JPS6017704A - Manufacture of optical waveguide - Google Patents
Manufacture of optical waveguideInfo
- Publication number
- JPS6017704A JPS6017704A JP12654783A JP12654783A JPS6017704A JP S6017704 A JPS6017704 A JP S6017704A JP 12654783 A JP12654783 A JP 12654783A JP 12654783 A JP12654783 A JP 12654783A JP S6017704 A JPS6017704 A JP S6017704A
- Authority
- JP
- Japan
- Prior art keywords
- optical waveguide
- film
- refractive index
- layer
- photopolymerization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
- G02B6/138—Integrated optical circuits characterised by the manufacturing method by using polymerisation
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)発明の分野
この発明は光導波路の製造方法、特に大口径の光ファイ
バにも接続可能な大型の光導波路を作成する光導波路の
製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Field of the Invention The present invention relates to a method of manufacturing an optical waveguide, and particularly to a method of manufacturing an optical waveguide for creating a large optical waveguide that can be connected to a large diameter optical fiber.
(ロ)従来技術とその問題点
従来、光導波路を作成するのに1選択光重合法により高
分子光導波路を得るようにしている。その−例を説明す
ると、第1図(a)に示すように、たとえばキャスティ
ングによシ形成したフィルム1上に作成すべき光導波路
幅に相当する幅を持つマスク2を配置し、その上から紫
外光3を照射する。(b) Prior art and its problems Conventionally, in order to create an optical waveguide, a polymer optical waveguide has been obtained by a one-selective photopolymerization method. To explain an example, as shown in FIG. 1(a), a mask 2 having a width corresponding to the width of the optical waveguide to be created is placed on a film 1 formed by casting, and then Irradiate with ultraviolet light 3.
そしてマスク2によシ遮光されないフィルム1の部分は
、光照射により光重合が生じ、屈折率が変化し、クラッ
ド部4となシ、マヌク2によシ遮光される部分は光重合
が起らないので母材そのままの屈折率であり、コア部5
となる。このようにして得られる光導波路では、クラッ
ド部4とコア部5の屈折率差−△nは、第1図(、)に
示すように。The part of the film 1 that is not shielded from light by the mask 2 undergoes photopolymerization due to light irradiation, changing its refractive index, and the part of the film 1 that is not shielded by the mask 2 undergoes photopolymerization. Since there is no refractive index, the refractive index is the same as that of the base material, and the core part 5
becomes. In the optical waveguide thus obtained, the refractive index difference -Δn between the cladding part 4 and the core part 5 is as shown in FIG.
表面に比べ、裏面の方が若干小さくなる。これは。The back side is slightly smaller than the front side. this is.
光重合部における母材とモノマの相分離にょシ。Phase separation between base material and monomer in the photopolymerization part.
紫外光の光強度が裏面に近づくほど減衰し、第1図(b
)に示す分布曲線となるためである。The intensity of the ultraviolet light decreases as it approaches the back surface, as shown in Figure 1 (b).
This is because the distribution curve shown in ) is obtained.
上記のように、裏面付近で屈折率差が小さくなると、こ
の部分のコア部5とクラッド部4の界面で光の散乱や漏
れ光が大きくなり、光のとじ込め効果が弱いため光導波
路としての損失が大きくなるという欠点が生じる。As mentioned above, when the refractive index difference decreases near the back surface, light scattering and leakage increase at the interface between the core part 5 and cladding part 4 in this part, and the light confinement effect is weak, making it difficult to use as an optical waveguide. This has the disadvantage of increasing losses.
なお、第1図は100X100μmの光導波路の場合を
示しているが、第2図(a)に示すように200X20
0μmの大口径の光導波路を製作する場合には、紫外光
の分布曲線及び屈折率差分布は第2図(b)及び(、)
に示すようになシ、いずれも膜厚が大になる分、裏面付
近での値が小さくなシ、上記欠点が顕著に現われる。そ
のため、従来は大型(大口径)で高NAの光導波路を製
作することができなかった。Note that although Fig. 1 shows the case of a 100 x 100 μm optical waveguide, as shown in Fig. 2 (a), a 200 x 20
When manufacturing an optical waveguide with a large diameter of 0 μm, the ultraviolet light distribution curve and refractive index difference distribution are as shown in Figure 2 (b) and (,).
As shown in FIG. 2, the values near the back surface become smaller as the film thickness increases, and the above-mentioned drawbacks become more apparent. Therefore, conventionally it has been impossible to manufacture a large (large diameter) optical waveguide with a high NA.
(ハ)発明の目的
この発明の目的は、上記に鑑み、大口径の光ファイバ等
に接続可能な、大型、高NAの光導波路を作製し得る光
導波路の製造方法を提供することである。(c) Purpose of the Invention In view of the above, it is an object of the present invention to provide a method for manufacturing an optical waveguide that can manufacture a large-sized, high-NA optical waveguide that can be connected to a large-diameter optical fiber or the like.
に)発明の構成と効果
上記目的を達成するために、この発明の光導波路の製造
方法は、紫外光が照射されると屈折率が変化する透明な
光重合溶液の第1のフィルム状膜の表面の所定領域にの
み選択的に紫外光を照射して光重合し、この光重合を受
けた領域を低屈折率層、光重合を受けない領域を高屈折
率層とする第1の薄型光導波路を形成し、さらにこの第
1の薄型光導波路上に前記第1のフィルム状膜と同様の
第2のフィルム状膜を積層し、前記と同様に所定領域に
のみ選択的に紫外光を照射して光重合し。B) Structure and Effects of the Invention In order to achieve the above object, the method for manufacturing an optical waveguide of the present invention comprises forming a first film-like film of a transparent photopolymerization solution whose refractive index changes when irradiated with ultraviolet light. A first thin light guide that selectively irradiates ultraviolet light only to a predetermined area of the surface to photopolymerize it, and the area that undergoes photopolymerization becomes a low refractive index layer and the area that does not undergo photopolymerization becomes a high refractive index layer. A wave path is formed, and a second film film similar to the first film film is laminated on this first thin optical waveguide, and ultraviolet light is selectively irradiated only to a predetermined region in the same manner as above. and photopolymerize.
前記第1の薄型光導波路上に第2の薄型光導波路を形成
し、以下前記第2の薄型光導波路の形成と同様にして、
薄型光導波路を順次多層形成し、大型厚膜の光導波路を
得るようにしている。forming a second thin optical waveguide on the first thin optical waveguide, and then in the same manner as the formation of the second thin optical waveguide,
A large thick-film optical waveguide is obtained by sequentially forming multiple layers of thin optical waveguides.
この発明によれば、フィルム状膜の形成と選択的な光重
合を繰返して薄型光導波路を積層形成してゆき、厚膜の
光導波路を得るものであるから。According to this invention, the formation of a film-like film and selective photopolymerization are repeated to form a thin optical waveguide in layers, thereby obtaining a thick optical waveguide.
各薄型光導波路は略均−な屈折率差を持ち、したがって
光導波路全体に亘シ、すなわち表面から裏面まで均一の
屈折率差となる。そのため導波損失が小さくなシ従来に
比し、はるかに大型、高NAの光導波路を得ることがで
きる。また薄型光導波路の積層も貼シ合せ等でないから
、各層間での散乱反射による導波損失もなく剥離による
信頼性の低下等も生じることがない。その上、薄型光導
波路の積層は同じ処理の繰返しでなせるので製造過程の
自動化が容易である。Each thin optical waveguide has a substantially uniform refractive index difference, and therefore the refractive index difference is uniform throughout the entire optical waveguide, that is, from the front surface to the back surface. Therefore, it is possible to obtain an optical waveguide that is much larger and has a higher NA than the conventional optical waveguide with small waveguide loss. Furthermore, since the thin optical waveguide is not laminated by laminating, etc., there is no waveguide loss due to scattering and reflection between each layer, and there is no reduction in reliability due to peeling. Furthermore, since the thin optical waveguides can be laminated by repeating the same process, the manufacturing process can be easily automated.
(ホ)実施例の説明 以下実施例によシ、この発明をさらに詳細に説明する。(e) Description of examples The present invention will be explained in more detail with reference to Examples below.
第3(a)図、第4(a)図はこの発明の実施例の一過
程を示す断面図である。図面において、製造のために使
用される治具装置について説明する。1゜はキャスト溶
液を入れるキャスト容器、11はキャスト容器10内の
キャスト溶液を水平に保つだめの水準器、12はマヌク
パターン16を持っマスク板、14はマスク板12の位
置決め用のL型金具、15は平行な紫外光線16を発生
する紫外線露光装置である。3(a) and 4(a) are cross-sectional views showing one process of an embodiment of the present invention. In the drawings, a jig device used for manufacturing will be described. 1° is a casting container to hold the casting solution, 11 is a level to keep the casting solution in the casting container 10 horizontal, 12 is a mask plate having a Manuk pattern 16, and 14 is an L-shaped metal fitting for positioning the mask plate 12. , 15 is an ultraviolet exposure device that generates parallel ultraviolet rays 16.
大型の光導波路を装置する場合には、先ずキャスト容器
10を1例えば塩化メチレンCH2Cl2で予備洗浄し
、同様に予備洗浄した位置決め用り型金具14をキャス
ト容器10内におく。次にキャスト容器20内にキャス
ト溶液を入れる。キャスト溶液としては、母材として例
えばビスフェノ−/l/Z系ポリカーボネートPCZ7
0f、モノマとしてアクリル酸メチルMA42m1.溶
媒として塩化メチレンCHzC121000f、光増感
剤としてペンゾインエチルエーテl BZEE 2.1
f 、 禁止剤としてハイドロキノンHQ0.07g
をブレンドしたものを使用する。When a large-sized optical waveguide is to be installed, first, the cast container 10 is preliminarily cleaned with, for example, methylene chloride CH2Cl2, and the positioning mold fitting 14, which has been preliminarily cleaned in the same manner, is placed inside the cast container 10. Next, a casting solution is put into the casting container 20. For the casting solution, for example, bispheno-/l/Z-based polycarbonate PCZ7 is used as the base material.
0f, methyl acrylate MA42m1. as monomer. Methylene chloride CHZC121000f as solvent, penzoin ethyl ether BZEE 2.1 as photosensitizer
f, 0.07 g of hydroquinone HQ as inhibitor
Use a blend of.
キャスト溶液の量は膜厚が60μmとなるように調整す
る。また液面は水準器11を調整して水平にする。The amount of casting solution is adjusted so that the film thickness is 60 μm. Further, the liquid level is leveled by adjusting the spirit level 11.
次にキャスト容器10を半密閉状態にしてチッソカスを
100*J/分で150分間、さらにその後MA蒸気を
30分間流し、溶媒およびモノマの一部を蒸発させてシ
ート状の半固形状フィルム17を作成する。Next, the cast container 10 is kept in a semi-sealed state, and tissocas is poured at 100*J/min for 150 minutes, and after that, MA vapor is passed for 30 minutes to evaporate a portion of the solvent and monomer to form a sheet-like semi-solid film 17. create.
続いて、フォトマスク板12の水平・垂直両端面を位置
決め用り型金具14に密着させ、またマスク面16を下
にしてフィルム17に密着させておく。マスク板12が
フィルム17上で少し滑へる程度になると、紫外線露光
装置15を作動させ。Subsequently, both the horizontal and vertical end surfaces of the photomask plate 12 are brought into close contact with the positioning mold fittings 14, and the photomask board 12 is brought into close contact with the film 17 with the mask surface 16 facing down. When the mask plate 12 slightly slips on the film 17, the ultraviolet exposure device 15 is activated.
紫外光16を15分間、照射する。マスク板12のマス
クパターン16によりマスクされている部分18は紫外
光が照射されないので光重合が起らず、pczとMAは
分離状態となるが、マスクされていない部分19は光重
合が起こシ、ポリマ化される。すなわち高屈折率層であ
るコア部18と。Irradiate with ultraviolet light 16 for 15 minutes. The portion 18 masked by the mask pattern 16 of the mask plate 12 is not irradiated with ultraviolet light, so photopolymerization does not occur and pcz and MA are separated, but the unmasked portion 19 undergoes photopolymerization. , polymerized. That is, the core portion 18 is a high refractive index layer.
低屈折率層であるクラッド部19が形成される。A cladding portion 19, which is a low refractive index layer, is formed.
この場合、フィルム17の光重合部における紫外光強度
分布は第6図(b)のように、フィルム内部はど減衰す
るが、フィルム17の厚さが厚いので。In this case, the ultraviolet light intensity distribution in the photopolymerized portion of the film 17 is attenuated inside the film, as shown in FIG. 6(b), because the film 17 is thick.
それほど大きな減衰は生じず、第6図(、)のように屈
折率差分布も同様に略フラットに近い。Not much attenuation occurs, and the refractive index difference distribution is also nearly flat as shown in FIG. 6(,).
以上のようにして先ず第1層目の薄型光導波路20が形
成される。As described above, the first layer of thin optical waveguide 20 is first formed.
次にマスク板12を取除き、第4図に示すように、光重
合させたフィルム17の上から、上記第6図の場合と同
様に、キャスト溶液を流し込む。Next, the mask plate 12 is removed, and as shown in FIG. 4, a casting solution is poured over the photopolymerized film 17 in the same manner as in the case of FIG. 6 above.
膜厚はやはシロ0μmとなるように、キャスト溶液蓋を
調整する。その後、キャスト容器100半密封状態にし
て、チッソガス全100181フ分で150分間、さら
にその後MA蒸気を60分間流し、溶媒およびモノマの
一部を蒸発させてシート状の半固形状フィルム21を作
成する。Adjust the cast solution lid so that the film thickness is 0 μm. Thereafter, the cast container 100 is semi-sealed, and a total of 100,181 puffs of nitrogen gas is flowed for 150 minutes, and after that, MA steam is flowed for 60 minutes to evaporate a portion of the solvent and monomer to create a sheet-like semi-solid film 21. .
続いて2位置決め用り型金具14に水平・垂直両端面を
密着させたマスク板12をマスクパターン13を下にし
てフィルム21に密着させる。マスク板12がフィルム
21上で少し滑べる程度になると、紫外線露光装置を作
動させ、紫外光16′ft15分間照射する。これによ
シフイルレム21には、光重合が生じない部分22と光
重合を生じる部分23が形成される。この場合のフィル
ム21も、紫外光強度分布、屈折率差分布が第4図(b
)及び(C)に示すように略フラットなもの仁なる。Subsequently, the mask plate 12 whose horizontal and vertical end surfaces are brought into close contact with the two-positioning mold fittings 14 is brought into close contact with the film 21 with the mask pattern 13 facing down. When the mask plate 12 can be slightly slid on the film 21, the ultraviolet exposure device is activated to irradiate the film with ultraviolet light of 16'ft for 15 minutes. As a result, a portion 22 in which photopolymerization does not occur and a portion 23 in which photopolymerization occurs are formed in the film 21. The film 21 in this case also has an ultraviolet light intensity distribution and a refractive index difference distribution as shown in FIG.
) and (C), it is approximately flat.
このようにして、第1層目の薄型先導波路20上に第2
層目の薄型光導波路24が形成される。In this way, the second thin waveguide 20 of the first layer is
A layered thin optical waveguide 24 is formed.
次に、マスク板12を取除き上記第1層目、第2層目と
同様にして、第2層目の薄型光導波路24上に第3層目
の薄型光導波路(膜厚:60μm)を形成する。Next, the mask plate 12 is removed and a third layer of thin optical waveguide (thickness: 60 μm) is formed on the second layer of thin optical waveguide 24 in the same manner as the first and second layers. Form.
上記のようにして、第1層から第6層まで薄型光導波路
が積層され、膜厚180μmの大聖の光導波路が出来る
。As described above, the thin optical waveguides are laminated from the first layer to the sixth layer to form a Daisei optical waveguide with a film thickness of 180 μm.
上記露光の完了後、後処理として30分以上常温で放置
した後、キャスト容器10毎、真空乾燥機(図示せず)
に移し、約10時間乾燥させる。After completing the above exposure, after leaving it at room temperature for 30 minutes or more as a post-processing, each 10 cast containers were placed in a vacuum dryer (not shown).
Transfer to dry for about 10 hours.
これによシ、コア部18,22.・・・の未重合モノマ
が除去される。次にキャスト容器10から積層されたフ
ィルムを剥離し2表面および裏面に低屈折率のコーティ
ング剤で厚さ10μmにバーコードし、熱風乾燥機で、
9G’Cで5時間乾燥させ。In addition to this, the core portions 18, 22. ... unpolymerized monomers are removed. Next, the laminated film was peeled off from the cast container 10, barcoded with a low refractive index coating agent to a thickness of 10 μm on the front and back surfaces, and dried in a hot air dryer.
Dry at 9G'C for 5 hours.
上下面のクラッド層25(第5図参照)を形成する。以
上で大型先導波路の製作が完了する。A cladding layer 25 (see FIG. 5) on the upper and lower surfaces is formed. With the above steps, the fabrication of the large leading waveguide is completed.
第5図(a)は1以上のようにして完成した大型の光導
波路の断面図であ、jl+、18,22.26はコア部
、19,25.27はクラッド部、25はクランド層で
ある。この完成した180X180μmの光導波路で口
径200μの光ファイバとの結合が可能となる。この光
導波路の屈折率差分布は第5図(b)に示すように略フ
ラットになるので、コア部とクラッド部の界面での屈折
率差が小さい部分がなく、光のとじ込め効果が強く、か
つp c ′、<とMAの相分離による散乱も少なくな
るた、め、従来の光導波路に比し、高NAを保持しなが
ら、大型(大口径)化をはかることができる。FIG. 5(a) is a cross-sectional view of a large optical waveguide completed as described above, in which jl+, 18, 22.26 are the core part, 19, 25.27 are the cladding part, and 25 is the cladding layer. be. This completed 180×180 μm optical waveguide can be coupled to an optical fiber with a diameter of 200 μm. The refractive index difference distribution of this optical waveguide is approximately flat as shown in Figure 5(b), so there is no part where the refractive index difference is small at the interface between the core and cladding, and the light confinement effect is strong. , and scattering due to the phase separation of p c ′,< and MA is also reduced, so it is possible to increase the size (large diameter) while maintaining a high NA compared to conventional optical waveguides.
なお上記実施例において、フィルムはキャスティング法
によシ作成する場合について説明したが。In the above embodiments, the case where the film was produced by a casting method was explained.
他の方法、たとえばスピナー等による遠心力で膜を作成
してもよい。The membrane may be formed by other methods, such as centrifugal force using a spinner or the like.
また上記実施例において、光重合選択を行なうのに、マ
スク板を用いているが、レーザ光をスキャニングするこ
とによシ、マスク板なしで選択的に光を照射してもよい
。Further, in the above embodiments, a mask plate is used for photopolymerization selection, but light may be selectively irradiated by scanning laser light without a mask plate.
また、上記実施例においては、薄型光導波路を3層積層
する場合について説明したが、この発明はこれに限定さ
れることなく、2層以上の任意の多層に形成して大型の
光導波路を製造する場合に適用されるこというまでもな
い。Furthermore, in the above embodiment, a case where three layers of thin optical waveguides are laminated has been described, but the present invention is not limited to this, and a large optical waveguide can be manufactured by forming any multilayer of two or more layers. Needless to say, this applies when
さらにまた、この発明の実施によシ、第6図に示すよう
に、各層、!+0.31.・・・34の導波路幅を9例
えばマスクパターン幅を各層毎に順次変えることによシ
変化させ、またさらに各層30,31゜・・・乙4の膜
厚を適宜変えることによ多断面が円形近似の光導波路6
5を得ることも可能である。Furthermore, according to the implementation of the present invention, each layer, as shown in FIG. +0.31. ...The width of the waveguide 34 can be changed by sequentially changing the mask pattern width for each layer, for example, and the thickness of each layer 30, 31°... is an optical waveguide 6 with a circular approximation
It is also possible to get 5.
第1図は従来の光導波路の製造方法を説明する図であっ
て、第1図(a)は従来の光導波路の断面図。
第1図(b)は露光時の同光導波路内の紫外光強度分布
図、第1図(0)は同光導波路の深さ方向の屈折率差分
布図、第2図は従来の製造方法で大型の光導波路を製造
する場合を説明する図であって、第2図(a)は大型光
導波路の断面図、第2図(b)は同大型先導波路内の露
光時の紫外光強度分布図、第2図(c)は同大型光導波
路の深さ方向の屈折率差分布図。
第6図及び第4図はこの発明の一実施例を示す図であっ
て、第6図(a)及び第4図(a)は製造の1過程を示
す断面図、第6図(b)及び第4図(b)は、同各過程
での紫外光強度分布図、第3図(c)及び第4図(C)
は同各過程での光導波路の深さ方向の屈折率差分布図、
第5図は上記実施例により製造された大型光導波路を示
す図であって、第5図(a)はその断面図、第5図(b
)は深さ方向の屈折率差分布図、第6図はこの発明によ
って製造可能な他の光導波路の断面図である。
10:キャスト容器、13:マスクパターン。
15:紫外線露光装置、16:紫外光。
17:21: フ イルレム、 18 ・ 22 ・
26 :コア部、19・23・27:クラッド部。
20・24:薄型光導波路。
特許出願人 立石電機株式会社
代理人 弁理士 中 村 茂 信
第2図
(a)
1 ビ 1
(b) (C)
<b> (C)FIG. 1 is a diagram illustrating a conventional optical waveguide manufacturing method, and FIG. 1(a) is a cross-sectional view of the conventional optical waveguide. Figure 1 (b) is a diagram of the ultraviolet light intensity distribution within the optical waveguide during exposure, Figure 1 (0) is a diagram of the refractive index difference distribution in the depth direction of the optical waveguide, and Figure 2 is a diagram of the conventional manufacturing method. FIG. 2(a) is a cross-sectional view of the large optical waveguide, and FIG. 2(b) is the ultraviolet light intensity during exposure inside the large optical waveguide. Distribution map, FIG. 2(c) is a refractive index difference distribution map in the depth direction of the same large optical waveguide. 6 and 4 are diagrams showing one embodiment of the present invention, and FIGS. 6(a) and 4(a) are cross-sectional views showing one manufacturing process, and FIG. 6(b) is a sectional view showing one manufacturing process. and Fig. 4(b) are ultraviolet light intensity distribution maps in each process, Fig. 3(c) and Fig. 4(C).
are the refractive index difference distribution diagrams in the depth direction of the optical waveguide during each process,
FIG. 5 is a diagram showing a large-sized optical waveguide manufactured according to the above embodiment, and FIG. 5(a) is a cross-sectional view thereof, and FIG.
) is a refractive index difference distribution diagram in the depth direction, and FIG. 6 is a sectional view of another optical waveguide that can be manufactured by the present invention. 10: Cast container, 13: Mask pattern. 15: Ultraviolet exposure device, 16: Ultraviolet light. 17:21: Fillem, 18 ・ 22 ・
26: core part, 19, 23, 27: cladding part. 20/24: Thin optical waveguide. Patent Applicant Tateishi Electric Co., Ltd. Agent Patent Attorney Shigeru Nakamura Figure 2 (a) 1 B 1 (b) (C) <b> (C)
Claims (1)
重合溶液の第1のフィルム状膜の表面の所定領域にのみ
選択的に紫外光を照射して光重合し、この光重合を受け
た領域を低屈折率層、光重合を受けない領域を高屈折率
層とする第1の薄型光導波路を形成し、さらにこの第1
の薄型先導波路上に前記第1のフィルム状膜と同様の第
2のフィルム状膜を積層し、前記と同様に所定領域にの
み選択的に紫外光を照射して光重合し、前記第1の薄型
光導波路上に第2の薄型光導波路を形成し、以下前記第
2の薄型光導波路の形成と同様にして薄型光導波路を順
次多層形成し、大型厚膜の先導波路を得るようにした光
導波路の製造方法。(1) Photopolymerization is carried out by selectively irradiating ultraviolet light only on a predetermined area on the surface of a first film-like film of a transparent photopolymerization solution whose refractive index changes when irradiated with ultraviolet light. A first thin optical waveguide is formed in which a region subjected to photopolymerization is a low refractive index layer and a region not subjected to photopolymerization is a high refractive index layer;
A second film-like film similar to the first film-like film is laminated on the thin guiding waveguide of the film, and in the same manner as above, ultraviolet light is selectively irradiated only to a predetermined region to photopolymerize the film. A second thin optical waveguide was formed on the thin optical waveguide, and multiple layers of thin optical waveguides were sequentially formed in the same manner as in the formation of the second thin optical waveguide to obtain a large thick-film leading waveguide. A method for manufacturing an optical waveguide.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12654783A JPS6017704A (en) | 1983-07-11 | 1983-07-11 | Manufacture of optical waveguide |
US06/629,442 US4712854A (en) | 1983-07-11 | 1984-07-10 | Optical waveguide and method of making the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12654783A JPS6017704A (en) | 1983-07-11 | 1983-07-11 | Manufacture of optical waveguide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6017704A true JPS6017704A (en) | 1985-01-29 |
Family
ID=14937875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12654783A Pending JPS6017704A (en) | 1983-07-11 | 1983-07-11 | Manufacture of optical waveguide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6017704A (en) |
-
1983
- 1983-07-11 JP JP12654783A patent/JPS6017704A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4712854A (en) | Optical waveguide and method of making the same | |
US4609252A (en) | Organic optical waveguide device and method of making | |
US2524862A (en) | Method and apparatus for producing cast synthetic resin structures by photopolymerization of monomeric material | |
JPH03209442A (en) | Multiplexer-demultiplexer for opticalic and its manufacture | |
JP2004066451A (en) | Microstructure using preformed photoresist sheet and manufacturing method thereof | |
US5104771A (en) | Optical components | |
KR920009997B1 (en) | Optical waveguide devices and method of making the devices | |
JP2001504239A (en) | Optical waveguide | |
JPH0618739A (en) | Production of waveguide | |
JP3706496B2 (en) | Manufacturing method of optical waveguide | |
US3864130A (en) | Integrated optical circuits | |
JPS6017704A (en) | Manufacture of optical waveguide | |
Harriott et al. | Focused ion beam induced deposition of opaque carbon films | |
CN115535957A (en) | Processing method of titanium dioxide nano pattern with large depth-to-width ratio on silver substrate | |
GB2045966A (en) | Process for Forming an Organic Optical Waveguide Device | |
JPS6269207A (en) | High polymer waveguide device | |
US3748246A (en) | Dielectric circuit forming process | |
JPS5965808A (en) | Production of optical waveguide | |
EP1214614A1 (en) | Photonic crystal materials | |
JPS60188909A (en) | Manufacture of grating coupler | |
JPS6017705A (en) | Manufacture of circular optical waveguide | |
JP2000098162A (en) | Forming method of film type polymer waveguide | |
JPS59162505A (en) | Light guide device | |
JPS61204603A (en) | High polymer optical waveguide and its preparation | |
JP2002318319A (en) | Method for manufacturing film with distribution of refractive index |