JPS6017705A - Manufacture of circular optical waveguide - Google Patents

Manufacture of circular optical waveguide

Info

Publication number
JPS6017705A
JPS6017705A JP12654883A JP12654883A JPS6017705A JP S6017705 A JPS6017705 A JP S6017705A JP 12654883 A JP12654883 A JP 12654883A JP 12654883 A JP12654883 A JP 12654883A JP S6017705 A JPS6017705 A JP S6017705A
Authority
JP
Japan
Prior art keywords
film
optical waveguide
refractive index
optical fiber
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12654883A
Other languages
Japanese (ja)
Inventor
Kazuo Mikami
和夫 三上
Maki Yamashita
山下 牧
Mitsutaka Kato
加藤 充孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP12654883A priority Critical patent/JPS6017705A/en
Publication of JPS6017705A publication Critical patent/JPS6017705A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To improve 0.8dB conventional coupling loss due to a difference of a sectional shape to 0.1dB coupling loss in case of connecting an optical fiber and an optical fiber, in case of coupling an optical waveguide to the optical fiber, by obtaining an optical waveguide in which a sectional shape of a core part is roughly circular. CONSTITUTION:The quantity of a cast solution is adjusted so that the film thickness becomes 100mum. Subsequently, gaseous nitrogen is allowed to flow for 100min by 100ml/min in state that a cast vessel 20 is half closed up tightly, and a sheet-like transparent half solid film 28 is prepared. Next, a photomask plate 22 is placed on the film 28. A mask 23 of the center part of this photomask plate 22 is formed along a core pattern width 200mum of an optical waveguide to be prepared, and a pattern of this mask 23 is prepared so that the light transmitting quantity is small in the center and becomes large toward the circumference. Next, ultraviolet rays 27 are generated from an ultraviolet ray exposing device 26. As an outflow time of the gaseous nitrogen elapses, a shutter 20 is opened in the left and right directions, and fully opened in about 50min.

Description

【発明の詳細な説明】 (イ)発明の分野 この発明は光導波路、特に円形の光導波路の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of the Invention The present invention relates to a method for manufacturing an optical waveguide, particularly a circular optical waveguide.

(ロ)従来技術とその問題点 従来、先導波路を作成するのに、選択光重合法により高
分子光導波路を得るようにしている。その1例を説明す
ると、第1図(a)に示すように、たとえばキャスティ
ングにより形成したフィルム1上に、作成すべき光導波
路幅に相当する幅を持つマスク2を配置し、その上から
紫外光3を照射する。そしてマスク2により遮光されな
いフィルム1の部分は、光照射により光重合が生じ、屈
折率が変化し、クラッド部4となり マスク2により遮
光される部分は光重合が起こらないので、母材そのまま
の屈折率であり、コア部5となる。このようにして得ら
れる先導波路では、クラッド部4とコア部5の屈折率差
−Δnは、第1図(b)に示すように、表面に比べ裏面
の方が若干小さくなる。そのため光導波路の断面形状は
方形または台形となっている。
(B) Prior art and its problems Conventionally, in order to create a guiding waveguide, a polymer optical waveguide has been obtained by selective photopolymerization. To explain one example, as shown in FIG. 1(a), a mask 2 having a width corresponding to the width of the optical waveguide to be created is placed on a film 1 formed by, for example, casting. Irradiate light 3. The part of the film 1 that is not shielded from light by the mask 2 undergoes photopolymerization due to light irradiation, changes its refractive index, and becomes the cladding part 4.The part of the film 1 that is not shielded from light by the mask 2 undergoes no photopolymerization, so the refraction of the base material remains unchanged. This is the core part 5. In the leading waveguide obtained in this way, the refractive index difference -Δn between the cladding part 4 and the core part 5 is slightly smaller on the back surface than on the front surface, as shown in FIG. 1(b). Therefore, the cross-sectional shape of the optical waveguide is rectangular or trapezoidal.

ところで、光伝送装置の構成上、光導波路は光ファイバ
と結合される場合が多いが、第2図にも示すように、光
ファイバ6のコア部は断面が円形であるに対し、光導波
路のコア部7の断面が方形であるため、断面差による結
合損失が生じるという問題がある。この問題を根本的に
解決し、結合損失をなくすには、先導波路の断面も円形
にすると良いが、上記従来の光導波路製造方法では、断
面円形の光導波路を作成することができなかった。
By the way, in the structure of an optical transmission device, an optical waveguide is often coupled with an optical fiber, but as shown in FIG. 2, the core of the optical fiber 6 has a circular cross section, whereas the optical waveguide Since the core portion 7 has a rectangular cross section, there is a problem in that coupling loss occurs due to the difference in cross section. In order to fundamentally solve this problem and eliminate coupling loss, it is better to make the guide waveguide circular in cross section, but the conventional optical waveguide manufacturing method described above cannot produce an optical waveguide with a circular cross section.

(ハ)発明の目的 この発明の目的は、コア部の断面が円形である光導波路
を得ることの出来る光導波路の製造方法を提供すること
である。
(C) Purpose of the Invention An object of the present invention is to provide a method for manufacturing an optical waveguide that can obtain an optical waveguide whose core portion has a circular cross section.

(ニ)発明の構成と効果 上記目的を達成するために、この発明は紫外光が照射さ
れると屈折率が変化する透明な光重合溶液のフィルム状
膜の表面に、任意の場所に選択的に紫外光を照射し得る
紫外光照射手段を配置し、この紫外光照射手段による前
記フィルム状膜への光照射タイミングを、前記フィルム
状膜の裏面中心より周辺に向けて連続的に変化させ、前
記フィルム状膜の内部の光重合部の表面からの深さが連
続的に変化するように形成し、前記フィルム状膜に円形
先導波路を得るようにしている。
(d) Structure and effect of the invention In order to achieve the above object, the present invention provides a film-like film of a transparent photopolymerization solution whose refractive index changes when irradiated with ultraviolet light. arranging an ultraviolet light irradiation means capable of irradiating ultraviolet light on the film, and continuously changing the timing of light irradiation of the film-like film by the ultraviolet light irradiation means from the center of the back surface of the film-like film toward the periphery; The depth of the photopolymerized portion inside the film-like film from the surface is formed to vary continuously, so that a circular leading waveguide is obtained in the film-like film.

この発明によれば、コア部の断面形状が略円形に近い光
導波路を得ることができるので、光ファイバに結合する
際に、従来の断面形状の差による結合損失0.8dBを
光ファイバと光ファイバの接続の場合の結合損失0.1
dBまで改善することができる。このため光ファイバと
光導波路を用いて小さな光源にて長距離の光伝送や、光
情報処理が可能となる。
According to this invention, it is possible to obtain an optical waveguide in which the cross-sectional shape of the core portion is nearly circular, so when coupling to an optical fiber, the coupling loss of 0.8 dB due to the difference in cross-sectional shape of the conventional optical fiber can be reduced. Coupling loss for fiber connections: 0.1
It can be improved up to dB. Therefore, long-distance optical transmission and optical information processing are possible with a small light source using optical fibers and optical waveguides.

次に、この発明の採用原理について、第3図ないし第5
図により若干説明する。
Next, the principle of adoption of this invention will be explained in Figures 3 to 5.
This will be explained slightly using figures.

第3図は、キャスティング溶液の蒸発時間に対する光重
合後の屈折率変化の関係を示している。
FIG. 3 shows the relationship between the change in refractive index after photopolymerization and the evaporation time of the casting solution.

図に示すように、蒸発時間が短く溶媒及びモノマの蒸発
量が小さいほど、すなわち含有モノマ量が多いほど光重
合後の屈折率の変化Δnが大きく、逆に蒸発時間が長い
ほど屈折率の変化Δnが小さくなる。すなわち蒸発時間
TI<T2<T3に対して、屈折率変化はΔn1>Δn
2〉Δn3の関係がある。
As shown in the figure, the shorter the evaporation time and the smaller the amount of solvent and monomer evaporated, that is, the greater the amount of monomer contained, the greater the change Δn in the refractive index after photopolymerization, and conversely, the longer the evaporation time, the greater the change in refractive index. Δn becomes smaller. That is, for the evaporation time TI<T2<T3, the refractive index change is Δn1>Δn
There is a relationship of 2>Δn3.

また、フィルム内部の屈折率分布も、蒸発時間によって
変化する。
Furthermore, the refractive index distribution inside the film also changes depending on the evaporation time.

第4図は蒸発時間にたいするフィルム内部の屈折率分布
を示している。短い蒸発時間で光重合させた場合には、
表面の屈折率差は大きくなるが、母材とモノマの相分離
による散乱が大きく深くなるまで紫外光が到達しないの
で、表面付近にのみ屈折率変化が生じる〔第4図(b)
のT1参照〕。
FIG. 4 shows the refractive index distribution inside the film as a function of evaporation time. When photopolymerized with a short evaporation time,
Although the difference in refractive index at the surface increases, the ultraviolet light does not reach the surface until the scattering due to phase separation between the base material and the monomer becomes large and deep, so the refractive index change occurs only near the surface [Figure 4 (b)]
See T1].

逆に蒸発時間を長くすると、表面の屈折率変化は小さい
が、含有モノマ量が少ないため、母材とモノマの相分離
が顕著に起こらず、光の減衰も少ないため、裏面におい
ても表面と同程度の屈折率変化が生じ、略フラットな屈
折率差分布となる〔第4図(b)のT3参照〕。
Conversely, if the evaporation time is increased, the change in the refractive index on the surface is small, but since the amount of monomer contained is small, phase separation between the base material and the monomer does not occur significantly, and light attenuation is also small, so the change on the back surface is the same as on the front surface. A slight change in refractive index occurs, resulting in a substantially flat refractive index difference distribution [see T3 in FIG. 4(b)].

以上より、蒸発時間すなわち紫外光を照射して光重合を
行わせるタイミングを変化させてやれば、第4図(a)
に示すように深さ方向のコア部8とクラッド部9の境界
位置〔第4図(a)のTI、T2、T3参照〕を変化す
ることができ、これによりコア部の断面形状をコントロ
ールすることができることがわかる。
From the above, if we change the evaporation time, that is, the timing of photopolymerization by irradiating ultraviolet light, we can obtain the result shown in Fig. 4(a).
As shown in FIG. 4, the boundary position between the core portion 8 and the cladding portion 9 in the depth direction (see TI, T2, and T3 in FIG. 4(a)) can be changed, thereby controlling the cross-sectional shape of the core portion. It turns out that you can do it.

第5図は、光導波路を形成するフィルムIOの軸中心1
1より幅方向に、すなわち周辺部12に向けて光重合タ
イミングを連続的に変化させた場合の軸方向と深さ方向
の屈折率差分布を示している。これら幅方向と深さ方向
の屈折率差分布は、光導波路の軸方向に示しており、点
aではTIのタイミングに、点すではT2のタイミング
に、点CではタイミングT3にそれぞれ光重合させたも
のである。(TI<T2<73);図においてフィルム
10の光重合部13は、非重合部14よりも屈折率が小
さくなり、クラッド部4を形成する。
Figure 5 shows the axis center 1 of the film IO forming the optical waveguide.
1 shows the refractive index difference distribution in the axial direction and the depth direction when the photopolymerization timing is continuously changed in the width direction, that is, toward the peripheral portion 12. These refractive index difference distributions in the width direction and depth direction are shown in the axial direction of the optical waveguide, and the photopolymerization is performed at point a at the timing of TI, at point A at the timing of T2, and at point C at the timing of T3. It is something that (TI<T2<73); In the figure, the photopolymerized portion 13 of the film 10 has a lower refractive index than the non-polymerized portion 14, and forms the cladding portion 4.

したがってコアはクラッドの境界と断面方向に見た場合
、明瞭な境界線は得られないが、屈折率差につき一定の
しきい値(Δns)を設定すると、15の如き仮想境界
線を引くことができる。この曲線15が半円状となるよ
うに、上記光重合タイミングをコントロールすれば、断
面半円状の光導波路が得られることになる。
Therefore, when the core and the cladding boundary are viewed in the cross-sectional direction, a clear boundary line cannot be obtained, but if a certain threshold value (Δns) is set for the refractive index difference, a virtual boundary line such as 15 can be drawn. can. If the photopolymerization timing is controlled so that the curve 15 has a semicircular shape, an optical waveguide having a semicircular cross section can be obtained.

(ホ)実施例の説明 以下、実施例により、この発明をさらに詳細に説明する
(e) Description of Examples The present invention will be explained in more detail below with reference to Examples.

第6図は、この発明の1実施例を示す断面図である。同
図において20はキャスト容器、21はキャスト容器2
0内のキャスト溶液を水平に保つための水準器、22は
マスク23を有するフォトマスク板、24はシャッタ2
5を有する光シヤツタ板である。シャッタ25は光シャ
ッタ板24内を中心から左右にアナログ的に移動可能に
なっている。26は平行な紫外光線27を発生ずる紫外
線露光装置である。
FIG. 6 is a sectional view showing one embodiment of the present invention. In the figure, 20 is a cast container, and 21 is a cast container 2.
22 is a photomask plate having a mask 23; 24 is a shutter 2;
This is a light shutter plate with 5. The shutter 25 can be moved from the center to the left and right within the optical shutter plate 24 in an analog manner. 26 is an ultraviolet exposure device that generates parallel ultraviolet rays 27.

円形光導波路を製造する場合は、まずキャスト溶液をキ
ャスト容器20内に入れる。キャスト容器20はたとえ
ば塩化メチレンCH2Cl12でキャスト溶液を入れる
前に予備洗浄しておく。キャスト溶液としては、母材と
してたとえばビスフェノールZ系ポリカーボネートPC
270g、モノマとしてアクリル酸メチルMA42mA
、溶媒として塩化メチレンCH2Cj!z 1000g
、光増感材としてベンゾインエチルエーテルBZEE2
.1g。
When manufacturing a circular optical waveguide, a casting solution is first put into the casting container 20. The casting container 20 is pre-cleaned, for example with methylene chloride CH2Cl12, before being filled with the casting solution. For the casting solution, for example, bisphenol Z-based polycarbonate PC is used as the base material.
270g, methyl acrylate MA42mA as monomer
, methylene chloride CH2Cj as solvent! z 1000g
, benzoin ethyl ether BZEE2 as photosensitizer
.. 1g.

禁止材としてハイドロキノンHQo、07 gをブレン
ドしたものを使用する。
A blend of 0.7 g of hydroquinone HQo is used as an inhibiting material.

キャスト溶液の量は膜厚が100μmとなるように調整
する。また液面は水準器21を調整して水平にする。
The amount of casting solution is adjusted so that the film thickness is 100 μm. Further, the liquid level is leveled by adjusting the spirit level 21.

次にキャスト容器20を半密閉状態にして、チッソガス
を100m 1 /分100分間流し、溶媒及びモノマ
の一部を蒸発させ、シート状の透明な半固形状フィルム
28を作成する。
Next, the cast container 20 is semi-closed, and nitrogen gas is flowed at 100 m 1 /min for 100 minutes to evaporate a portion of the solvent and monomer, thereby creating a sheet-like transparent semi-solid film 28 .

続いて、フィルム28の上に、フォトマスク板22を置
く。このフォトマスク板22の中央部のマスク23は、
作成する光導波路のコアパターン幅200μmにそって
形成され、このマスク23のパターンば透光量が中心は
ど小さく周辺はど大きくなるように作成されている。
Subsequently, the photomask plate 22 is placed on the film 28. The mask 23 in the center of this photomask plate 22 is
It is formed along the core pattern width of 200 μm of the optical waveguide to be created, and the pattern of this mask 23 is created such that the amount of light transmitted is small at the center and large at the periphery.

次に紫外線露光装置26より紫外光27を発生する。し
かし、最初シャッタ25ば全閉状態にあり、チッソガス
の流出時間、すなわち蒸発時間の経過とともに、徐々に
シャッタ20が左右両方向の周辺に開かれていく。約5
0分間で全開状態となるようにシャッタ25の開閉速度
が調整される。
Next, ultraviolet light 27 is generated from ultraviolet exposure device 26 . However, initially, the shutter 25 is in a fully closed state, and as the outflow time of the nitrogen gas, that is, the evaporation time, passes, the shutter 20 gradually opens to the periphery in both left and right directions. Approximately 5
The opening/closing speed of the shutter 25 is adjusted so that it is fully open in 0 minutes.

最初にシャッタ25を開き始めた状態では、蒸発経過時
間が短く、含有モノマ量が多いため、小さな光量で比較
的大きな屈折率変化が光重合によって生じるが、変化の
大なのは表面層のみであり、クラッド部は表面より浅い
部分にのみ形成される。
When the shutter 25 is first opened, the elapsed evaporation time is short and the amount of monomer contained is large, so a relatively large change in refractive index occurs due to photopolymerization with a small amount of light, but the change is large only in the surface layer. The cladding portion is formed only in a portion shallower than the surface.

やがて蒸発時間の経過とともにシャッタ25が順次開か
れていくと、それにつれて徐々にクラッド部が深くまで
形成される。そしてコアとクラッドの界面29が図のよ
うに半円形に形成される。なお、この過程において、マ
スク23は中央部から周辺に向けて透光量が大となるよ
うに構成しており、光重合率は光の照射量に略比例する
ので、周辺はど光重合率が大きくなり、また屈折率変化
が大きくなり、上記コアとクラッドの界面29が半円形
となるのを助長する。
Eventually, as the shutter 25 is opened one after another as the evaporation time elapses, the cladding portion is gradually formed deeper. The interface 29 between the core and the cladding is formed in a semicircular shape as shown in the figure. In this process, the mask 23 is configured so that the amount of light transmitted increases from the center to the periphery, and the photopolymerization rate is approximately proportional to the amount of light irradiation, so the photopolymerization rate decreases at the periphery. becomes large, and the refractive index change also becomes large, which helps the interface 29 between the core and the cladding to become semicircular.

」2記露光の完了後、後処理として、30分以上常温で
放置した後、キャスト容器20毎、真空乾燥機(図示せ
ず)に移し、90°Cで約10時間乾燥させる。
After the completion of the exposure in step 2, the cast container 20 is left at room temperature for 30 minutes or more as a post-treatment, and then the cast container 20 is transferred to a vacuum dryer (not shown) and dried at 90° C. for about 10 hours.

次に、第7図に示すように表面を低屈折率のコーティン
グ剤で厚さ10μmにバーコー1− してコート193
0を形成し、半円状のコア部31を有する光導波路32
を円形となるように2個重ね合わせ、たとえばホットプ
レス等により貼り合わせる。
Next, as shown in FIG. 7, the surface is coated 193 with a low refractive index coating agent to a thickness of 10 μm.
0 and has a semicircular core portion 31.
The two pieces are stacked one on top of the other so as to form a circular shape, and bonded together using, for example, hot pressing.

これによりコア径200μmの大口径光ファイバと、損
失少なく結合を容易に行うことができる。
This allows easy coupling with a large-diameter optical fiber having a core diameter of 200 μm with low loss.

なお、上記実施例において、フィルムはキャスティング
法により作成する場合について説明したが、他の方法、
たとえばスピナー等による遠心力で膜を作成してもよい
In addition, in the above example, the case where the film was created by the casting method was explained, but other methods,
For example, the membrane may be created using centrifugal force using a spinner or the like.

また、上記実施例において、光重合条件をコントロール
するのに、マスク板とシャックを用いた場合について説
明したが、これに代え、レーザ光のスキャニングタイミ
ングをコントロールして、光を選択的に照射するように
してもよい。
In addition, in the above example, a case was explained in which a mask plate and a shack were used to control the photopolymerization conditions, but instead of this, the scanning timing of the laser beam may be controlled to selectively irradiate the light. You can do it like this.

また、上記実施例においては、まず断面が半円状の光導
波路を作成し、この半円状の光導波路2枚を貼り合わせ
て、断面円形の光導波路を作成する場合について説明し
たが、表面、裏面を両面同時露光して一体的に円形光導
波路を作成してもよい。
In addition, in the above embodiment, an optical waveguide with a semicircular cross section is first created, and two semicircular optical waveguides are bonded together to create an optical waveguide with a circular cross section. Alternatively, a circular optical waveguide may be integrally formed by simultaneously exposing both sides of the back surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光導波路の製造方法を説明する図であっ
て、第1図(a)は従来の光導波路の断面図、第1図(
b)は同光導波路の深さ方向の屈折率差分布を示す図、
第2図は従来の光導波路と光ファイバの結合を示す斜視
図、第3図はキャスト溶液の蒸発時間に対する屈折率変
化を示す図、第4図はキャスト溶液の蒸発時間に対する
屈折率差分布を示す図であって、第4図(a)は蒸発時
間に対するコアとクラッドの境界の変化を示す図、第4
図(b)は蒸発時間による深さ方向の屈折率差分布を示
す図、第5図は光重合タイミングに対する幅方向、深さ
方向の屈折率差分布を示す図、第6図はこの発明の1実
施例を示す断面図、第7図は同実施例によって製作され
た円形光導波路の断面図である。 20:キャスト容器、 23:マスク、25:シヤツク
、 26:紫外線露出装置、27:紫外光、 28:フ
ィルム膜 第1図 (a)(1)) 第2図 第3図 1 1 1
FIG. 1 is a diagram explaining a conventional optical waveguide manufacturing method, and FIG. 1(a) is a cross-sectional view of the conventional optical waveguide, and FIG.
b) is a diagram showing the refractive index difference distribution in the depth direction of the optical waveguide;
Figure 2 is a perspective view showing the coupling of a conventional optical waveguide and optical fiber, Figure 3 is a diagram showing the change in refractive index with respect to the evaporation time of the cast solution, and Figure 4 is a diagram showing the refractive index difference distribution with respect to the evaporation time of the cast solution. FIG. 4(a) is a diagram showing changes in the boundary between the core and cladding with respect to evaporation time;
Figure (b) is a diagram showing the refractive index difference distribution in the depth direction depending on the evaporation time, Figure 5 is a diagram showing the refractive index difference distribution in the width direction and depth direction with respect to the photopolymerization timing, and Figure 6 is a diagram showing the refractive index difference distribution in the width direction and depth direction with respect to the photopolymerization timing. FIG. 7 is a cross-sectional view of a circular optical waveguide manufactured by the same example. 20: Cast container, 23: Mask, 25: Shock, 26: Ultraviolet exposure device, 27: Ultraviolet light, 28: Film membrane (Figure 1 (a) (1)) Figure 2 Figure 3 1 1 1

Claims (1)

【特許請求の範囲】[Claims] (1)紫外光が照射されると屈折率が変化する透明な光
重合溶液のフィルム状膜の表面に、任意の場所に選択的
に紫外光を照射し得る紫外光照射手段を配置し、この紫
外光照射手段による前記フィルム状膜への光照射タイミ
ングを、前記フィルム状膜の表面中心より周辺に向けて
連続的に変化させ、前記フィルム状膜の内部の光重合部
の表面からの深さが連続的に変化するように形成し、前
記フィルム状膜に円形光導波路を得るようにした円形先
導波路の製造方法。
(1) An ultraviolet light irradiation means capable of selectively irradiating ultraviolet light to any location is arranged on the surface of a film-like film of a transparent photopolymerization solution whose refractive index changes when irradiated with ultraviolet light. The timing of light irradiation on the film-like film by the ultraviolet light irradiation means is continuously changed from the center of the surface of the film-like film toward the periphery, and the depth from the surface of the photopolymerized portion inside the film-like film is A method for producing a circular optical waveguide, wherein the optical waveguide is formed so that the optical waveguide changes continuously to obtain a circular optical waveguide in the film-like film.
JP12654883A 1983-07-11 1983-07-11 Manufacture of circular optical waveguide Pending JPS6017705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12654883A JPS6017705A (en) 1983-07-11 1983-07-11 Manufacture of circular optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12654883A JPS6017705A (en) 1983-07-11 1983-07-11 Manufacture of circular optical waveguide

Publications (1)

Publication Number Publication Date
JPS6017705A true JPS6017705A (en) 1985-01-29

Family

ID=14937899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12654883A Pending JPS6017705A (en) 1983-07-11 1983-07-11 Manufacture of circular optical waveguide

Country Status (1)

Country Link
JP (1) JPS6017705A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118876A (en) * 1982-01-09 1983-07-15 Nitto Electric Ind Co Ltd Adhesive sheet for reinforcement of metal plate
JPS58118878A (en) * 1982-01-09 1983-07-15 Nitto Electric Ind Co Ltd Adhesive sheet for reinforcement of metal plate
JPS58118877A (en) * 1982-01-09 1983-07-15 Nitto Electric Ind Co Ltd Adhesive sheet for reinforcement of metal plate
US6950588B2 (en) 2002-02-19 2005-09-27 Omron Corporation Optical wave guide, an optical component and an optical switch

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118876A (en) * 1982-01-09 1983-07-15 Nitto Electric Ind Co Ltd Adhesive sheet for reinforcement of metal plate
JPS58118878A (en) * 1982-01-09 1983-07-15 Nitto Electric Ind Co Ltd Adhesive sheet for reinforcement of metal plate
JPS58118877A (en) * 1982-01-09 1983-07-15 Nitto Electric Ind Co Ltd Adhesive sheet for reinforcement of metal plate
JPS6322236B2 (en) * 1982-01-09 1988-05-11 Nitto Electric Ind Co
US6950588B2 (en) 2002-02-19 2005-09-27 Omron Corporation Optical wave guide, an optical component and an optical switch

Similar Documents

Publication Publication Date Title
US4712854A (en) Optical waveguide and method of making the same
US3809686A (en) Transparent media capable of photoinduced refractive index changes and their application to light guides and the like
TW200510797A (en) Index contrast enhanced optical waveguides and fabrication methods
KR100471380B1 (en) Method for Manufacturing Optical Waveguide Using Laser Direct Writing And Optical Waveguide Using the Same
JPS6017705A (en) Manufacture of circular optical waveguide
Yamashita et al. Fabrication of light-induced self-written waveguides with a W-shaped refractive index profile
JP2599497B2 (en) Flat plastic optical waveguide
JP2007183468A (en) Manufacturing method of optical waveguide with mirror
JP2000275456A (en) Optical waveguide and its manufacture
EP0241703A3 (en) Optical waveguides and methods for making same
JPH04165311A (en) Manufacture of photo waveguide passage
JPS6019107A (en) Manufacture of optical waveguide
JPH0312612A (en) Connecting element between optical elements
JPH0467103A (en) Optical waveguide
JPH01134309A (en) Production of light guide
JPH04165310A (en) Manufacture of photo waveguide passage
JPS5965808A (en) Production of optical waveguide
JPS6064310A (en) Manufacture of distributed refractive index light guide
JPS5929210A (en) Production of optical transmission coupler
JP4178996B2 (en) Polymer optical waveguide
JPH02134606A (en) Optical device with guide for optical axis alignment
JPH01273010A (en) Thick-film light guide
JPH063506A (en) Production of lens and production of lens array plate
JPS6017704A (en) Manufacture of optical waveguide
JPH0250106A (en) New optical device