JPS6017865A - Molten salt fuel cell - Google Patents

Molten salt fuel cell

Info

Publication number
JPS6017865A
JPS6017865A JP58126505A JP12650583A JPS6017865A JP S6017865 A JPS6017865 A JP S6017865A JP 58126505 A JP58126505 A JP 58126505A JP 12650583 A JP12650583 A JP 12650583A JP S6017865 A JPS6017865 A JP S6017865A
Authority
JP
Japan
Prior art keywords
molten salt
fuel cell
electrolyte
lithium
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58126505A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yanagihara
伸行 柳原
Junji Niikura
順二 新倉
Hisao Giyouten
久朗 行天
Hide Koshina
秀 越名
Akihiro Hosoi
昭宏 細井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58126505A priority Critical patent/JPS6017865A/en
Publication of JPS6017865A publication Critical patent/JPS6017865A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain molten salt fuel cell solid electrolyte having high electrolyte ability, high thermal and mechanical shock resistance, and good corrosion resistance by impregnating molten salt in a porous substrate prepared by press- molding the mixture of metal oxide fibers whose surfaces are covered with lithium and lithium aluminate fine powder and sintering. CONSTITUTION:Lithium aluminate fine powder is mixed with alumina fibers whose surfaces are covered with lithium and they are press-molded with a binder containing solvent. After removing solvent, the moldings is sintered at high temperature to form a porous body. The sintered porous body is impregnated with molten carbonate at high temperature to prepare an electrolyte holding body. An air electrode 4 and a fuel electrode 5 are faced with the electrolyte holding body 3 interposed. An oxidizing gas chamber 6 and a stainless steel current collector 7 are arranged on air electrode side, and a fuel gas chamber 8 and nickel current collector 9 are on fuel side. This process provides a molten salt fuel cell with high performance, long life, and low cost.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は水素、−酸化炭素などを燃t1とし、酸2 ・ 素、空気、炭酸ガスなどを酸化剤として、溶融塩を電解
質とする溶融塩撚ネ」電池に関する。
[Detailed Description of the Invention] Industrial Field of Application The present invention is a molten salt twisting method in which hydrogen, carbon oxide, etc. are used as the fuel, acid 2, air, carbon dioxide, etc. are used as the oxidizing agent, and molten salt is used as the electrolyte. Regarding batteries.

従来例の構成とその問題点 高温型溶融塩燃料電池は高温下での化学反応速度が大き
いことを利用して、高電流密度を得ようとしたものであ
り、電解質として高温下でもイオンの移動が可能である
溶融塩、たとえばC0j−の導電性を有する炭酸塩など
が用いられている。そして、燃料として水素、酸化剤と
して空気中の酸素を用いてつぎの反応を行なわせる燃料
電池を構成する。
Conventional configurations and their problems High-temperature molten salt fuel cells attempt to obtain high current density by taking advantage of the high chemical reaction rate at high temperatures. A molten salt capable of , for example, a carbonate having a conductivity of C0j-, is used. Then, a fuel cell is constructed in which the following reaction is carried out using hydrogen as a fuel and oxygen in the air as an oxidizing agent.

」二記反応式から明らかなように燃料極側では水素が電
解質の003 と反応して消費され、反応生成物として
水と炭酸ガスができる。一方、空気極側では酸素と炭酸
ガスは電解質へCO腎の形になって消費される。ここで
燃料極側で生成した炭酸ガスは空気極に供給して消費さ
れるので全体的には3ぺ2 H+%02→H20の反応式となり、水素と酸素から水
が中成する。電解a中ではCO3イオノの移動のみであ
り、炭酸ガスは物質収支上関与しない。したがって、上
記反応を効率よく、長時間安定した性能で発電出来るこ
とが望寸しい。これらの特性を左右する要因の中に電解
質保持体があり、電解質の保持能力が高く電解質に対し
て安定でありしかも熱的2機械的強度が大きい事が重要
である。
As is clear from the reaction equation 2, hydrogen reacts with 003 of the electrolyte and is consumed on the fuel electrode side, producing water and carbon dioxide as reaction products. On the other hand, on the air electrode side, oxygen and carbon dioxide are consumed as electrolytes in the form of CO kidneys. Here, the carbon dioxide gas generated on the fuel electrode side is supplied to the air electrode and consumed, so the overall reaction formula is 3P2H+%02→H20, and water is intermediately formed from hydrogen and oxygen. During electrolysis a, only CO3 ions move, and carbon dioxide gas does not participate in the mass balance. Therefore, it is desirable to be able to generate electricity through the above reaction efficiently and with stable performance over a long period of time. Among the factors that influence these properties is the electrolyte holder, and it is important that it has a high electrolyte holding capacity, is stable with respect to the electrolyte, and has high thermal and mechanical strength.

従来の電解質保持体は酸化マグネシウム(MqOL酸化
アルミニウムの微細な粉末などの焼結多孔体から成って
いた。この種の焼結多孔体は600℃以上の高い温度に
対する熱的衝撃性に弱、く、高温時のヒートザイクルに
よって、亀裂、破壊する欠点を有している。この欠点を
改良するためにさらに、繊維状のアルミン酸リチウム(
L IA lO2)単独、捷たは粉末状のアルミン酸リ
チウム(L I Al2O2)との混合物からなる電解
質保持体が提案されている(U、S、RAT、 387
8296 )。この種の電解質保持体−1、γ−アルミ
ナ繊維(A1203フアイバー)と炭酸リチウム(L 
12 CO3)を700℃で16時間反応させてγ−L
 I A IO2ファイバーヲ得ティる。このγ−Li
A/’02 ファイバーはAl2O3ファイバー上り而
・1食性は優れているが機械的強度が弱く、しかも高価
である。寸たAl2O3ファイバー単独ではi=1食性
(電解質との反応性が大きい)の点で問題がある。
Conventional electrolyte holders have been made of sintered porous materials such as fine powder of magnesium oxide (MqOL aluminum oxide).This type of sintered porous material has poor thermal shock resistance at high temperatures of 600°C or higher. , it has the disadvantage of cracking and breaking due to heat cycles at high temperatures.In order to improve this disadvantage, fibrous lithium aluminate (
An electrolyte support consisting of lithium aluminate (LIAlO2) alone or in a mixture with powdered lithium aluminate (LIAl2O2) has been proposed (U, S, RAT, 387
8296). This type of electrolyte holder-1 consists of γ-alumina fiber (A1203 fiber) and lithium carbonate (L
12 CO3) at 700℃ for 16 hours to form γ-L.
IA IO2 fiber is available. This γ-Li
A/'02 The fiber is Al2O3 fiber and has excellent monolithic properties, but has low mechanical strength and is expensive. A small Al2O3 fiber alone has a problem in terms of i=1 edibility (high reactivity with electrolyte).

発明の目的 本発明は両者酸化物の利点に着目し、安価、電解質の保
持力が高く、熱・機械的衝撃にも強く、削食性が優れ、
長時間安定した性能の溶融塩燃料電池を得ることを目的
とする。
Purpose of the Invention The present invention focuses on the advantages of both oxides; they are inexpensive, have high electrolyte retention, are resistant to thermal and mechanical shocks, have excellent machining properties,
The aim is to obtain a molten salt fuel cell with stable performance over a long period of time.

発明の構成 本発明は表面をリチウム化した金属酸化物(主にAl2
O32MqOなど)繊維を混在して々るアルミン酸リチ
ウム(L 1A102 )の微細粉末を溶媒を含むバイ
ンダーと共に加圧成写りし、溶媒を除去した後、焼結し
た多孔性基板に溶融塩を含浸させた電解質保持体を有す
る溶融塩燃料電池である。
Structure of the Invention The present invention is based on a metal oxide (mainly Al2) whose surface is lithiated.
Fine powder of lithium aluminate (L 1A102 ) mixed with fibers (O32MqO, etc.) is pressure-coated with a binder containing a solvent, and after removing the solvent, the sintered porous substrate is impregnated with molten salt. This is a molten salt fuel cell having an electrolyte support.

実施例の説明 57・ 。Description of examples 57・.

以下、本発明の詳細を図示の実施例によって説明する。Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

本発明の溶融塩燃料電池の電解質保持体として用いる金
属酸化物ファイバーの拡大図を第1図に、その断面を第
2図に、またこのファイバーを電解質保持体に用いた燃
料電池を第3図に示す。第1図お」:び第2図において
、アルミナ繊維(γ−A1203)1の表面でリチウム
化反応がおこってLiAl02層2を形成している。表
面にリチウム化処理を行なったアルミナ繊維にアルミン
酸リチウム(LiAd○2)の微粉末を混合し、溶媒を
含むバインダーと共に加圧成型し、溶媒を除去した後、
高温(1,000℃以−に)で焼結して多孔体を作った
An enlarged view of the metal oxide fiber used as an electrolyte holder in the molten salt fuel cell of the present invention is shown in Fig. 1, its cross section is shown in Fig. 2, and a fuel cell using this fiber as an electrolyte holder is shown in Fig. 3. Shown below. In FIG. 1 and FIG. 2, a lithiation reaction occurs on the surface of the alumina fiber (γ-A1203) 1 to form a LiAl02 layer 2. Fine powder of lithium aluminate (LiAd○2) is mixed with alumina fiber whose surface has been subjected to lithium treatment, and the mixture is pressure-molded with a binder containing a solvent. After removing the solvent,
A porous body was produced by sintering at high temperature (1,000°C or higher).

アルミナ繊維の表面リチウム化反応は、アルミナとリチ
ウムが化学量論的に反応する量の60%以下として、し
かも反応時間も約1〜2時間とすることで達成すること
ができる。要するにリチウム化反応が表面部捷でしか進
丑ないような条件で行なった。
The surface lithiation reaction of alumina fibers can be achieved by setting the amount of alumina and lithium to be 60% or less of the stoichiometric amount of reaction, and also by setting the reaction time to about 1 to 2 hours. In short, the conditions were such that the lithiation reaction proceeded only at the surface.

この焼結多孔体に高温状態で溶融炭酸塩を含浸させて電
解質保持体とした。そして第3図に示す燃料電池で性能
試験を行なった。本発明の電解質保持体3を介して空気
4つ4と燃料極5があり、空気極側には酸化剤ガス室6
とステンレス製の集電体7が設けである。一方、燃料極
側には燃料ガス室8とニッケル製の集電体9があり、前
者には酸化剤ガスの供給口10と排出口11、後者に燃
料ガスの供給口12と排出口13がある。14は端板で
全体を挾有している。
This sintered porous body was impregnated with molten carbonate at a high temperature to form an electrolyte holder. A performance test was then conducted using the fuel cell shown in FIG. There are four air holes 4 and a fuel electrode 5 via the electrolyte holder 3 of the present invention, and an oxidant gas chamber 6 on the air electrode side.
A current collector 7 made of stainless steel is provided. On the other hand, on the fuel electrode side, there is a fuel gas chamber 8 and a current collector 9 made of nickel. be. 14 is an end plate that holds the whole.

空気極と燃料極はすべて公知の製法により、空気極はリ
チウムをドープしたニッケル焼結多孔体電極、燃料極は
クロームをドープしたニッケル焼結多孔体電極である。
The air electrode and the fuel electrode are all manufactured by known methods, the air electrode being a nickel sintered porous electrode doped with lithium, and the fuel electrode being a nickel sintered porous electrode doped with chromium.

本発明の電解質保持体を用いた燃料電池(へ、従来型(
B)・・・・・・アルミナファイバー単体で用いた場合
、従来型(q・・・・・・アルミン酸リチウムファイバ
ー単体で用いた場合の特性比較をする。作動温度二〇6
゜℃、燃料ガス:水素ガス、酸化剤ガス:20〜30係
炭酸ガスを含有する空気、電極の大きさは試験用として
50肺×60陥、厚さ二〇。8〜1.C)wII程度で
7+’)るLl 4Tr流j7+(+度: 100 m
A/7のn、!+ )作動試、験結宋を表に小−,1−
1、 この様に60時間寸での初期特性については太き々特1
/1面での差3士ないが、動作停止を6回含む通算50
0時間程経過するとBとCには性能低下が見られる。こ
の原因としてBばγ−A1203ファイバーと電解質で
ある溶融炭酸塩と過激な反応をするだめ、ひび割ノコな
どが発生し、電池内で一部分ガスの混合による性能低下
と変形によるガスもれが考えられる。CはL i A 
lO2ファイバーと電解質である溶融炭酸塩との反応は
少ないが、それ自体機械的強度が弱く、熱的衡機に対し
て而・1えきれず、内部でBと同様に亀裂を生じて、性
能低下をおこしている。これに対して、本発明の電解質
保持体はγ−A4203ファイバーの機械的強さと表面
でのリチウム化による電解質との反応性を抑制による熱
的衡機などによる亀裂がなく在り、600時間でも殆ん
ど性能の低下がない。B、Cは約0.1■/セルの低下
に対して、○。01V/セルと昂以下に寸で改良されて
いる。さらに、γ−A1203の表面にのみリチウム化
合物で包囲させるので、材料コストが%以下、処理時間
の短縮にもなり、さらにコストダウンが可能となる。
Fuel cells using the electrolyte holder of the present invention (to conventional type)
B) Compare the characteristics when using alumina fiber alone and the conventional type (q... when using lithium aluminate fiber alone. Operating temperature 206
°C, fuel gas: hydrogen gas, oxidant gas: air containing 20-30% carbon dioxide, electrode size: 50 lungs x 60 cavities, thickness 20 mm for testing. 8-1. C) Ll 4Tr flow j7+ (+ degree: 100 m
A/7 n,! +) Operation test, test result Song is shown as small-, 1-
1. In this way, the initial characteristics at 60 hours are as follows:
/There is only a difference of 3 stars in the first stage, but the total is 50 including 6 stoppages.
After approximately 0 hours have elapsed, performance deterioration is seen in B and C. The cause of this is thought to be that the B-A1203 fiber reacts violently with the molten carbonate electrolyte, causing cracks, etc., and that the performance deteriorates due to partial gas mixture inside the battery and gas leaks due to deformation. It will be done. C is L i A
Although there is little reaction between the 1O2 fiber and the molten carbonate electrolyte, it itself has low mechanical strength and cannot withstand the thermal balance, causing cracks inside like B, resulting in a decrease in performance. It's happening. On the other hand, the electrolyte holder of the present invention has no cracks due to thermal balance due to the mechanical strength of the γ-A4203 fiber and suppression of reactivity with the electrolyte due to lithiation on the surface, and there are almost no cracks even after 600 hours. There is no deterioration in performance. B and C are ○ for a decrease of approximately 0.1■/cell. It has been improved by 0.01V/cell, which is less than 1.0V/cell. Furthermore, since only the surface of γ-A1203 is surrounded by the lithium compound, the material cost is less than 1% and the processing time can be shortened, making it possible to further reduce costs.

本実施例では金属酸化物繊維としてアルミナ(a、γタ
イプのA1203)を用いだが、他の而」熱性酸化物、
Mq○などの繊維であってもより、要するに面1熱性の
ある繊維状セラミックであれば適用できる3゜ 寸だ、表面をリチウム化した金属酸化物繊維の帛゛が少
ないと効果が低いので亀裂などが発生する場合があるの
で、少なくとも電解質保持体の2w t %以−1=は
必要である。一方繊維を多量に入れると強度は向」−す
るがコストアップにつながるので、強度面、性能面から
考えて約20wt%丑でか最適である。その時リチウム
の量はAl2O3繊維の量97゜ に対して化学量論的に100wt%であればすべてがリ
チウム化してし吐うので、コストも考えて50wt係以
下係架下、しい。
In this example, alumina (A, γ type A1203) was used as the metal oxide fiber, but other thermal oxides,
Even if it is a fiber such as Mq○, in short, if it is a fibrous ceramic with surface 1 heat resistance, the 3° dimension can be applied, but if there is a small amount of metal oxide fiber with a lithiated surface, the effect will be low, so it will not crack. Therefore, at least 2 wt % or more of the electrolyte holding body is required. On the other hand, if a large amount of fiber is added, the strength will be improved, but it will also lead to an increase in cost, so in terms of strength and performance, about 20 wt% is optimal. At that time, if the amount of lithium is stoichiometrically 100 wt% with respect to the amount of 97° Al2O3 fibers, all of the lithium will be converted to lithium and discharged, so considering the cost, it is recommended that the weight be less than 50 wt%.

発明の効果 以−にの様に本発明は電解r[保持体の耐熱性と耐食性
、熱的衡機性の向上を曲ることにより、高性能で、長時
間発電が可能となり、しかも低コスト化ができる溶融塩
燃料電池を得ることができる。
As can be seen from the effects of the invention, the present invention has improved the heat resistance, corrosion resistance, and thermal equilibrium of the electrolytic holder, thereby making it possible to generate electricity with high performance and over a long period of time, and at a lower cost. A molten salt fuel cell can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は表面にリチウム化合物を形成したアルミナファ
イバーの拡大図、第2図は第1図におけるアルミナファ
イバーの断面図、第3図は本発明の一実施例の溶融塩燃
料電池の構成図である。 1・・・・・・アルミナ繊維、2・・・・・・LiAl
02層、3・・・・・・電解質保持体、4・・・・・空
気極、6・・・・・・燃才」極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 / 第3図 第2図 TI 〜2;□;
Figure 1 is an enlarged view of an alumina fiber with a lithium compound formed on its surface, Figure 2 is a cross-sectional view of the alumina fiber in Figure 1, and Figure 3 is a configuration diagram of a molten salt fuel cell according to an embodiment of the present invention. be. 1...Alumina fiber, 2...LiAl
02 layer, 3... Electrolyte holding body, 4... Air electrode, 6... Fuel electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure/ Figure 3 Figure 2 TI ~2;□;

Claims (3)

【特許請求の範囲】[Claims] (1)アルミン酸リチウム(L I A 1302 )
の微細粉末と表面をリチウム化した金属酸化物繊維を混
在した多孔性焼結基板に溶融塩を含浸させた電解質保持
体を構成要素とすることを特徴とする溶融塩燃料電池。
(1) Lithium aluminate (LIA 1302)
A molten salt fuel cell characterized in that its constituent elements are an electrolyte holder in which a porous sintered substrate containing a mixture of fine powder and metal oxide fiber whose surface is lithiated is impregnated with molten salt.
(2)金属酸化物繊維とアルミン酸リチウムの微細粉末
を加えたものに対i〜で前記金属酸化物繊維の量が2〜
2 Ow を係の範囲内で混在させたことを特徴とする
特許請求の範囲第1項記載の溶融塩燃料電池。
(2) The amount of the metal oxide fiber is 2 to i in the mixture of metal oxide fiber and fine powder of lithium aluminate.
2. The molten salt fuel cell according to claim 1, wherein 2 Ow is mixed within the specified range.
(3)金属酸化物繊維は主としてアルミナ(A1203
)から構成することを特徴とする特許請求の範囲第1項
記載の溶融塩燃料電池。
(3) Metal oxide fiber is mainly alumina (A1203
) The molten salt fuel cell according to claim 1, wherein the molten salt fuel cell is comprised of:
JP58126505A 1983-07-12 1983-07-12 Molten salt fuel cell Pending JPS6017865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58126505A JPS6017865A (en) 1983-07-12 1983-07-12 Molten salt fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58126505A JPS6017865A (en) 1983-07-12 1983-07-12 Molten salt fuel cell

Publications (1)

Publication Number Publication Date
JPS6017865A true JPS6017865A (en) 1985-01-29

Family

ID=14936865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58126505A Pending JPS6017865A (en) 1983-07-12 1983-07-12 Molten salt fuel cell

Country Status (1)

Country Link
JP (1) JPS6017865A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6140721A (en) * 1998-07-31 2000-10-31 Matsushita Electric Industrial Co., Ltd. Slender-type cylindrical coreless motor and battery driven equipment using the same
CN109478655A (en) * 2016-07-25 2019-03-15 罗伯特·博世有限公司 For manufacturing the method and fuel cell that are used for the current-collector of fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6140721A (en) * 1998-07-31 2000-10-31 Matsushita Electric Industrial Co., Ltd. Slender-type cylindrical coreless motor and battery driven equipment using the same
CN109478655A (en) * 2016-07-25 2019-03-15 罗伯特·博世有限公司 For manufacturing the method and fuel cell that are used for the current-collector of fuel cell
CN109478655B (en) * 2016-07-25 2022-03-18 罗伯特·博世有限公司 Method for producing a current collector for a fuel cell and fuel cell

Similar Documents

Publication Publication Date Title
US3878296A (en) Reaction of lithium carbonate and fibrous aluminum oxide to produce lithium aluminate
JPH0258744B2 (en)
US4656735A (en) Process for producing an electrolyte retaining matrix of electrical insulating long fibers
JPS6017865A (en) Molten salt fuel cell
JPH0261095B2 (en)
JPH0311503B2 (en)
JPH0520872B2 (en)
JPS6124164A (en) Electrolyte supporter of fused carbonate type fuel cell
JPH0412591B2 (en)
JPH077668B2 (en) Molten carbonate fuel cell electrode
JPS63184265A (en) Manufacture of bubble pressure resistant layer for fuel cell
JPH01204365A (en) Anode of molten carbonate fuel cell
JPS62176063A (en) Manufacture of electrolyte tile of molten carbonate fuel cell
JPS6017864A (en) Molten salt fuel cell
JPH0680592B2 (en) Electrolyte matrix for molten carbonate fuel cell
JPH06243872A (en) Fuel electrode for solid electrolyte type fuel cell
KR100331083B1 (en) An anode of molten carbonate fuel cell
JPS59219864A (en) Molten salt fuel cell
JPS59230261A (en) Fuel cell
JPH0440832B2 (en)
JPS62128457A (en) Molten carbonate type fuel cell
JPH04206155A (en) Manufacture of fuel electrode for molten carbonate fuel cell
JPH0410186B2 (en)
JPH0350387B2 (en)
JPS63138662A (en) Manufacture of electrolyte tile for fused carbonate type fuel cell