thereon to form a separator, so that it can be manufactured in a simple process and has stable storage performance. can be provided, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による酸化第二銀電池の断面図である。 1・・・正極合剤 6・・・負極合剤 3・・・ポリエチレン半透過膜の積層 4・・・セロハン層 5・・・電解液保持用不織布 出願人 湯浅電池株式会社 第1図 FIG. 1 is a cross-sectional view of a silver oxide battery according to the present invention. 1... Positive electrode mixture 6... Negative electrode mixture 3...Lamination of polyethylene semi-permeable membrane 4...cellophane layer 5...Nonwoven fabric for electrolyte retention Applicant Yuasa Battery Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 酸化第二銀を主体とする正極合剤と七パレータの一部を
成すセpハンとの間に、アクリル酸またはメタアクリル
酸をグラフト重合させて得たポリエチレン半透過膜を、
温度が15〜30°Cにおいて30〜50%苛性カリ溶
液浸漬時に膜抵抗が1000mΩ−c4以上となるよう
に積層してセパレータとすることを特徴とする酸化第二
銀電池。
A polyethylene semi-permeable membrane obtained by graft polymerization of acrylic acid or methacrylic acid is placed between the positive electrode mixture mainly composed of silver oxide and the septhanum which forms part of the heplayer.
A ferric oxide battery characterized in that it is laminated to form a separator so that the membrane resistance becomes 1000 mΩ-c4 or more when immersed in a 30 to 50% caustic potassium solution at a temperature of 15 to 30°C.
JP59035029A 1984-02-24 1984-02-24 Silver (ii) oxide battery Pending JPS60180059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59035029A JPS60180059A (en) 1984-02-24 1984-02-24 Silver (ii) oxide battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59035029A JPS60180059A (en) 1984-02-24 1984-02-24 Silver (ii) oxide battery

Publications (1)

Publication Number Publication Date
JPS60180059A true JPS60180059A (en) 1985-09-13

Family

ID=12430632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59035029A Pending JPS60180059A (en) 1984-02-24 1984-02-24 Silver (ii) oxide battery

Country Status (1)

Country Link
JP (1) JPS60180059A (en)

Similar Documents

Publication Publication Date Title
US3427206A (en) Separator for alkaline cells
US4414090A (en) Separator membranes for redox-type electrochemical cells
US6743548B2 (en) Silver-zinc alkaline rechargeable battery (stacking order)
WO2007014081A2 (en) Polyelectrolyte membranes as separator for battery and fuel cell applications
US3539396A (en) Rechargeable alkaline zinc system
JPS61246394A (en) Diaphragm for electrolysis
JPH06260183A (en) Diaphragm for aqueous solvent electrochemical device and battery with aqueous solvent using same
KR20180106381A (en) Stack-folding Type Electrode Assembly Comprising Two Kinds of Separators
US4086401A (en) Electric storage battery separator
US3450566A (en) Electrode assembly with accordion wrap separator
JPS60180059A (en) Silver (ii) oxide battery
JPH01195657A (en) Silver-iron cell
JP2005158383A (en) Redox cell
US4310608A (en) Separator incorporating liquid layer
TW501304B (en) Cell incorporation polymer electrolyte
CN112713301A (en) Energy storage device
JPS59214173A (en) Separator for zinc-bromine battery
JPS62223984A (en) Redox flow battery
KR102244179B1 (en) Redox flow cell comprising cellulose
JPS61264663A (en) Silver oxide battery
JP3235161B2 (en) Button type alkaline battery
JP2005044675A (en) Sealed type lead-acid storage battery
JPS6112341B2 (en)
JPH06111847A (en) Closed nickel-hydrogen battery
JP2007103019A (en) Method of testing oxidation resistance life of fiber glass separator for lead storage battery