JPS6017780B2 - Method for producing 4-aminomethylbenzoic acid - Google Patents

Method for producing 4-aminomethylbenzoic acid

Info

Publication number
JPS6017780B2
JPS6017780B2 JP55128963A JP12896380A JPS6017780B2 JP S6017780 B2 JPS6017780 B2 JP S6017780B2 JP 55128963 A JP55128963 A JP 55128963A JP 12896380 A JP12896380 A JP 12896380A JP S6017780 B2 JPS6017780 B2 JP S6017780B2
Authority
JP
Japan
Prior art keywords
catalyst
acid
palladium
reaction
rhodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55128963A
Other languages
Japanese (ja)
Other versions
JPS5753441A (en
Inventor
正明 高橋
隆司 山内
明 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP55128963A priority Critical patent/JPS6017780B2/en
Priority to CA000385925A priority patent/CA1180723A/en
Priority to GB8128015A priority patent/GB2084146B/en
Priority to FR8117502A priority patent/FR2490220A1/en
Priority to DE3137091A priority patent/DE3137091C2/en
Publication of JPS5753441A publication Critical patent/JPS5753441A/en
Publication of JPS6017780B2 publication Critical patent/JPS6017780B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/04Formation of amino groups in compounds containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/38Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino groups bound to acyclic carbon atoms and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters

Description

【発明の詳細な説明】 本発明は、4ーァミノメチル安息香酸の製造方法に関す
るもので、詳しくは4ーヒドロオキシィミノメチル安息
香酸をpH7以下(即ち酸性又は中性)の水媒体中にて
、パラジウムおよび/又はロジウムを含む触媒を用いて
還元することにより、4ーアミノメチル安息香酸を製造
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing 4-aminomethylbenzoic acid, and more specifically, 4-hydroxyiminomethylbenzoic acid is prepared in an aqueous medium having a pH of 7 or less (that is, acidic or neutral). The present invention relates to a method for producing 4-aminomethylbenzoic acid by reduction using a catalyst containing palladium and/or rhodium.

4ーァミノメチル安息香酸(以下、AMと略す)を製造
する方法については、これまでに、次のような方法が知
られている。
The following methods are known to date for producing 4-aminomethylbenzoic acid (hereinafter abbreviated as AM).

■ pークロルメチル安息香酸をアンモニア水によって
アミノ化する方法。
■ A method of aminating p-chloromethylbenzoic acid with aqueous ammonia.

■ 4−カルボオキシベンツアルデヒドを、ラネーニツ
ケルの存在下に、アンモニア水を含むメタノール中で還
元する方法(特公昭34−421)。
(1) A method for reducing 4-carboxybenzaldehyde in methanol containing aqueous ammonia in the presence of Raney nickel (Japanese Patent Publication No. 34-421).

■ p−シア/安息香酸メチルをラネーニッケルの存在
下、アルカリ水溶液中で還元する方法(持関昭48−5
7951)。■ pーシア/安息香酸をルテニウム触媒
の存在下、アルカリ水溶液中で還元する方法(袴関昭5
1−32536)。
■ A method for reducing p-sia/methyl benzoate in an alkaline aqueous solution in the presence of Raney nickel (Mochiseki 1976-5
7951). ■ A method for reducing p-thia/benzoic acid in an alkaline aqueous solution in the presence of a ruthenium catalyst (Hakama Sekisho 5
1-32536).

このうち、■の方法は常圧下で行なわれるが、第二級、
第三級アミン等の副生物が多く生成し、AM収率がよく
ない。
Among these, method (■) is carried out under normal pressure, but
Many by-products such as tertiary amines are produced, and the AM yield is poor.

■の方法はメタノール等の有機溶媒が用いられることの
他、収率をよくするためには、高圧が必要とされる。■
と■の方法は、原料物質であるpーシア/安息香酸類が
工業的に必らずしも容易に製造し得るものでない。以上
のように、上記の各公3印方法は、十分に満足し得る製
造方法とは云い難いものである。本発明は、これらの点
を改善し、容易に4ーアミ/メチル安息香酸を得ること
ができる製造方法を提供するものである。
In addition to using an organic solvent such as methanol, method (2) requires high pressure in order to improve the yield. ■
In the methods (1) and (2), p-sia/benzoic acids, which are raw materials, cannot necessarily be easily produced industrially. As mentioned above, it is difficult to say that the above-mentioned 3-mark methods are fully satisfactory manufacturing methods. The present invention improves these points and provides a production method that allows easy production of 4-amino/methylbenzoic acid.

本発明を詳細に説明すると、本発明の原料物質4−ヒド
ロオキシィミ/メチル安息香酸は、4−カルボオキシベ
ンズアルデヒドと塩酸ヒドロオキシルアミンとの反応で
得られるオキシム化物であり、この4−カルボオキシベ
ンズアルデヒドは、モノあるいはジクロメチル安息香酸
の酸化などにより、それを目的物としても製造し得るが
、工業的には合成繊維原料であるテレフタール酸の製造
時に副生物として得られるものが利用される。
To explain the present invention in detail, the raw material 4-hydroxymi/methylbenzoic acid of the present invention is an oxime compound obtained by the reaction of 4-carboxybenzaldehyde and hydroxylamine hydrochloride, and this 4-carboxybenzaldehyde is Although it can also be produced as a desired product by oxidation of mono- or dichloromethylbenzoic acid, industrially it is used as a by-product during the production of terephthalic acid, which is a raw material for synthetic fibers.

本発明に用いられる触媒は、パラジウムおよびロジウム
の1種又は2種を含む触媒である。好ましいのは、パラ
ジウムおよび/またはロジウムから成る金属触媒、或い
はパラジウムおよびロジウムの1種又は2種と他の白金
族金属、特に白金およびルテニウム、の1種又はそれ以
上との混合触媒である(但し、酸性水媒体中の還元にお
いては、パラジウム、ロジウムおよび白金を含む混合触
媒を除く)。特に好ましいのは、パラジウム又はロジウ
ムから成る単一触媒である。本願触媒に含まれるパラジ
ウムおよびロジウムは金属、該金属の化合物、例えば酸
化物、および該金属の合金等いかなる形体にあってもよ
い。これら金属触媒は、活性炭、けいそう士等の迫体(
好ましくは活性炭)に担持して用いられる。
The catalyst used in the present invention is a catalyst containing one or both of palladium and rhodium. Preference is given to metal catalysts consisting of palladium and/or rhodium or mixed catalysts of one or more of palladium and rhodium with one or more other platinum group metals, in particular platinum and ruthenium. , except for mixed catalysts containing palladium, rhodium and platinum in reductions in acidic aqueous media). Particular preference is given to single catalysts consisting of palladium or rhodium. Palladium and rhodium contained in the present catalyst may be in any form such as a metal, a compound of the metal, such as an oxide, or an alloy of the metal. These metal catalysts are activated carbon, carbon dioxide, etc.
It is preferably used by being supported on activated carbon.

特に好ましくはパラジウム金属の活性炭笹持触媒が用い
られる。担持される金属の量は触媒全体の約2〜1の重
量%のものが通常用いられる、触媒の使用量は、パラジ
ウムおよびロジウムの合計量が被還元物質の約0.25
〜1値重量%、好ましくは約0.5〜5重量%となる量
である。
Particularly preferably, a palladium metal catalyst supported on activated carbon is used. The amount of supported metal is usually about 2 to 1% by weight of the entire catalyst.
~1% by weight, preferably about 0.5-5% by weight.

本発明に用いられる媒体は、PHが約7以下の鱗体、即
ち酸性又は中性の水溶液である。オキシム類の還元には
一般に有機溶媒がその媒体として用いられている。
The medium used in the present invention is a scale having a pH of about 7 or less, that is, an acidic or neutral aqueous solution. An organic solvent is generally used as a medium for reducing oximes.

水系は、該オキシム類の熔解度が極めて小さいこと、お
よび加水分解反応が考えられる等の理由により、使用さ
れないのが普通である。しかしながら本発明においては
、原料オキシムを水系媒体に懸濁させ、比較的低温、低
圧下にてその水添反応が容易に進行することが、大きな
特徴となっている。これは、原料オキシムが酸性水媒体
中ではェマルジョン状態に分散して還元され、還元によ
り生成したAMがその鉱酸塩となりアミノメチル基が保
護されるために、脱アミン、第二級アミンの生成等の副
反応が防止され、高収率で容易にAM鉱酸塩が得られる
ものと思われる。
Aqueous systems are generally not used because the solubility of the oximes is extremely low and hydrolysis reactions are likely to occur. However, a major feature of the present invention is that the raw oxime is suspended in an aqueous medium, and the hydrogenation reaction proceeds easily at a relatively low temperature and low pressure. This is because the raw material oxime is dispersed in an emulsion state and reduced in an acidic aqueous medium, and the AM produced by reduction becomes its mineral acid salt and the aminomethyl group is protected, resulting in deamination and the formation of secondary amines. It is believed that side reactions such as these are prevented, and AM mineral acid salts can be easily obtained in high yield.

一方媒体が中性水の場合、原料オキシムの還元反応は、
ェマルジョンに近い状態で進行し、反応後AMが微結晶
として得られる不均一系反応が特徴である。塩基性水媒
体の場合、還元反応は、均一系で進行するが、第二級ア
ミンの副生が避けられず、AM収率がよくないことが認
められた。
On the other hand, when the medium is neutral water, the reduction reaction of the raw oxime is
It is characterized by a heterogeneous reaction that proceeds in a state similar to that of an emulsion, and AM is obtained as microcrystals after the reaction. In the case of a basic aqueous medium, the reduction reaction proceeds in a homogeneous system, but it was found that secondary amine by-products were unavoidable and the AM yield was poor.

酸性水媒体としては、生成物と水溶性塩を形成する鉱酸
、例えば塩酸、硫酸、硝酸等、を水に添加したものが用
いられる。
As the acidic aqueous medium, a mineral acid that forms a water-soluble salt with the product, such as hydrochloric acid, sulfuric acid, nitric acid, etc., is added to water.

鉱酸使用量は、被還元物質に対して少なくとも当量以上
が用いられ、好ましくは約1〜3倍当量である。
The amount of mineral acid used is at least equivalent to the amount of the substance to be reduced, preferably about 1 to 3 times the equivalent.

鉱酸濃度が約3〜5%の水溶液が通常用いられる。Aqueous solutions having a mineral acid concentration of about 3-5% are commonly used.

媒体使用量は、酸性および、中性のいずれの場合も、被
還元物質重量の10〜5ぴ音量、好ましくは10〜2び
音量が用いられる。反応温度は、通常、常温から約80
℃の間で行なわれる、パラジウム触媒を用いた場合は、
常温から約5ぴ0間で充分反応が進行し、ロジウム触媒
の場合は、それよりやや高めの温度を必要とする。
The amount of medium used is 10 to 5 parts, preferably 10 to 2 parts per weight of the substance to be reduced, in both acidic and neutral cases. The reaction temperature is usually from room temperature to about 80°C.
When using a palladium catalyst, carried out between
The reaction proceeds satisfactorily at a temperature between room temperature and about 500 mm, and in the case of a rhodium catalyst, a slightly higher temperature is required.

水素圧は、約1気圧以上であればよく、通常1〜1の気
圧で容易に反応が進行し完結する。還元時間は、触媒の
種類および使用量、温度、水素圧等で異なるが、通常約
2〜7時間で水素吸収が終結する。
The hydrogen pressure only needs to be about 1 atm or more, and the reaction usually proceeds and is completed at 1 to 1 atm. The reduction time varies depending on the type and amount of catalyst used, temperature, hydrogen pressure, etc., but hydrogen absorption usually ends in about 2 to 7 hours.

反応後、反応混液は、酸性水媒体系の場合、炉過して触
媒を炉別した後、その炉液をアルカリを用いて中和する
ことによって、目的物AMの結晶を析出させる。このあ
と、析出物を炉列して得られる炉液を濃縮することによ
り、AMの第2の結晶を得ることができる。一方、中性
水媒体系の場合は、反応系に濃アンモニア水又は濃塩酸
を添加して生成物を溶解し、触媒を炉液した後、その炉
液を濃縮することによりAMの結晶を得ることができる
After the reaction, in the case of an acidic aqueous medium, the reaction mixture is passed through a furnace to remove the catalyst, and then the furnace solution is neutralized with an alkali to precipitate crystals of the target substance AM. Thereafter, the precipitate is placed in a furnace and the obtained furnace liquid is concentrated to obtain a second crystal of AM. On the other hand, in the case of a neutral aqueous medium system, concentrated ammonia water or concentrated hydrochloric acid is added to the reaction system to dissolve the product, the catalyst is made into a furnace liquid, and then the furnace liquid is concentrated to obtain AM crystals. be able to.

以下実施例により本発明を更に具体的に説明する。The present invention will be explained in more detail with reference to Examples below.

実施例 1 500泌容量の耐圧ガラス製オートクレープに、4ーヒ
ドロオキシィミノメチル安息香酸16.5夕(0.1M
)を3.5%塩酸200w‘に懸濁し、次いで5%パラ
ジウム−活性炭(以下5%Pd−C)1.6夕を加え、
水素初圧5kg/ので還元を行った。
Example 1 16.5 ml of 4-hydroxyiminomethylbenzoic acid (0.1 M
) was suspended in 200 w' of 3.5% hydrochloric acid, and then 1.6 m of 5% palladium-activated carbon (hereinafter referred to as 5% Pd-C) was added.
Reduction was performed at an initial hydrogen pressure of 5 kg/.

反応温度常温〜45℃で3時間後に水素吸収が終結した
。反応液は、炉過により触媒を炉別後、その炉液を濃縮
し、析出した結晶を炉別し、アセトン洗縦後乾燥した結
果、白色粉末16.0夕を得た。このものの融点は28
4〜2機。0であり、4ーアミノメチル安息香酸・塩酸
塩の標準赤外吸収スペクトルとも一致した。
Hydrogen absorption was completed after 3 hours at a reaction temperature of room temperature to 45°C. After removing the catalyst from the reaction solution by filtration, the solution was concentrated, and the precipitated crystals were filtered, washed with acetone, and dried to obtain 16.0 g of white powder. The melting point of this thing is 28
4-2 planes. 0, which also matched the standard infrared absorption spectrum of 4-aminomethylbenzoic acid hydrochloride.

AM・塩酸塩としての収率:85.0%。Yield as AM hydrochloride: 85.0%.

このAM・塩酸塩(AM・HCI)の飽和水溶液を20
%苛性ソーダ水溶液にてpH約7に中和し、析出した結
晶を炉別した後、更に、その炉液を濃縮することにより
析出した第二結晶も合わせて乾燥した結果、AM結晶1
2.5夕を得ることができた。
This saturated aqueous solution of AM/HCl (AM/HCI) was
After neutralizing the pH to approximately 7 with a % caustic soda aqueous solution and separating the precipitated crystals in a furnace, the furnace liquid was further concentrated and the second crystals precipitated were also dried, resulting in AM crystal 1.
I was able to get 2.5 evenings.

実施例 2実施例1と同じ反応容器に、4−ヒドロオキ
シイミノメチル安息香酸16.5夕(0.1M)を純水
200の‘に懸濁し、次いで、5%Pd一CI.6夕を
加え、水素初圧5k9′めで還元を行った。
Example 2 In the same reaction vessel as in Example 1, 16.5 ml (0.1 M) of 4-hydroxyiminomethylbenzoic acid was suspended in 200 ml of pure water, and then 5% Pd-CI. After 6 hours, reduction was carried out at an initial hydrogen pressure of 5k9'.

反応温度常温〜40ooで、3時間後に水素吸収が終結
した。
Hydrogen absorption was completed after 3 hours at a reaction temperature of room temperature to 40 oo.

反応液に濃塩酸2Mを加えて生成物を溶解した後、炉過
して触媒を炉別した。
After adding 2M concentrated hydrochloric acid to the reaction solution to dissolve the product, it was filtered to remove the catalyst.

炉液は減圧濃縮し、析出した結晶を炉別、アセトン洗総
後、乾燥した結果、白色粉末14.5夕を得た。このも
のは、4−アミノメチル安息香酸塩酸塩の標準赤外吸収
スペクトルと一致した。
The furnace liquid was concentrated under reduced pressure, and the precipitated crystals were separated in the furnace, washed with acetone, and dried to obtain 14.5 cm of white powder. This matched the standard infrared absorption spectrum of 4-aminomethylbenzoic acid hydrochloride.

収率:77.3%。このものを実施例1と同様アルカリ
中和処理を行い、第1結晶82夕、第2結晶2.6夕を
得た。これらは、4ーアミノメチル安息香酸の標準赤外
吸収スペクトルと一致した。実施例 3 実施例1と同じ反応容器に4−ヒドロオキシィミノメチ
ル安息香酸16.5夕を、3.5%塩酸200の‘に懸
濁し、次いで5%Rh一CI.6夕を加え、水素初圧5
kg/ので還元を行った。
Yield: 77.3%. This product was subjected to an alkali neutralization treatment in the same manner as in Example 1 to obtain 82 hours of first crystals and 2.6 hours of second crystals. These matched the standard infrared absorption spectrum of 4-aminomethylbenzoic acid. Example 3 In the same reaction vessel as in Example 1, 16.5 g of 4-hydroxyiminomethylbenzoic acid was suspended in 200 g of 3.5% hydrochloric acid, and then 5% RhCl. 6 times, the initial pressure of hydrogen was 5
kg/reduction was performed.

反応温度常温〜6ぴ0で、5時間後に水素吸収が終結し
た。
The reaction temperature was from room temperature to 6.0 psi, and hydrogen absorption was completed after 5 hours.

反応液は、実施例2と同様処理し、M.P.282〜2
85℃の白色粉末14.0夕を得た。
The reaction solution was treated in the same manner as in Example 2, and M. P. 282-2
14.0 minutes of white powder at 85° C. was obtained.

このものは、4ーアミノメチル安息香酸塩酸塩の標準赤
外吸収スベクルと一致した。AM・HCIとしての収率
:74.6%。このもののアルカリ中和処理により、白
色粉末10.2夕を得た。
This matched the standard infrared absorption spectrum of 4-aminomethylbenzoic acid hydrochloride. Yield as AM.HCI: 74.6%. This product was subjected to alkali neutralization treatment to obtain 10.2 hours of white powder.

Claims (1)

【特許請求の範囲】 1 4−ヒドロオキシイミノメチル安息香酸を酸性又は
中性の水媒体中にてパラジウムおよびロジウムの1種又
は2種を含む触媒を用いて還元することを特徴とする、
4−アミノメチル安息香酸の製造方法。 2 上記触媒が、パラジウムおよびロジウムから成るこ
とを特徴とする、特許請求の範囲第1項に記載の方法。 3 上記触媒が、パラジウムから成る単一触媒であるこ
とを特徴とする、特許請求の範囲第1項に記載の方法。
4 上記触媒が、ロジウムから成る単一触媒であること
を特徴とする、特許請求の範囲第1項に記載の方法。5
上記触媒が活性炭担持パラジウム触媒であることを特
徴とする、特許請求の範囲第3項に記載の方法。
[Claims] 1. A process characterized by reducing 4-hydroxyiminomethylbenzoic acid in an acidic or neutral aqueous medium using a catalyst containing one or both of palladium and rhodium.
Method for producing 4-aminomethylbenzoic acid. 2. Process according to claim 1, characterized in that the catalyst consists of palladium and rhodium. 3. Process according to claim 1, characterized in that the catalyst is a single catalyst consisting of palladium.
4. Process according to claim 1, characterized in that the catalyst is a single catalyst consisting of rhodium. 5
4. A method according to claim 3, characterized in that the catalyst is a palladium supported on activated carbon catalyst.
JP55128963A 1980-09-17 1980-09-17 Method for producing 4-aminomethylbenzoic acid Expired JPS6017780B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP55128963A JPS6017780B2 (en) 1980-09-17 1980-09-17 Method for producing 4-aminomethylbenzoic acid
CA000385925A CA1180723A (en) 1980-09-17 1981-09-15 Process for preparing 4-aminomethylbenzoic acid from 4-hydroxyiminomethylbenzoic acid
GB8128015A GB2084146B (en) 1980-09-17 1981-09-16 Process for preparing 4-aminomethyl-benzoic acid
FR8117502A FR2490220A1 (en) 1980-09-17 1981-09-16 PROCESS FOR THE PREPARATION OF 4-AMINOMETHYLMETHYLBENZOIC ACID FROM 4-HYDROXYIMINOBENZOIC ACID
DE3137091A DE3137091C2 (en) 1980-09-17 1981-09-17 Process for the preparation of 4-aminomethyl-benzoic acid from 4-hydroxyiminomethyl-benzoic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55128963A JPS6017780B2 (en) 1980-09-17 1980-09-17 Method for producing 4-aminomethylbenzoic acid

Publications (2)

Publication Number Publication Date
JPS5753441A JPS5753441A (en) 1982-03-30
JPS6017780B2 true JPS6017780B2 (en) 1985-05-07

Family

ID=14997738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55128963A Expired JPS6017780B2 (en) 1980-09-17 1980-09-17 Method for producing 4-aminomethylbenzoic acid

Country Status (5)

Country Link
JP (1) JPS6017780B2 (en)
CA (1) CA1180723A (en)
DE (1) DE3137091C2 (en)
FR (1) FR2490220A1 (en)
GB (1) GB2084146B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101002061B1 (en) * 2010-01-14 2010-12-17 에스케이유화 주식회사 Process for preparing 4-aminomethylbenzoic acid
KR101263405B1 (en) * 2011-01-13 2013-05-10 한국화학연구원 Method for purifying high purified methyl-4-formylbenzoate from byproduct of dimethyl terephthalate preparation process
CN102816077A (en) * 2012-09-21 2012-12-12 上海现代哈森(商丘)药业有限公司 Application of urotropine as catalyst in aminomethylbenzoic acid synthesis

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1093822A (en) * 1953-02-23 1955-05-10 Courtaulds Ltd Manufacturing process of omega-amino-nonanoic acid
JPS5152159A (en) * 1974-10-31 1976-05-08 Toray Industries 44 asechiruaminomechirushikurohekisankarubonsan mataha sonojudotaino seizoho
JPS5612348A (en) * 1979-07-09 1981-02-06 Nippon Terupen Kagaku Kk Production of 4-aminomethylcyclohexane-1-carboxylic acid
JPS5612350A (en) * 1979-07-09 1981-02-06 Nippon Terupen Kagaku Kk Production of p-aminomethylbenzoic acid or its derivative

Also Published As

Publication number Publication date
GB2084146A (en) 1982-04-07
DE3137091C2 (en) 1986-07-17
JPS5753441A (en) 1982-03-30
GB2084146B (en) 1984-09-19
DE3137091A1 (en) 1982-05-13
FR2490220B1 (en) 1985-01-25
FR2490220A1 (en) 1982-03-19
CA1180723A (en) 1985-01-08

Similar Documents

Publication Publication Date Title
EP0002308B1 (en) Catalytic hydrogenation process for the manufacture of aromatic amines
SK8997A3 (en) Process for the preparation of 5-amino-2,4,6-triiodine-1,3- -benzenedicarboxylic acid
JPH0747125B2 (en) Method for producing acetic acid derivative
JPS6017780B2 (en) Method for producing 4-aminomethylbenzoic acid
US3230259A (en) Preparation of o-phenylenediamines
US4120819A (en) Method for platinum or palladium catalyst reactivation
JP4228587B2 (en) Process for producing aminomethyl group-containing benzamide compound
JPH10316639A (en) Production of 5-amino-2,4,6-triidoisophthalic acid
JPS5951934B2 (en) Method for producing 4-aminomethylcyclohexanecarboxylic acid and its mineral acid salt
JPS6328910B2 (en)
JP2873509B2 (en) Method for producing 2-chloro-4-pyridinemethanol
JPH08502469A (en) Method for recovering iodine from iodinated organic compound
JPH0246022B2 (en)
EP0548233B1 (en) Processes for the synthesis of imines, aldehydes, and unsymmetrical secondary amines
US20040225155A1 (en) Process for preparing vanillylamine hydrochloride
JPH06239813A (en) Purification of halogenoaminonophenol
EP0032784B1 (en) Production of hydrazobenzene-3,3'-disulphonic acid
JP3569941B2 (en) Process for producing 4,6-diaminoresorcin and salts thereof
JPH0242043A (en) Production of 4-nitro-3-trifluoromethylaniline hydrobromide
US3449411A (en) Process for the production of trans-4-aminomethylcyclohexane - 1-carboxylic acid
JPS6123176B2 (en)
JPS6035331B2 (en) Production method of xylylene glycol
JPH09151168A (en) Production of beta-alanine salt
JPH11130739A (en) Production of isovanillamine
JPH08245531A (en) Production of halo-substituted aminophenol