JPS5965808A - Production of optical waveguide - Google Patents

Production of optical waveguide

Info

Publication number
JPS5965808A
JPS5965808A JP17582882A JP17582882A JPS5965808A JP S5965808 A JPS5965808 A JP S5965808A JP 17582882 A JP17582882 A JP 17582882A JP 17582882 A JP17582882 A JP 17582882A JP S5965808 A JPS5965808 A JP S5965808A
Authority
JP
Japan
Prior art keywords
film
refractive index
optical waveguide
light
index layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17582882A
Other languages
Japanese (ja)
Inventor
Kazuo Mikami
和夫 三上
Taro Watanabe
太郎 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP17582882A priority Critical patent/JPS5965808A/en
Publication of JPS5965808A publication Critical patent/JPS5965808A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain an optical waveguide having a large diameter and a high difference in refractive index by disposing photomasks having the same pattern on the top and bottom surfaces of a film of a photo-polymerizing material, irradiating light thereto from top and bottom thereby forming a high refractive index layer and coating the top and bottom surfaces with a coating agent having a low refractive index. CONSTITUTION:A soln. of a photo-polymerizing material of which the refractive index changes when irradiated with light is cast into a casting vessel 2 whereby a sheet-like semi-solid film 3 is formed. Photomasks 6, 7 having the same pattern are disposed on the top and bottom surfaces of such film 3 in tight contact therewith in such positions where the patterns coincide with each other. Light is irradiated alternately and perpendicularly to the photomasks 6, 7 from above and below the film 3 to form a high refractive index layer 3a on the film 3; thereafter, a coating agent having a low refractive index is coated on the top and bottom surfaces of the film 3, whereby an optical waveguide is formed. The optical waveguide having a large diameter connectable to an optical fiber of a large diameter and a high difference in refractive index is produced.

Description

【発明の詳細な説明】 (イ)発明の分野 この発明は、光を伝送する光導波路の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION (a) Field of the Invention The present invention relates to a method for manufacturing an optical waveguide for transmitting light.

(ロ)従来技術とその問題点 一部に2選択光重合法による高分子光導波の製造方法は
、第1図の製造工程図に示すように、先ず、キャスト溶
器a2溶媒により洗浄し1こ後、光照射により屈折率が
変化する光重合拐料の溶液すをキャスト溶器aに注入し
てシート状にし溶媒の一部を蒸発させて半固形状の透明
フィルムCを形成する。
(b) Prior art and its problems Some of the manufacturing methods for polymeric optical waveguides using the two-selective photopolymerization method are as follows: First, as shown in the manufacturing process diagram in Figure 1, a cast solvent is cleaned with a2 solvent. Thereafter, a solution of a photopolymerizable material whose refractive index changes upon irradiation with light is poured into a casting vessel a to form a sheet, and a portion of the solvent is evaporated to form a semi-solid transparent film C.

続いて、フィルムCの上面にフォトマスク(1を配設し
1こ後、紫外線eを上方より照射して露光し。
Subsequently, a photomask (1) is placed on the top surface of the film C, and after that, ultraviolet rays (e) are irradiated from above for exposure.

マスクされていない部分のみ選択的に光重合ケ行ない、
屈折率を減少きせる。その後、フィルムCを真空乾燥し
て非光重合部に金型れているモノマを蒸発させ、この非
光1合部を光重合部より屈折率が大きい高屈折率層もと
する。
Selectively photopolymerize only the unmasked areas,
Decrease the refractive index. Thereafter, the film C is vacuum-dried to evaporate the monomer molded into the non-photopolymerized portion, and the non-photopolymerized portion is converted into a high refractive index layer having a higher refractive index than the photopolymerized portion.

そして最後に、フィルム(〉の上下面に屈折率の小さい
樹脂grコートし、高屈折率層fをコア。
Finally, the upper and lower surfaces of the film (>) are coated with a resin gr having a low refractive index, and the high refractive index layer f is placed on the core.

その周囲をクラッドとする光導波路11ヲ形成するよう
になっている。
An optical waveguide 11 is formed around the optical waveguide 11 as a cladding.

この光導波1ffi’+1+の製造方法において、紫外
線eの露光工程部ケさらに詳述すると、第2図に示すよ
うに、キャスト容器a内にシート状で且つ半固形状の透
明フィルムCか形成されており、このフィルム0の一ヒ
面にフォトマスク(lが密層して配貢されている。そし
て、フォトマスク(1の」三方番こ2いて紫外線照射装
置1より平行ビーム状の紫外線Cか照射される。
In the manufacturing method of this optical waveguide 1ffi'+1+, the ultraviolet ray e exposure step is explained in more detail.As shown in FIG. 2, a semi-solid transparent film C is formed in a cast container a. A photomask (l) is distributed in a dense layer on one side of this film 0. Then, a parallel beam of ultraviolet rays C is applied from the ultraviolet irradiation device 1 to the photomask (1) on three sides. or irradiated.

従って、フォトマスクdのマスク部Jについては紫外m
dが透過ぜす、このマスク部、)の下方におけるフィル
ム(5の一部は光重合か起ら々いので母相とモノマか分
離しf、ニー1 寸である。他方、フォトマスクdのマ
スク部J以外の部分については紫外線dが透過し、)づ
ルムCの一部は光重合が起り、切材とモノマの重オ゛バ
ーセントで決する屈折率1で低下して低屈折率j−にと
なり、マスク部、1の下方のフィルム部が高屈折率層「
となる。
Therefore, for the mask portion J of the photomask d, the ultraviolet m
Since photopolymerization is unlikely to occur in the part of the film (5) below this mask portion (5) through which photomask d is transmitted, the mother phase and monomer are separated and the width of the photomask d is 1. The ultraviolet ray d is transmitted through the parts other than the mask part J, and photopolymerization occurs in a part of the film C, and the refractive index decreases to 1, which is determined by the weight percent of the cut material and the monomer, and becomes a low refractive index j-. , and the film part below the mask part 1 is a high refractive index layer.
becomes.

この露光工程において、紫外線eは、従来、上方のみか
ら照射して嘔り、低屈折率層1(となる光重合部にあ・
ける旬月とモノマの相分離による紫外線eの光強度分布
か、第2図(1〕)に示すように、フィルムCの上面か
ら下方にいくにし1こかって減衰曲線となる。
In this exposure process, ultraviolet rays are conventionally irradiated only from above, and are applied to the photopolymerized portion of the low refractive index layer 1.
As shown in Figure 2 (1), the light intensity distribution of ultraviolet light e due to phase separation between the monomer and the monomer becomes an attenuation curve that gradually increases downward from the top surface of the film C.

よって、第2図(e)に示すように、低屈折率層kにな
る光重合部と高nl(折率層1になる非九軍台音I5と
の屈折率差(NA)かフィルム(−の上面から下面にい
くに伴って小芒くlる。
Therefore, as shown in FIG. 2(e), the difference in refractive index (NA) between the photopolymerized portion that becomes the low refractive index layer k and the high nl (non-Kyuun taichung I5 that becomes the refractive index layer 1) or the film ( - The apex decreases from the top to the bottom.

この現象は、フィルムCか薄い場合にはざほと問題が生
じないものの、第6図及び第4図に示すように、大口径
の光ファイバ1を接続する1こめにフィルムOの厚a+
大きくすると(例えd2.1[X]II m或い(は2
00μm)、光強度分布の減衰か著しく、これに伴って
屈折率差も小さくなる。これテハ、 光+伝送する際、
フィルム(二の下部における高屈折率層rのコアと低屈
折率1(のクラットとの境界では光の散乱や漏れが大キ
く、光の閉じ込め効果が弱いので、光導波路りとしての
損失が太きいという欠点があり、大口径でかつ高屈折率
差の光導波路11の製造が難がしかった○eつ発明の目
的 この発明は、か\る点に鑑み、大口径の光ファイバと接
続可能に大口径で且つ高屈P1率差を有する光導波路の
製造方法を提供することケ目的とするものである。
This phenomenon does not cause any problem if the film C is thin, but as shown in FIGS. 6 and 4, the thickness of the film O is a +
If you increase it (for example, d2.1[X]II m or (is 2
00 μm), the light intensity distribution is significantly attenuated, and the refractive index difference is also reduced accordingly. This is technically true, when transmitting light +
At the boundary between the core of the high refractive index layer r and the crat of the low refractive index layer 1 at the bottom of the film (2), light scattering and leakage are large, and the light confinement effect is weak, so there is no loss as an optical waveguide. This invention has the disadvantage of being thick, making it difficult to manufacture an optical waveguide 11 with a large diameter and a high refractive index difference. The object of the present invention is to provide a method for manufacturing an optical waveguide having a large diameter as possible and a high P1 index difference.

に)発明の構成と効果 この発明は、上記目的を達成するために、キャスFB器
に形成されたシート状で且つ半固形状の光重合材料のフ
づルムの上下面に、同一パターンのフォトマスクをその
パターンが一致するように配設し、フィルムの上方と下
方とから光をソ゛オドマスクへ向けて交互に照射して高
屈折率層を形成し、その後、フィルムの上下面に低屈折
率のコーティング剤をコートとして光導波路を形成する
ように構成されている。
B) Structure and Effects of the Invention In order to achieve the above object, the present invention injects a photopolymerizable material with the same pattern on the upper and lower surfaces of a sheet-like semi-solid photopolymerizable material film formed in a CAST FB device. The masks are arranged so that their patterns match, and a high refractive index layer is formed by alternately irradiating light from above and below the film toward the sod mask, and then a low refractive index layer is applied to the top and bottom surfaces of the film. It is configured to form an optical waveguide using a coating agent as a coat.

したがって、この発明によれば、光をフィルムの上下よ
り照射するので、フィルムの厚きが大きくなっても光強
度分布の減衰が少なく、高屈折率層と低屈折率層間の屈
折率差をフィルムの上下面に亘って大きい状態に保持す
ることかできるから大口径の光導波路における導波損失
を低減することができる。
Therefore, according to this invention, since light is irradiated from above and below the film, the attenuation of the light intensity distribution is small even when the film thickness increases, and the refractive index difference between the high refractive index layer and the low refractive index layer is reduced. Since the optical waveguide can be maintained in a large state over the upper and lower surfaces of the optical waveguide, waveguide loss in a large-diameter optical waveguide can be reduced.

また、光導波路の大口径化を図ることができるので、光
ファイバとの接続時に光軸合せが容易となり、コア径か
1000μmの大口径プラスチックアアイバとの接続を
も可能となる。
Furthermore, since the diameter of the optical waveguide can be increased, alignment of the optical axis becomes easy when connecting to an optical fiber, and connection to a large-diameter plastic eyeglass fiber with a core diameter of 1000 μm is also possible.

(ホ)実施例の説明 第5図(a)は光導波路の製造工程に2ける露光装置1
を示している。
(E) Explanation of Examples FIG. 5(a) shows an exposure apparatus 1 in step 2 of the optical waveguide manufacturing process.
It shows.

この露光装置1は、キャスト容器2内の高分子フィルム
5に高屈折率層3aと低屈折率層6.1)とを成形する
ものである。このキャスFB器2は両側の水準器4に載
置され内部にL型の位置決め金具5が設けられている。
This exposure apparatus 1 forms a high refractive index layer 3a and a low refractive index layer 6.1) on a polymer film 5 in a cast container 2. This CAST FB device 2 is placed on spirit levels 4 on both sides, and is provided with L-shaped positioning fittings 5 inside.

更にキャスト容器2の内部には底部にフォトマスク6が
位置決め金具5に密着して設けられ、このフォトマスク
6の上方にフィルム6が形成され、このフィルム6の上
方にフォトマスク7が、フォトマスク7の上方に減衰板
8が順に位置決め金具5に密着して設けられている。上
下のフォトマスク6.7は、マスク部6a+7aを有し
て同一パターンに形成されておりツそのパターンが一致
するように設けられ1両マスク部6a;7Bがフィルム
6を挾んで一致している。
Further, inside the cast container 2, a photomask 6 is provided at the bottom in close contact with the positioning metal fitting 5, a film 6 is formed above this photomask 6, a photomask 7 is formed above this film 6, and a photomask 7 is formed above this film 6. Damping plates 8 are provided above the positioning fittings 7 in order in close contact with the positioning fittings 5. The upper and lower photomasks 6.7 have mask portions 6a+7a and are formed in the same pattern, and are provided so that the two patterns match, with both mask portions 6a and 7B sandwiching the film 6 and matching. .

また、キャスト容器2の上方及び下方には紫外線9,1
0の照射装置11.12が設けられ、この照射装置11
.12を光源として平行ビーム状の紫外線9,10がフ
ォトマスク6.7に内ってこのフォトマスク6,7に垂
直に照射されるようになっている。
In addition, ultraviolet rays 9 and 1 are provided above and below the cast container 2.
0 irradiation device 11.12 is provided, and this irradiation device 11
.. 12 as a light source, parallel beams of ultraviolet rays 9 and 10 enter the photomasks 6 and 7 and are irradiated perpendicularly to the photomasks 6 and 7.

前記フィルム6は光照射によって屈折率が低下する光重
合利料の溶液から形成され、この溶液はff1Uとして
ビヌフェノール系ポリカーボネート(PCZ、) 70
’li’、モノマ(MA) 42i m l +溶媒ト
l、−(4化メf V ン(CH2Cd2)100.O
f 、 光増感剤としてベンゾインエチルエーテル(B
ZEE )2.1g、i止剤としてハイドロキノン(H
Q)0、079をブレンドして構成されている。
The film 6 is formed from a solution of a photopolymerized compound whose refractive index decreases when irradiated with light, and this solution is made of binuphenol polycarbonate (PCZ, ) 70 as ff1U.
'li', monomer (MA) 42i ml + solvent tl, -(methane tetrachloride (CH2Cd2) 100.O
f, benzoin ethyl ether (B
ZEE) 2.1g, hydroquinone (H
Q) It is composed of a blend of 0,079.

この溶液をキャスl−容@:52に膜厚が200 /J
rnとなるように注入され、モノマと溶媒の一部を蒸発
させてシート状で且つ半固形状の透明フィルムろが形成
されている。
This solution was poured into a casing with a volume of 52 and a film thickness of 200/J.
The monomer and a portion of the solvent are evaporated to form a sheet-like semi-solid transparent film filter.

次に、この露光装置1を用いて光導波路の製造方法を説
明する。
Next, a method for manufacturing an optical waveguide using this exposure apparatus 1 will be explained.

先ず、キャスト容器2及び位置決め金具5を塩化メチレ
ン(CHzC,g2)などの溶媒で予備洗浄した後、キ
ャスト容器2を水準器4に載置すると共に。
First, after preliminarily cleaning the cast container 2 and the positioning metal fittings 5 with a solvent such as methylene chloride (CHzC, g2), the cast container 2 is placed on the level 4.

その位置決め金具5をキャスト容器2内に設置する。The positioning fitting 5 is installed inside the cast container 2.

続いて、下部フォトマスク6をキャスト容器2内の底部
に位置決め金具5に密着させ且つマスク部6aを」ニに
向けて設置する。
Subsequently, the lower photomask 6 is placed in close contact with the positioning metal fitting 5 at the bottom of the cast container 2, and the mask portion 6a is placed facing ``D''.

引き続いて、前述した所定の光重合利料よりなる溶液を
膜、厚が200μmになるようにキャスト容器2に注入
し、水準器4によシ水平調整する。このキャスト容器2
を半密閉状態にして内部にチツソガヌを100mj?/
分で150分間流しだ後、モノマ蒸気を30分間流し、
溶媒及びモノマの一部を蒸発させ、シート状で且つ半固
形状の透明フィルム6を形成する。
Subsequently, a solution consisting of the above-mentioned predetermined photopolymerization agent is poured into the casting container 2 so that the film has a thickness of 200 μm, and is leveled using a spirit level 4. This cast container 2
Is it semi-sealed and 100mj of Chitusoganu inside? /
After flowing for 150 minutes, monomer vapor was flowed for 30 minutes,
A portion of the solvent and monomer is evaporated to form a sheet-like semi-solid transparent film 6.

このフィルレム乙の上面に上部フォトマスク7をマスク
部7aを下に向けて且つ下部フオトマ込り乙のマスク部
6aに一致させると共に位置決め金具5に密着させて載
置し、このフィルム6上で少し滑る程度になった後、顕
微鏡などでに下のフ第1−マヌク6,7の精密な位置合
わせを行い、上部フォトマスク7」二に減衰板8を載置
する。
The upper photomask 7 is placed on the upper surface of this film 6 with the mask part 7a facing downward and aligned with the mask part 6a of the lower photomask part 2, and in close contact with the positioning metal fitting 5. After it has reached the extent of slipping, the lower first mask 6 and 7 are precisely aligned using a microscope, and the attenuation plate 8 is placed on the upper photomask 7''.

次に、上下の照射装置11.12を作動させ。Next, the upper and lower irradiation devices 11 and 12 are activated.

タイマ制御等によシ1秒間に20回程度の切換速度でも
ってフィルム5の」二下面に紫外線9,10を両フォト
マスク6.7に垂直に交互に60分間照射する。この紫
外線9,100強度のバラツキは減衰板8或いは照射時
間の比率を変えて補正する。
Using a timer control or the like, ultraviolet rays 9 and 10 are alternately applied to the lower surface of the film 5 at a switching speed of about 20 times per second for 60 minutes perpendicularly to both photomasks 6.7. This variation in the intensity of ultraviolet rays 9 and 100 is corrected by changing the attenuation plate 8 or the ratio of the irradiation time.

この紫外線9,10の照射によりマスク部6a+7a間
のフィルム6の一部は紫外線9,10が照射されないの
て光重合が起らず、pczとMAは分離状態とな9.7
12部6a、7a以外のフィルム乙の一部は光重合が起
9.ポリマ化される。
Due to the irradiation of the ultraviolet rays 9 and 10, a part of the film 6 between the mask parts 6a and 7a is not irradiated with the ultraviolet rays 9 and 10, so photopolymerization does not occur, and pcz and MA are separated.
Part 12 of Film B other than 6a and 7a undergoes photopolymerization9. Polymerized.

そして、この非光重合部が高屈折率層3aに、光重合部
が低屈折率層3bとなる。
The non-photopolymerized portion becomes the high refractive index layer 3a, and the photopolymerized portion becomes the low refractive index layer 3b.

この露光後、フィルム6は30分以上放置した後、キャ
スト容器2より剥離し、真空乾燥器に移して90°Cで
10時間乾燥し、高屈折率層3aの未重合モノマを除去
する・ 最後に、フィルレム乙の上下面に低屈折率のコーティン
グ剤をコートし、熱風乾燥機により90°Cで5時間乾
燥させて光導波路を形成する。そして。
After this exposure, the film 6 is left for 30 minutes or more, then peeled off from the cast container 2, transferred to a vacuum dryer, and dried at 90°C for 10 hours to remove unpolymerized monomers from the high refractive index layer 3a. Next, a coating agent with a low refractive index is coated on the upper and lower surfaces of FILM B and dried at 90° C. for 5 hours using a hot air dryer to form an optical waveguide. and.

高屈折率層7.aがコアに、その周囲がクラッドになる
High refractive index layer7. A is the core, and the surrounding area is the cladding.

この製造方法によれば、第6図にも示すように。According to this manufacturing method, as shown in FIG.

フィルム5内の紫外光強度分布は上方の紫外嶽9と下方
の紫外線10との光強度分布の合成となり。
The ultraviolet light intensity distribution within the film 5 is a combination of the light intensity distributions of the upper ultraviolet ray 9 and the lower ultraviolet ray 10.

上下面に亘ってほぼフラットとなり(第5図(1)) 
It is almost flat across the top and bottom surfaces (Fig. 5 (1)).
.

第6図(b)参照)、高屈折率層3aと低屈折率層3b
間の屈折率差の分布も同様に上下面に亘ってほぼフラッ
トとなる(第5図(C)、第6図(C)参照)。
(see FIG. 6(b)), high refractive index layer 3a and low refractive index layer 3b
Similarly, the distribution of the refractive index difference between the two surfaces is substantially flat over the upper and lower surfaces (see FIGS. 5(C) and 6(C)).

従って、大口径の光ファイバ13を接続することができ
る。
Therefore, a large diameter optical fiber 13 can be connected.

第7図はフィルム乙の厚さk 4 D D It mと
したもので、この場会も、光強度分布及び屈折率差の分
布が上下面に亘ってほぼフラットになる。
In FIG. 7, the thickness of the film B is k 4 D D It m, and in this case as well, the light intensity distribution and the refractive index difference distribution are substantially flat over the upper and lower surfaces.

まだ、第8図に示すように+ 40071mの厚さのフ
ィルム6を接着剤で接着してさらに大口径の光導波路を
形成してもよい。
However, as shown in FIG. 8, a film 6 having a thickness of +40,071 m may be bonded with an adhesive to form an optical waveguide with an even larger diameter.

第9図は光源となる照射装置14を1個とした露光装@
を示し、この照射装@14からの平行ビーム状の紫外線
15をミラー16(反射手段)で上下に分離し、キャス
ト容器2の上方と下方とに導くようにしたものである。
Figure 9 shows an exposure system with one irradiation device 14 serving as a light source.
The parallel beam-shaped ultraviolet rays 15 from this irradiation device @14 are separated into upper and lower parts by a mirror 16 (reflecting means), and guided above and below the cast container 2.

これにより照射装置14を少なくすることができる。This allows the number of irradiation devices 14 to be reduced.

尚、この実7(li例における光重舎利」」は光照射に
よシ屈折率が低下するものであるが、この発明の光重合
材料は光照射によシ屈折率が増加してもよく、有機材料
以外に無機材料であってもよい。
In addition, although the refractive index of this fruit 7 (photopolymerized reliquary in Example 1) decreases upon irradiation with light, the refractive index of the photopolymerizable material of this invention may increase upon irradiation with light. In addition to organic materials, inorganic materials may also be used.

また、光は紫外線の他、可視光や赤外線であってもよい
Further, the light may be visible light or infrared light in addition to ultraviolet light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は従来例を示し、第1図は光導波路の
製造工程図、第2図(a)は露光装置の断面側面図、第
2図(blはフィルムの光強度分布図、第2図(C1は
同屈折率差の分布図、第3図(al及び第4図falは
それぞれ異なるフィルムの拡大正面図、第6図(1))
及び第4図(b)は開光強度分布図、第6図(C)及び
第4図(C1は同屈折率差の分布図、第5図乃至第9図
はこの発明の実施例を示し、第5図(a)は露光装置の
断面側面図、第5図(b)はフィルムの光強度分布図、
第5図(C1は同屈折率差の分布図、第6図(a)及び
第7図(alはそれぞれ異なるフィルムの正面図、第6
図((〕)及び第7図(b)は同党強度分布図。 第6図FC+及び第7図(C1は同屈折率差の分布図、
第8図は他のフィルムの正面図、第9図は他の露光断面
側面図である。 1:露光装置、  2:キャスト容器。 6:フィルム、 5a:高屈折率層。 3b=低屈折率層、 4:水準器、 5:位置決め金具
、 6・7:フォトマスク。 6a・7a:マスク部、 8:減衰板。 9・10・15:紫外線、  11・12・14:照射
装置、 16:光ファイバ。 16:ミラー。 特許出願人     立石電機株式会社代理人  弁理
士  中 利 茂 1aM1図 第5図 (Q) $8図 第9図 手続補正書(自発) 昭和57年12月 8日 特許庁長官殿 1 事件の表示 昭和57年 特 訂 願  第 475828  号2
 光明の名称  光導波路の製造方法6 補正をする者 事件との関係  特許1」3願人 住 所  京都市右京区花園土堂町10番地名 称  
(294)  立石電機株式会7−1代表者 立 石 
孝 卸 4代理人 5 油止の対象 (1)  図面の第1図 W、上 第1図
1 to 4 show conventional examples, FIG. 1 is a manufacturing process diagram of an optical waveguide, FIG. 2 (a) is a cross-sectional side view of an exposure device, and FIG. , Fig. 2 (C1 is a distribution diagram of the same refractive index difference, Fig. 3 (al and Fig. 4 fal are enlarged front views of different films, Fig. 6 (1))
and FIG. 4(b) is an open light intensity distribution diagram, FIG. 6(C) and FIG. 4 (C1 is a distribution diagram of the same refractive index difference, and FIGS. 5 to 9 show examples of the present invention, FIG. 5(a) is a cross-sectional side view of the exposure device, FIG. 5(b) is a light intensity distribution diagram of the film,
Figure 5 (C1 is a distribution diagram of the same refractive index difference, Figures 6 (a) and 7 (al are front views of different films, respectively,
Figure (()) and Figure 7 (b) are the same intensity distribution maps. Figure 6 FC+ and Figure 7 (C1 are the same refractive index difference distribution maps,
FIG. 8 is a front view of another film, and FIG. 9 is a side view of another exposed cross-section. 1: Exposure device, 2: Cast container. 6: Film, 5a: High refractive index layer. 3b = low refractive index layer, 4: level, 5: positioning metal fittings, 6 and 7: photomask. 6a and 7a: mask portion, 8: attenuation plate. 9.10.15: Ultraviolet light, 11.12.14: Irradiation device, 16: Optical fiber. 16: Mirror. Patent applicant Tateishi Electric Co., Ltd. Agent Patent attorney Shigeru Naka Toshige 1aM1 Figure 5 (Q) $8 Figure 9 Procedural amendment (voluntary) December 8, 1980 To the Commissioner of the Japan Patent Office 1 Indication of the case Showa 1957 Special Revision Request No. 475828 2
Name of Komei Optical waveguide manufacturing method 6 Relationship with the amended case Patent 1”3 Applicant address 10 Hanazono Tsuchido-cho, Ukyo-ku, Kyoto City Name
(294) Tateishi Electric Co., Ltd. 7-1 Representative Tateishi
Takashi Wholesaler 4 Agent 5 Target of oil stop (1) Figure 1 W of the drawing, Figure 1 above

Claims (3)

【特許請求の範囲】[Claims] (1)光照射によって屈折率が変化する光重合材料のd
液をキャスト容器に注入し、シート状で且つ半1トj形
状のフィルムを形成し、このフィルムの上面と下面とに
同一パターンのフォトマスクをそのパターンか一致する
ように密層して配設し、前記フィルムの上方と下方とか
ら光を前記フォトマスクに垂直にこのフォトマスクへ向
けて交互に照射してフィルムに高屈折率層を形成し1こ
後、このフィルムの上下面に低屈折率のコーティング剤
をコートして光導波路を形成することを特徴とする光導
波路の製造方法。
(1) d of a photopolymerized material whose refractive index changes with light irradiation
Pour the liquid into a casting container to form a sheet-like, half-shaped film, and place photomasks with the same pattern on the top and bottom surfaces of this film in a dense layer so that the patterns match. A high refractive index layer is formed on the film by alternately irradiating light from above and below the film perpendicularly to the photomask. 1. A method for manufacturing an optical waveguide, the method comprising forming an optical waveguide by coating with a coating agent of a certain amount.
(2)前記光は、2つの光源よりフィルムの上下面に照
射されることを特徴とする特許請求の範囲第1項記載の
光導波路の製造方法。
(2) The method for manufacturing an optical waveguide according to claim 1, wherein the light is irradiated onto the upper and lower surfaces of the film from two light sources.
(3)前記光は、1つの光源より反射手段によって上下
に分割されてフィルムの上下面に照射されることを特徴
とする特許請求の範囲第1項記載の光導波路の製造方法
(3) The method for manufacturing an optical waveguide according to claim 1, wherein the light is divided into upper and lower parts by a reflecting means from one light source and irradiated onto the upper and lower surfaces of the film.
JP17582882A 1982-10-06 1982-10-06 Production of optical waveguide Pending JPS5965808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17582882A JPS5965808A (en) 1982-10-06 1982-10-06 Production of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17582882A JPS5965808A (en) 1982-10-06 1982-10-06 Production of optical waveguide

Publications (1)

Publication Number Publication Date
JPS5965808A true JPS5965808A (en) 1984-04-14

Family

ID=16002926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17582882A Pending JPS5965808A (en) 1982-10-06 1982-10-06 Production of optical waveguide

Country Status (1)

Country Link
JP (1) JPS5965808A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260206A (en) * 1985-05-15 1986-11-18 Hitachi Ltd Polymerizing method and resinous product obtained therefrom
EP1678534A1 (en) * 2003-10-27 2006-07-12 RPO Pty Limited Planar waveguide with patterned cladding and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260206A (en) * 1985-05-15 1986-11-18 Hitachi Ltd Polymerizing method and resinous product obtained therefrom
EP1678534A1 (en) * 2003-10-27 2006-07-12 RPO Pty Limited Planar waveguide with patterned cladding and method for producing same
EP1678534A4 (en) * 2003-10-27 2009-09-02 Rpo Pty Ltd Planar waveguide with patterned cladding and method for producing same
US8021900B2 (en) 2003-10-27 2011-09-20 Rpo Pty Limited Planar waveguide with patterned cladding and method for producing same
US8994037B2 (en) 2003-10-27 2015-03-31 Zetta Research And Development Llc-Rpo Series Planar waveguide with patterned cladding and method for producing same

Similar Documents

Publication Publication Date Title
US4712854A (en) Optical waveguide and method of making the same
KR910005879B1 (en) Production of transmissivity modulation type photomask and production of diffraction grating using the photomask
US7400809B2 (en) Optical waveguide devices and method of making the same
JPH03155507A (en) Manufacture of optical part
JPH05264833A (en) Optical surface packaging substrate and its production
JPH0328804A (en) Light waveguide device, element for manufacturing device and method for manufacturing device and element
JP2599497B2 (en) Flat plastic optical waveguide
JPH02131202A (en) Manufacture of optical waveguide
JPH01252902A (en) Low reflection diffraction grating and its production
JPS597362B2 (en) Manufacturing method of waveguide device
JPS5965808A (en) Production of optical waveguide
JPH01316710A (en) Novel optical device
JPH0262502A (en) New optical device
JPH01138509A (en) High-density optical waveguide and its manufacture
JPS59164510A (en) Light guide device
JPH04165310A (en) Manufacture of photo waveguide passage
JPH07104590B2 (en) Transmittance modulation type photomask, its manufacturing method and diffraction grating manufacturing method using the same
JPH03296704A (en) Manufacture of optical waveguide lens, and waveguide type optical element
JPS59162505A (en) Light guide device
JPS60202402A (en) Fresnel lens
JPS6017704A (en) Manufacture of optical waveguide
JPS59162506A (en) Light guide device
JPH0250106A (en) New optical device
KR20010057689A (en) Method for manufacturing micro beam splitter
JPS60202406A (en) Preparation of plastic optical circuit