JPS6017993B2 - Heat transfer body with metal fiber layer evaporation heat transfer surface - Google Patents
Heat transfer body with metal fiber layer evaporation heat transfer surfaceInfo
- Publication number
- JPS6017993B2 JPS6017993B2 JP5981080A JP5981080A JPS6017993B2 JP S6017993 B2 JPS6017993 B2 JP S6017993B2 JP 5981080 A JP5981080 A JP 5981080A JP 5981080 A JP5981080 A JP 5981080A JP S6017993 B2 JPS6017993 B2 JP S6017993B2
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- metal fiber
- transfer body
- fiber layer
- layer evaporation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000835 fiber Substances 0.000 title claims description 15
- 229910052751 metal Inorganic materials 0.000 title claims description 13
- 239000002184 metal Substances 0.000 title claims description 13
- 238000001704 evaporation Methods 0.000 title claims description 8
- 230000008020 evaporation Effects 0.000 title claims description 8
- 239000000758 substrate Substances 0.000 claims description 4
- 238000009835 boiling Methods 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 239000002923 metal particle Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000002335 surface treatment layer Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Description
【発明の詳細な説明】
この発明は、海洋温度差発電、省ェェルギ−のための緋
熱利用発電または熱利用において、必須技術の一つであ
る蒸発伝熱面での高性能化に使用される金属繊維層蒸発
伝熱面を有する伝熱体(以下単に伝熱体という)に関す
るものである。[Detailed Description of the Invention] This invention is used to improve performance in terms of evaporative heat transfer, which is one of the essential technologies in ocean thermal power generation, scarlet heat power generation for energy saving, or heat utilization. The present invention relates to a heat transfer body (hereinafter simply referred to as a heat transfer body) having a metal fiber layer evaporation heat transfer surface.
従来、蒸発伝熱面の高・性能化には多くの試みがなされ
てきたが、このうち代表的なものとして蒸発伝熱面に金
属粒子を付着させることによって多孔質層を形成したも
のがあった。このように金属粒子により形成されるもの
は、粒蓬分布と熱的過程のため、性能の均一性に欠ける
等の欠点があった。この発明は上記の欠点を除去するた
めになされたもので「均一な繊度、層の厚さ、加圧等を
十分制御できるようにし、非常に均一な、かつ従来の金
属粒子法では制御できない気泡核の空洞を形成する方法
を作動流体の物性値に合わせて選択できるようにした伝
熱体を提供するものである。In the past, many attempts have been made to improve the performance of the evaporative heat transfer surface, but one of the representative ones is to form a porous layer by attaching metal particles to the evaporative heat transfer surface. Ta. Those formed of metal particles have drawbacks such as lack of uniformity in performance due to particle distribution and thermal processes. This invention was made in order to eliminate the above-mentioned drawbacks, and it is possible to sufficiently control the uniform fineness, layer thickness, pressure, etc., and to achieve extremely uniform air bubbles that cannot be controlled with the conventional metal particle method. The present invention provides a heat transfer body in which a method for forming a core cavity can be selected in accordance with the physical properties of a working fluid.
以下、この発明について説明する。第1図はこの発明の
一実施例を示す伝熱体の構成図である。This invention will be explained below. FIG. 1 is a configuration diagram of a heat transfer body showing an embodiment of the present invention.
すなわち、ステンレス、アルミ合金等の伝熱基板1の上
に、ステンレス繊維等の金属繊維肩2を高温下における
加圧溶着あるいは機械的圧着等をさせることにより付着
した構造を有している。これを成形するとにより管の外
面あるいは管内面にも多孔質層を形成させることがでる
。また、第2図はこの発明の他の実施例を示す伝熱体の
構成図で、異なる織度の金属繊維線状の層を多層(通常
は2層)金属繊維層3にすることによって、内側が大き
く入口の小さい空洞部を作ることができる。次に、この
発明の伝熱体の使用例を第3図、第4図により説明する
。That is, it has a structure in which a metal fiber shoulder 2 such as stainless steel fiber is attached onto a heat transfer substrate 1 made of stainless steel, aluminum alloy, etc. by pressure welding or mechanical compression at high temperature. By molding this, a porous layer can be formed on the outer surface or inner surface of the tube. FIG. 2 is a configuration diagram of a heat transfer body showing another embodiment of the present invention. By forming a multilayer (usually two) metal fiber layer 3 of metal fiber linear layers of different weaves, It is possible to create a cavity with a large inside and a small entrance. Next, an example of use of the heat transfer body of the present invention will be explained with reference to FIGS. 3 and 4.
第3図は多管円筒式蒸発器の一部を示す側断面図で、1
1は左右のジャケット、川ま前記左右のジャケット11
を連結する熱伝達の良い材料からなるパイプで、外面に
第1図、第2図で説明した金属繊維層2または多層金属
繊維層3を付着した表面処理面13が形成される。Figure 3 is a side sectional view showing part of a multi-tube cylindrical evaporator.
1 is the left and right jacket, Kawama is the left and right jacket 11
The pipe is made of a material with good heat transfer and has a surface treated surface 13 on which the metal fiber layer 2 or multilayer metal fiber layer 3 described in FIGS. 1 and 2 is attached to the outer surface.
14は前記ジャケット11「パイプ12内を通る温水「
15は媒体で、フロン(フレオン;デュポン社商標名
「R2、RI1、RI14、R12、………)や、アン
モニア「プロパン、ブタン、などの低沸点のものが用い
られる。14 is the jacket 11 "hot water passing through the pipe 12"
Reference numeral 15 denotes a medium, which is a low-boiling point medium such as Freon (Trade name: DuPont: R2, RI1, RI14, R12, etc.), ammonia (propane, butane, etc.).
場合によっては水でもよい。の構成によれば温水14の
熱は媒体151こ蒸発面または沸騰伝熱面である表面処
理面13により伝達される。In some cases, water may be used. According to this structure, the heat of the hot water 14 is transferred to the medium 151 through the surface treated surface 13 which is an evaporation surface or a boiling heat transfer surface.
第4図はプレート式蒸発器の例で、第4図aは要部の斜
視図、第4図bは第4図aのA矢視図である。この例で
は第3図のパイプi2にかえて平板12′を用い、温水
翼4を通す通路亀6と、媒体15を通す通路17とを交
互に形成したものであり「表面処理層13の形成方法は
同じである。なお〜第3図の例ではパイプ12の外面に
表面処理層13を形成したが「 これは内面に設けても
よい。また、温水14と媒体亀5の流れの方向は、平行
〜対向、直交その他任意の形成をとることができる。こ
のように、この発明の伝熱体を表面処理13に使用する
ことにより高性能熱過係数を有する蒸発器を得ることが
できる。FIG. 4 shows an example of a plate type evaporator, FIG. 4a is a perspective view of the main part, and FIG. 4b is a view taken in the direction of arrow A in FIG. 4a. In this example, a flat plate 12' is used in place of the pipe i2 shown in FIG. The method is the same. Although the surface treatment layer 13 is formed on the outer surface of the pipe 12 in the example shown in FIG. 3, it may also be provided on the inner surface. , parallel to opposing, perpendicular, and other arbitrary configurations.Thus, by using the heat transfer body of the present invention in the surface treatment 13, an evaporator with a high performance thermal overcoefficient can be obtained.
以上説明したようにこの発明は「均一多孔質面が得られ
るので、蒸発性能の均一化をはかることができ、品質管
理が向上するため設計精度を上げることがきる。As explained above, this invention allows ``a uniform porous surface to be obtained, so that evaporation performance can be made uniform, quality control can be improved, and design accuracy can be increased.
また、歳性能蒸発面が得られるので装置を小型化でき、
低密度でエネルギー利用を可能とすることができる。さ
らに、織度の選び方で任意の寸法の空洞を作り得るので
作動流体の物性値に最適の選択が可能となる。また、内
面蒸発管としての伝熱促進が可能となる等の利点を有す
る。In addition, since a long-lasting evaporation surface is obtained, the device can be made smaller.
Energy can be used at low density. Furthermore, since a cavity of any size can be created by selecting the weave, it is possible to select the optimum size for the physical properties of the working fluid. Further, it has advantages such as being able to promote heat transfer as an internal evaporation tube.
第1図はこの発明の一実施例を示す伝熱体の構成図、第
2図はこの発明の他の実施例を示す伝熱体の構成図、第
3図、第4図はこの発明の伝熱体の使用例を示したもの
で、第3図は多管円筒式蒸発器の一部側断面図、第4図
はプレート式蒸発器の斜視図である。
図中、1【ま伝熱基板、2は金属繊維層、3は多層金属
繊維層である。
第1図
第2図
第3図
第ム図FIG. 1 is a block diagram of a heat transfer body showing one embodiment of this invention, FIG. 2 is a block diagram of a heat transfer body showing another embodiment of this invention, and FIGS. 3 and 4 are block diagrams of a heat transfer body showing another embodiment of this invention. An example of the use of the heat transfer body is shown, with FIG. 3 being a partial side sectional view of a multi-tube cylindrical evaporator, and FIG. 4 being a perspective view of a plate evaporator. In the figure, 1 is a heat transfer substrate, 2 is a metal fiber layer, and 3 is a multilayer metal fiber layer. Figure 1 Figure 2 Figure 3 Figure 3
Claims (1)
近いところに繊維径の大きい金属繊維を成層させ、その
上に、それより金属繊維径の小さい金属繊維の層を形成
させることにより、径の異なる金属繊維層を複合的に用
いたことを特徴とする金属繊維層蒸発伝熱面を有する伝
熱体。1. On a heat transfer substrate that performs evaporation and boiling, metal fibers with a large fiber diameter are layered near the substrate, and on top of that, a layer of metal fibers with a smaller diameter is formed. A heat transfer body having a metal fiber layer evaporation heat transfer surface, characterized in that metal fiber layers of different types are used in a composite manner.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5981080A JPS6017993B2 (en) | 1980-05-06 | 1980-05-06 | Heat transfer body with metal fiber layer evaporation heat transfer surface |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5981080A JPS6017993B2 (en) | 1980-05-06 | 1980-05-06 | Heat transfer body with metal fiber layer evaporation heat transfer surface |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS56157795A JPS56157795A (en) | 1981-12-05 |
| JPS6017993B2 true JPS6017993B2 (en) | 1985-05-08 |
Family
ID=13123960
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP5981080A Expired JPS6017993B2 (en) | 1980-05-06 | 1980-05-06 | Heat transfer body with metal fiber layer evaporation heat transfer surface |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS6017993B2 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH04130529U (en) * | 1991-05-24 | 1992-11-30 | 三菱自動車工業株式会社 | vehicle seat |
-
1980
- 1980-05-06 JP JP5981080A patent/JPS6017993B2/en not_active Expired
Also Published As
| Publication number | Publication date |
|---|---|
| JPS56157795A (en) | 1981-12-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0716444A1 (en) | Radiating plate and cooling method using same | |
| US6679318B2 (en) | Light weight rigid flat heat pipe utilizing copper foil container laminated to heat treated aluminum plates for structural stability | |
| US3948316A (en) | Process of and device for using the energy given off by a heat source | |
| WO1996032618A1 (en) | Carbon/carbon composite parallel plate heat exchanger and method of fabrication | |
| CN111780603A (en) | A large flat soaking plate of composite liquid absorbing core | |
| EP1511969B1 (en) | Heat exchanger | |
| JPS60243484A (en) | Heat exchanger | |
| US3396782A (en) | Heating unit | |
| JPS6017993B2 (en) | Heat transfer body with metal fiber layer evaporation heat transfer surface | |
| US4747448A (en) | Heat exchangers | |
| PT1682463E (en) | Method for producing composite objects using expanded graphite and vermiculite | |
| CN216592927U (en) | Heat pipe | |
| GB2153439A (en) | Vacuum cooling trap | |
| JPH0470559B2 (en) | ||
| JPS6071801U (en) | steam generator | |
| WO2000031485A1 (en) | Counter-flow heat exchanger with integral manifolds and passage | |
| JPS61106677U (en) | ||
| JPS6130066Y2 (en) | ||
| JPH10185356A (en) | Heat transfer tube for heat exchanger of absorption refrigerator and method of manufacturing the same | |
| JPS6349157B2 (en) | ||
| JPS6036839Y2 (en) | Finned tube for solar heat collector | |
| JPH0419341Y2 (en) | ||
| CN119826086A (en) | Liquid hydrogen storage tank device utilizing vertical radiation refrigeration and multilayer heat insulation | |
| JPS5687796A (en) | Fin tube type heat exchanger | |
| CA1146113A (en) | Metal-plated foam heat transfer surface |