JPS62128457A - Molten carbonate type fuel cell - Google Patents

Molten carbonate type fuel cell

Info

Publication number
JPS62128457A
JPS62128457A JP60268634A JP26863485A JPS62128457A JP S62128457 A JPS62128457 A JP S62128457A JP 60268634 A JP60268634 A JP 60268634A JP 26863485 A JP26863485 A JP 26863485A JP S62128457 A JPS62128457 A JP S62128457A
Authority
JP
Japan
Prior art keywords
carbonate
potassium titanate
electrolyte
powder
lithium aluminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60268634A
Other languages
Japanese (ja)
Inventor
Tsuneo Nakanishi
仲西 恒雄
Tomio Sugiyama
富夫 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60268634A priority Critical patent/JPS62128457A/en
Publication of JPS62128457A publication Critical patent/JPS62128457A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To achieve the long time performance of electrical energy generating ability and anti-heat cycle resistance, by providing an electrolytic plate which is formed by hot-compression molding the mixture of the main holding material of electrolyte and lithium aluminate powder and the reinforcing material of potassium titanate fiber. CONSTITUTION:Lithium aluminate powder is used for a main holding material, the potassium titanate fiber of relatively small quantity, namely 5-30 weight portions against the main holding material of 50 weight portions is added to the main holding material as a reinforcing material, and powdery substance in which the electrolytic powder of the mixture of lithium carbonate and potassium carbonate, the lithium aluminate powder and the potassium titanate fiber are mixed and dispersed is hot- compression molded with using a hot press so as to form an electrolytic plate. The electrolytic plate in which the carbonate powder of the mixture of lithium carbonate and potassium carbonate, the lithium aluminate powder and the potassium titanate fiber are mixed in a prescribed blending ratio is molded and processed by the way of hot press under the conditions of the molding temperature of about 480 deg.C and the pressure of about 200-600kg/cm<2>. Thus, anti-heat cycle resistance can be improved, and electrical energy generating ability can be maintained stably for long time.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は炭酸カリウム(KxCOs) 、炭酸リチウム
(Li、C03)などのアルカリ炭酸塩(以下炭酸塩と
略称する)を電解質として用いる溶融炭酸塩型燃料電池
、ことに炭酸塩を保持した電解質板に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a molten carbonate using an alkali carbonate (hereinafter abbreviated as carbonate) such as potassium carbonate (KxCOs) or lithium carbonate (Li, CO3) as an electrolyte. type fuel cells, in particular electrolyte plates containing carbonates.

〔従来技術とその問題点〕[Prior art and its problems]

溶融炭酸塩型燃料電池は溶融状態にある炭酸塩(600
℃程度)を保持した電解質板の両面tこそれぞれ配され
たカソード電極およびアノード電極の表面上に間隔片を
兼ねた集電板および一対の端板により画成された反応ガ
ス室内にそれぞれ燃料ガスおよび酸化ガスを流すことに
より、両電極対に生ずる電気化学反応により発電を行う
ものである。上述のように作動温度が600℃程度の高
温であるために電極対には反応を促進するための貴金属
触媒を必要とせず、発電によって生ずる排熱の利用範囲
が広く、全体的な効率が高く、燃料ガス中に一酸化炭素
(CO)、炭酸ガス(COz)を含んでもよいなどの特
長があり、したがって石炭ガス化プラントと結合した大
型発電プラントから天然ガスなどを用いた分散型の比較
的小容蓋の発電装置まで応い適用範囲を有する次世代燃
料電池として注目されている。
A molten carbonate fuel cell uses carbonate (600
The fuel gas is contained in a reaction gas chamber defined by a current collector plate that also serves as a spacing piece and a pair of end plates on the surfaces of a cathode electrode and an anode electrode arranged on both sides of an electrolyte plate that maintains a temperature of about By flowing an oxidizing gas and an oxidizing gas, electricity is generated through an electrochemical reaction that occurs between both pairs of electrodes. As mentioned above, since the operating temperature is as high as about 600°C, there is no need for a noble metal catalyst in the electrode pair to promote the reaction, and the exhaust heat generated by power generation can be used over a wide range of areas, resulting in high overall efficiency. , the fuel gas can contain carbon monoxide (CO) and carbon dioxide (COz), and therefore, it is possible to convert from a large-scale power generation plant combined with a coal gasification plant to a decentralized one using natural gas, etc. It is attracting attention as a next-generation fuel cell that can be applied to small-cap power generation devices.

ところで、大容量の燃料電池に用いられる電解質板化と
しては厚みが1m程度で1辺の長さが1mに近い薄板状
であり、かつ作動温度で溶融状態になる炭酸塩からなる
電解質の導電性を阻害することなく流失を防止すること
ができ、さらに電極との密着性をよくするためlこ凹凸
や湾曲のない平らな薄板であることが求められる。した
がって、電解質板には600℃程度の高温において熱的
に安定で溶融炭酸塩に侵されず、かつ多量の電解質を毛
細管現象により保持して流出を防ぎ、導電性を維持する
多孔質構造材を必要とする。この種の構造材としてはマ
グネシア、アルミナ、ジルコニアなどの耐火性粉末を混
合焼結したものが知られているが、薄板の平面性に問題
があるために、アルミン酸リチウム(Li kto2)
粉末と炭酸塩粉末の混合物を加熱圧縮成形したものが使
用されるようになっている。このようlこして形成され
た構造材は耐炭酸塩性に優れ、製造時にアルミン酸リチ
ウムと炭酸塩の混合比を自在に調整できるために多孔性
に富み、かつ炭酸塩の保持力が優れ、平面性がよいため
に電極対との密着性がよいので、発電性能の面で優れた
電解質板を得ることができる。
By the way, the electrolyte plate used in large-capacity fuel cells is a thin plate with a thickness of about 1 m and a side length of nearly 1 m, and the conductivity of the electrolyte made of carbonate, which becomes molten at the operating temperature. It is required to be a flat thin plate without any unevenness or curvature in order to be able to prevent runoff without interfering with the flow and to improve adhesion with the electrode. Therefore, the electrolyte plate is made of a porous structural material that is thermally stable at high temperatures of around 600°C, is not attacked by molten carbonate, and retains a large amount of electrolyte through capillary action to prevent leakage and maintain conductivity. I need. As this type of structural material, materials made by mixing and sintering refractory powders such as magnesia, alumina, and zirconia are known, but due to problems with the flatness of the thin plates, lithium aluminate (Li kto2) is used.
A mixture of powder and carbonate powder that is heated and compressed is now being used. The structural material formed in this manner has excellent carbonate resistance, and because the mixing ratio of lithium aluminate and carbonate can be freely adjusted during manufacturing, it is highly porous and has excellent carbonate retention. Since the flatness is good and the adhesion with the electrode pair is good, an electrolyte plate with excellent power generation performance can be obtained.

しかしながら、作動温度以下で炭酸塩が固化した状態で
は機械的に脆い性質があり、電解質板の運搬や燃料電池
の組立加工時に破損しやすい欠点があり、かつ燃料電池
の運転、停止に伴う温度サイクル(ヒートサイクル)お
よびこれによって生ずる熱応力により割れを生ずるとい
う欠点があり、ことに電解質板がヒートサイクルにより
割れやき裂を生じた場合には燃料ガスと酸化ガスが直接
接触し、爆発するなどの重大事故を起こす危険性がある
ために、組立時の破損などより以上にその改善が重大な
課題になっている。
However, when the carbonate solidifies below the operating temperature, it is mechanically brittle and easily damaged during transportation of the electrolyte plate and assembly of the fuel cell, and temperature cycles associated with the operation and shutdown of the fuel cell are disadvantageous. (heat cycle) and the resulting thermal stress can cause cracks. In particular, if the electrolyte plate cracks due to heat cycle, the fuel gas and oxidant gas may come into direct contact, resulting in an explosion, etc. Since there is a risk of serious accidents, improving this problem is even more important than damage during assembly.

機械的強度ならびに耐ヒートサイクル性の向上対策とし
ては、電解質板に耐炭酸塩性のカンタル合金製の金網を
埋め込んだり、セラミック繊維例えばアルミナ繊維、ア
ルミン酸リチウム繊維、ジルコニア繊維等を混合分散さ
せる方法などが試みられている。しかしながら、カンタ
ル合金網は長期間使用中に腐食が進行して補強効果が低
下すること、アルミナ繊維は炭酸塩と反応して繊維とし
ての形態を失い補強効果が低下すること、アルミン酸リ
チウム繊維は量産性に劣り比表面積が小さいために炭酸
塩の保持力が劣ること、ジルコニア繊維は炭酸塩と反応
せず長期安定性がよいが高価であり、かつ発電性能を幾
分阻害する、などそれぞれに欠点があり、さらに改善が
求められている。
Measures to improve mechanical strength and heat cycle resistance include embedding carbonate-resistant Kanthal alloy wire mesh in the electrolyte plate, and mixing and dispersing ceramic fibers such as alumina fibers, lithium aluminate fibers, and zirconia fibers. etc. are being attempted. However, Kanthal alloy nets corrode during long-term use and their reinforcing effect decreases, alumina fibers react with carbonates and lose their form as fibers and their reinforcing effects decrease, and lithium aluminate fibers It is difficult to mass produce and has a low carbonate retention capacity due to its small specific surface area, and zirconia fibers do not react with carbonates and have good long-term stability, but are expensive and somewhat hinder power generation performance. There are shortcomings and further improvements are required.

〔発明の目的〕[Purpose of the invention]

本発明は前述の状況に鑑みてなされたもので、長期間炭
酸塩の保持力2発電性能ならびに耐ヒートサイクル性を
維持することができる電解質板を備えた溶融炭酸塩量燃
料電池を提供することを目的とする。
The present invention was made in view of the above-mentioned situation, and an object of the present invention is to provide a molten carbonate fuel cell equipped with an electrolyte plate that can maintain carbonate retention power, power generation performance, and heat cycle resistance for a long period of time. With the goal.

し発明の要点〕 本発明は、チタン酸カリウム(Kz T ia Ot、
) fJ!維が耐溶融炭酸塩性に優れ、かつアルミン酸
リチウムに匹敵する比表面積を有し、さらに安価である
ことに着目し、電解質板の構造材として従来便用実績の
あるアルミン酸リチウム粉末を主保持材とし、この主保
持材50重量部に対して5ないし30重量部の比較的少
量のチタン酸カリウム繊維を補強材として加え、炭酸リ
チウムおよび炭酸カリウムの混合物からなる電解質粉末
、アルミン酸リチウム粉末、チタン酸カリウム繊維を混
合分散させた粉状体をホットプレスを用いて加熱圧縮成
形して電解質板を形成するよう構成したこ士により、チ
タン酸カリウム繊維の配合量にほぼ比例した55ないし
80重量部の電解質を長期間安定して保持して安定な発
電を行うことができ、かつ燃料電池の起動停止を模凝し
たヒートサイクルに対して割れを生じ難い電極板を得ら
れるようにしたものである。
Summary of the Invention The present invention provides potassium titanate (Kz T ia Ot,
) fJ! Focusing on the fact that the fiber has excellent resistance to molten carbonate, has a specific surface area comparable to that of lithium aluminate, and is also inexpensive, we mainly used lithium aluminate powder, which has been used as a structural material for electrolyte plates. As a holding material, a relatively small amount of potassium titanate fiber of 5 to 30 parts by weight is added as a reinforcing material to 50 parts by weight of the main holding material, and electrolyte powder consisting of a mixture of lithium carbonate and potassium carbonate, lithium aluminate powder. , the electrolyte plate was formed by heat compression molding a powder in which potassium titanate fibers were mixed and dispersed using a hot press. It is possible to obtain an electrode plate that is capable of stably retaining the weight part of electrolyte for a long period of time to perform stable power generation, and that is resistant to cracking during a heat cycle that simulates the start and stop of a fuel cell. It is.

〔発明の実施例〕 以下本発明を実施例に基づいて説明する。チタン酸カリ
ウム(一般式r<、o−nTi 02)は炭酸カリウム
(K! COs )と酸化チタン(TiO2)とを所定
の比率で混合し反応させることにより生成されるもので
あり、酸化チタンの配合量を増してn数を犬きくするこ
とにより繊維状のチタン酸カリウムが得られ、例えば6
チタン酸カリウム(KI TI60+s )では直径が
1μm程度、長さが50μmあるいはそれ以上のチタン
酸カリウム繊維を得ることができ、このように形成され
たチタン酸カリウム繊維1g尚りの表面積(比表面積と
いう)は工ないし10n//g  と主保持材であるア
ルミン酸リチウム粉末のそれにほぼ匹敵する。
[Examples of the Invention] The present invention will be described below based on Examples. Potassium titanate (general formula r<, o-nTi 02) is produced by mixing and reacting potassium carbonate (K!COs) and titanium oxide (TiO2) in a predetermined ratio. By increasing the blending amount and increasing the n number, fibrous potassium titanate can be obtained, for example, 6
With potassium titanate (KI TI60+s), potassium titanate fibers with a diameter of about 1 μm and a length of 50 μm or more can be obtained, and the potassium titanate fibers formed in this way have a surface area of about 1 g (referred to as specific surface area). ) is approximately 10 n//g, which is almost comparable to that of lithium aluminate powder, which is the main holding material.

本発明の電解質板は、上述のアルミン酸リチウム粉末、
チタン酸カリウム繊維、炭酸リチウムと炭酸カリウムの
混合物からなる炭酸塩粉末とを所定の配合比で混合し、
均等に分散させた粉体を所定量プレス型に均等な厚みで
収容し、成形温度約480℃、圧力200〜600#/
−程度の条件下でホットプレス法により成形加工するよ
うにしたもので、電解質板中のチタン酸カリウム繊維は
電解質中の炭酸カリウム(K、 CO3)とはさらに反
応することはなく、炭酸リチウム(Li、 C08)に
対しても運転温度600℃程度では反応が進まないこと
が確かめられており、したがって電解質の保持性や電極
対との密着性により左右される発電性能およびその安定
性、ならびにヒートサイクルに対する機械的安定性の向
上を確かめることにより、実用性を検証することができ
る。
The electrolyte plate of the present invention comprises the above-mentioned lithium aluminate powder,
Potassium titanate fibers and carbonate powder made of a mixture of lithium carbonate and potassium carbonate are mixed at a predetermined blending ratio,
A predetermined amount of the evenly dispersed powder is placed in a press mold with an even thickness, and the molding temperature is approximately 480℃ and the pressure is 200~600#/
The potassium titanate fibers in the electrolyte plate do not react further with the potassium carbonate (K, CO3) in the electrolyte, and the potassium titanate fibers in the electrolyte plate do not react with the potassium carbonate (K, CO3) in the electrolyte. It has been confirmed that the reaction of Li, C08) does not proceed at an operating temperature of around 600°C, and therefore power generation performance and its stability, which are influenced by electrolyte retention and adhesion with electrode pairs, as well as heat Practicality can be verified by confirming the improvement in mechanical stability against cycles.

第1表は本発明の実施例における配合比ならびにヒート
サイクル試験結果を示す特性表であり、アルミン酸リチ
ウム、炭酸塩(L 1203 十KxCOs ) 。
Table 1 is a characteristic table showing the compounding ratio and heat cycle test results in Examples of the present invention, including lithium aluminate and carbonate (L 1203 10 KxCOs).

チタン酸カリウム繊維の配合!(重量部)を4段階に変
化させた実施例1〜4からなる電解質板の耐ヒートサイ
クル数をチタン酸カリウム繊維を含まない比較例1のそ
れと比較して示したものである。供試電解質板としては
、それぞれの配合量の粉末をよく混合分散させた混合粉
体を前述のホットプレス法により成形し、厚み1.8m
、1辺の長さが18411111+の方形の電解質板を
製作し、このように形成された供試電解質板をヒートサ
イクル試験機内に吊し、毎分1℃の割合で常温と650
℃との間を昇温、降温するヒートサイクルを繰返し加え
、電解質板に割れを生じないサイクル数を示したもので
ある。
Contains potassium titanate fiber! The heat cycle resistance of the electrolyte plates of Examples 1 to 4 in which the (parts by weight) was changed in four steps is shown in comparison with that of Comparative Example 1 which does not contain potassium titanate fibers. The test electrolyte plate was made by molding a mixed powder obtained by thoroughly mixing and dispersing the powders in the respective amounts using the hot pressing method described above, and forming a sheet with a thickness of 1.8 m.
, a rectangular electrolyte plate with a side length of 18411111+ was manufactured, and the test electrolyte plate thus formed was hung in a heat cycle tester and heated to room temperature and 650°C at a rate of 1°C per minute.
The figure shows the number of cycles in which the electrolyte plate does not crack when heat cycles are repeatedly applied to increase and decrease the temperature between ℃ and ℃.

第  1  表 第1表において、実施例になる供試電解質板1ないし4
において主保持体であるアルミン酸リチウム粉末の配合
量を50重量部一定とし、補強材としてのチタン酸カリ
ウム繊維の配合量を5゜10.20.30重量部と変化
させるとともに、炭配塩の配合量を補強材の増量分に比
例して55ない1,80重量部に変化させるよう構成し
た結果、アルミン酸リチウムおよび炭酸塩をそれぞれ5
0重量部配合した比較例1の耐ヒートサイクル数2回に
比べて実施lこおける耐m度サイクル数を3回ないし2
5回とチタン酸カリ・クム配合量に比例して向上させる
ことができた。また、実施例工ないし4の電解質板の常
温における機械的残置もチタン酸カリウムの配合量の増
加とともに上昇した。
Table 1 In Table 1, test electrolyte plates 1 to 4 as examples
The amount of lithium aluminate powder as the main support was kept constant at 50 parts by weight, and the amount of potassium titanate fiber as a reinforcing material was changed to 5.10.20.30 parts by weight. As a result of changing the blending amount from 55 parts by weight to 1,80 parts by weight in proportion to the increase in the amount of reinforcing material, 5 parts each of lithium aluminate and carbonate were added.
Compared to the number of heat cycles of Comparative Example 1, which contained 0 parts by weight, the number of heat cycles of 3 to 2
5 times and was able to improve in proportion to the amount of potassium cum titanate blended. In addition, the mechanical retention of the electrolyte plates of Examples 4 to 4 at room temperature also increased as the amount of potassium titanate added increased.

第1図は前述の実施例3(チタン酸カリウム繊維の配合
[20%)になる電解質板を用いた単セル試験結果を示
す端子電圧対電流密度特性を比較例1のそれと比較した
特性線図であり、有効電極面積200d、運転温度65
0℃、燃料ガスのH3/CO!比80/20 、酸化ガ
ス0) A i r /Cot比70/30の条件で得
られたものである。図において、実施例3の500時間
発電後の特性曲線30は比較例1の初期特性曲線10と
ほぼ同等の性能を示しており、実施例3の電解質板は電
解質の消失がほとんどなく、電極対との密着性を安定し
て保持していることを示している。また実施例4につい
て同様の試験を行なったが、発電性能の顕著な低下は認
められなかったものの、分解点検の結果電解質のにじみ
出しが認められた。
Figure 1 is a characteristic diagram comparing the terminal voltage vs. current density characteristics with that of Comparative Example 1, showing the results of a single cell test using an electrolyte plate with the above-mentioned Example 3 (potassium titanate fiber blend [20%)]. , effective electrode area 200 d, operating temperature 65
0℃, fuel gas H3/CO! (ratio 80/20, oxidizing gas 0) A i r /Cot ratio 70/30. In the figure, the characteristic curve 30 of Example 3 after 500 hours of power generation shows almost the same performance as the initial characteristic curve 10 of Comparative Example 1, and the electrolyte plate of Example 3 has almost no loss of electrolyte, and the electrode This shows that it maintains stable adhesion. Further, a similar test was conducted for Example 4, and although no significant deterioration in power generation performance was observed, oozing of electrolyte was observed as a result of disassembly and inspection.

前述の実施例工ないし4において、電解質板に占める電
解質と構造材(アルミン酸すチウム+チタン酸カリウム
繊維)との配合比はいずれも1:1(50重量%:50
重i%)に設定されており、構造材に占めるチタン酸カ
リウム繊維の配合比を増すことにより電解質板の耐ヒー
トサイクル性が第1表に示すように向上し、アルミンi
[IJチウム粉末の占める割合が所定量以下に減少する
と電解質の保持力が低下する傾向があることを前述の試
験検討結果は示しでおり、電解質板の耐ヒートサイクル
性および機械強度と電解質の保持力および発電性能との
バランスが、構造材に占める粉体と繊維との配合比に依
存しているといえる。また上記性能のバランス条件を、
発を性能に影響を及ぼす程のtS質のにじみ出しが無く
、かつ耐ヒートサイクル性の向上が認められる配合比領
域とすれば、前述の検討結果から、アルミン酸リチウム
:チタン酸カリウム繊維:炭酸塩の配合比の上限は重量
部で表わせば50:30:80(重量部)程度、電解質
板に占める重量比で表わせば31:x9:50(重量%
)程度となり、配合比の下限値は耐ヒートサイクル性に
効果が現われる5o:5: 55(重量部)程度あるい
は45:5:50(重i%)程度とするのが妥当と考え
られる。
In the above-mentioned Examples to 4, the mixing ratio of the electrolyte and the structural material (stium aluminate + potassium titanate fiber) in the electrolyte plate was 1:1 (50% by weight: 50% by weight).
By increasing the blending ratio of potassium titanate fibers in the structural material, the heat cycle resistance of the electrolyte plate is improved as shown in Table 1.
[The above test results show that when the proportion of IJ tium powder decreases below a specified amount, the electrolyte retention strength tends to decrease, and the heat cycle resistance and mechanical strength of the electrolyte plate and electrolyte retention tend to decrease. It can be said that the balance between power and power generation performance depends on the blending ratio of powder and fiber in the structural material. In addition, the balance conditions for the above performance are
Based on the above-mentioned study results, if the composition ratio is set to a range in which there is no tS quality oozing to the extent that it affects performance and improvement in heat cycle resistance is observed, lithium aluminate: potassium titanate fiber: carbonate The upper limit of the mixing ratio of salt is about 50:30:80 (wt%) in terms of parts by weight, and 31:x9:50 (wt%) in terms of weight ratio in the electrolyte plate.
), and it is considered appropriate to set the lower limit of the blending ratio to about 5o:5:55 (parts by weight) or about 45:5:50 (i% by weight), which is effective for heat cycle resistance.

なお、電解質板の製作方法はホットプレス法に限定され
るものではなく、例えばテープキャスティン法など異な
る成形方法を用いてもよいことはいうまでもないことで
ある。
Note that the method for manufacturing the electrolyte plate is not limited to the hot pressing method, and it goes without saying that a different molding method such as a tape casting method may be used.

〔発明の効果〕〔Effect of the invention〕

本発明は前述のように、電解質板の構造材として、アル
ミン酸リチウム粉末50重量部に対してチタン酸カリウ
ム繊維5ないし30重量部を配合した混合物を用いるよ
う構成した。その結果、チタン酸カリウム繊維の機械的
補強効果により電解質板の耐ヒートサイクル性をアルミ
ン酸リチウム粉末のみからなる構造材を用いた従来技術
のそれに比べて数倍以上に改善することができ、従来技
術で問題となったヒートサイクルによる電極板の割れお
よびこれに基づく燃料ガスと酸化剤ガスの直接接触の危
険性が排除され、信頼性の高い溶融炭酸塩型燃料電池を
提供することができる。また、アルミン酸リチウム粉末
による電解質の優れた保持力により電解質のにじみ出し
ゃ流出を阻止することができ、したがって長期間安定し
た発電性能を維持できる溶融炭酸塩型燃料電池を提供す
ることができる。
As described above, the present invention is configured to use a mixture of 50 parts by weight of lithium aluminate powder and 5 to 30 parts by weight of potassium titanate fibers as the structural material of the electrolyte plate. As a result, due to the mechanical reinforcing effect of potassium titanate fibers, the heat cycle resistance of the electrolyte plate can be improved several times compared to that of conventional technology using a structural material made only of lithium aluminate powder. It is possible to eliminate the risk of cracking of electrode plates due to heat cycles and the resulting direct contact between fuel gas and oxidant gas, which has been a problem in the technology, and it is possible to provide a highly reliable molten carbonate fuel cell. Furthermore, the excellent electrolyte holding power of the lithium aluminate powder can prevent the electrolyte from oozing out or flowing out, making it possible to provide a molten carbonate fuel cell that can maintain stable power generation performance for a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における単セル試験結果を示す
特性線図である。 10:比較例における初期特性曲線、3o:実施例3に
おける500時間発電後の特性曲線。 電5梵裟座   (ゲA /cq♂) 才1c21
FIG. 1 is a characteristic diagram showing the results of a single cell test in an example of the present invention. 10: Initial characteristic curve in Comparative Example, 3o: Characteristic curve after 500 hours of power generation in Example 3. Den 5 Brahma Za (Ge A /cq♂) Sai1c21

Claims (1)

【特許請求の範囲】 1)アルカリ炭酸塩からなる電解質とアルミン酸リチウ
ム粉末からなる主保持材とチタン酸カリウム繊維からな
る補強材との混合物を加熱圧縮成形してなる電解質板を
備え、主保持材50重量部に対し、補強材5ないし30
重量部を含むことを特徴とする溶融炭酸塩型燃料電池。 2)特許請求の範囲第1項記載のものにおいて、チタン
酸カリウム繊維の比表面積が1ないし10m^2/gの
範囲にあることを特徴とする溶融炭酸塩型燃料電池。 3)特許請求の範囲第1項または第2項記載のものにお
いて、電解質の含有量が55ないし80重量部の範囲に
あることを特徴とする溶融炭酸塩型燃料電池。
[Scope of Claims] 1) A main holder comprising an electrolyte plate formed by heating and compression molding a mixture of an electrolyte made of an alkali carbonate, a main holding material made of lithium aluminate powder, and a reinforcing material made of potassium titanate fiber. 5 to 30 parts by weight of reinforcing material per 50 parts by weight of material
A molten carbonate fuel cell comprising parts by weight. 2) The molten carbonate fuel cell according to claim 1, wherein the potassium titanate fiber has a specific surface area in the range of 1 to 10 m^2/g. 3) A molten carbonate fuel cell according to claim 1 or 2, characterized in that the electrolyte content is in the range of 55 to 80 parts by weight.
JP60268634A 1985-11-29 1985-11-29 Molten carbonate type fuel cell Pending JPS62128457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60268634A JPS62128457A (en) 1985-11-29 1985-11-29 Molten carbonate type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60268634A JPS62128457A (en) 1985-11-29 1985-11-29 Molten carbonate type fuel cell

Publications (1)

Publication Number Publication Date
JPS62128457A true JPS62128457A (en) 1987-06-10

Family

ID=17461268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60268634A Pending JPS62128457A (en) 1985-11-29 1985-11-29 Molten carbonate type fuel cell

Country Status (1)

Country Link
JP (1) JPS62128457A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170863A (en) * 1987-01-08 1988-07-14 Matsushita Electric Ind Co Ltd Fused carbonate fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170863A (en) * 1987-01-08 1988-07-14 Matsushita Electric Ind Co Ltd Fused carbonate fuel cell

Similar Documents

Publication Publication Date Title
JPS59143279A (en) High temperature solid electrolyte fuel battery
JPH07153469A (en) Solid electrolyte fuel cell
US20150263351A1 (en) Anode for direct carbon fuel cell and direct carbon fuel cell including the same
KR20060023551A (en) Fused zirconia-based solid oxide fuel cell
JPH0258744B2 (en)
JP3620800B2 (en) Method for producing solid electrolyte sintered body
JPS60101876A (en) Manufacture method of fused carbonate salts type fuel cell
CN106207238A (en) A kind of molten salts compound intermediate temperature solid oxide fuel cell electrolyte
JPS62128457A (en) Molten carbonate type fuel cell
CA1174271A (en) Fuel cell provided with electrolyte plate made of electrical insulating long fibers
JPH0261095B2 (en)
JPH0222505B2 (en)
JPH10172578A (en) Fuel electrode material of solid electrolyte type electrochemical cell
Tao et al. Characterization of Ba0. 5Sr0. 5Co0. 7In0. 1Fe0. 2O3− δ as the Cathode Material for Proton‐conducting SOFCs
JPS6017865A (en) Molten salt fuel cell
JPS6216513B2 (en)
JPH0412591B2 (en)
JPS6017864A (en) Molten salt fuel cell
Ogura et al. Increase in thermal stability of MgO, CaO added NH4NbWO6 solid electrolyte
JPS62133677A (en) Molten carbonate fuel cell
JPH0548581B2 (en)
JPH03285266A (en) High temperature type fuel cell
JPH10247498A (en) Fuel electrode material
JPS6035468A (en) Electrolyte matrix for fuel cell
JPS63138662A (en) Manufacture of electrolyte tile for fused carbonate type fuel cell