JPS6019107A - Manufacture of optical waveguide - Google Patents

Manufacture of optical waveguide

Info

Publication number
JPS6019107A
JPS6019107A JP12748983A JP12748983A JPS6019107A JP S6019107 A JPS6019107 A JP S6019107A JP 12748983 A JP12748983 A JP 12748983A JP 12748983 A JP12748983 A JP 12748983A JP S6019107 A JPS6019107 A JP S6019107A
Authority
JP
Japan
Prior art keywords
refractive index
film
optical waveguide
ultraviolet light
index distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12748983A
Other languages
Japanese (ja)
Inventor
Kazuo Mikami
和夫 三上
Maki Yamashita
山下 牧
Mitsutaka Kato
加藤 充孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP12748983A priority Critical patent/JPS6019107A/en
Priority to US06/629,442 priority patent/US4712854A/en
Publication of JPS6019107A publication Critical patent/JPS6019107A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation

Abstract

PURPOSE:To manufacture an optical waveguide whose core part has a nearly square refractive index distribution by irradiating ultraviolet light twice under different timing conditions on the surface of a film of a transparent photopolymerizable soln. which changes its refractive index when exposed to ultraviolet light. CONSTITUTION:A casting soln. is poured in a container 10, gaseous nitrogen is fed, and after feeding monomer vapor, part of a monomer is evaporated to form a sheetlike transparent semisolid film 14. Ultraviolet rays 13 are inrradiated on the film 14 with an ultraviolet-ray exposer 12 to provide a nearly square refractive index distribution in the thickness direction. Gaseous nitrogen and monomer vapor are further fed, a photomask 15 is placed on the film 14, and ultraviolet rays 13 are irradiated to provide a nearly square refractive index distribution in the lateral direction. The refractive index of the central part of the resulting optical waveguide in the lateral direction is highest, and the refractive index is gradually reduced toward the peripheral part.

Description

【発明の詳細な説明】 (イ)発明の分野 この発明は先導波路、特にグレーテッドインデックス形
光ファイバとの接続が可能な多モード屈折率分イ1】形
の光導波路の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of the Invention The present invention relates to a method for manufacturing a leading waveguide, particularly a multimode refractive index optical waveguide which can be connected to a graded index optical fiber.

(ロ)従来技術とその問題点 従来、光導波路を作成するのに2選択光重合法によシ高
分子光導波路を得るようにしている。しかしながら潤沢
光重合法により得られる光導波路は、コア部の屈折率が
一定なステップインデックス形であるため、ステップイ
ンデックス形の光ファイバとは整合性がよいが、広帯域
光伝送用のグレーデッドインデックス形光ファイバと接
続する場合には整合性が悪く、接続損失の増大、光モー
ドの分散による伝達遅れなどを招来するという問題があ
った。
(b) Prior art and its problems Conventionally, in order to create an optical waveguide, a two-selective photopolymerization method is used to obtain a polymer optical waveguide. However, the optical waveguide obtained by the abundant light polymerization method is a step-index type with a constant refractive index in the core, so it is compatible with step-index type optical fibers, but it is a graded-index type for broadband optical transmission. When connecting to an optical fiber, there are problems such as poor compatibility, increased connection loss, and transmission delay due to dispersion of optical modes.

すなわち、従来の光導波路は、箒1図(a)に示すよう
に、たとえばキャスティングにより形成したフィルム1
上に1作成すべき光導波路幅に相当する幅を持つマスク
2を配置し、その上から紫外光3を照射し、マスク2に
よシ遮光されないフィルム1の部分に、光重合によシフ
ラッド部4全形成し、マスク2によシ遮光されるフィル
ム1の部分に、光重合が起こらないので母材そのままの
高屈折率のコア部5を形成するようにしている。この光
導波路において、深さ方向X−Y断面で見た屈折率差分
布は第1図(b)に示すようになシ、略一定である。ま
だ幅方向x’ −y’断面で見た屈折率分布は第1図(
c)に示すようになり1幅方向も屈折率が略一定とな9
.この光導波路はステップインデックス形であることが
わかる。
That is, the conventional optical waveguide is made of a film 1 formed by casting, for example, as shown in Figure 1(a).
A mask 2 having a width corresponding to the width of the optical waveguide to be created is placed on top of the mask 2, and ultraviolet light 3 is irradiated from above to form a shiffred portion by photopolymerization on the part of the film 1 that is not blocked by the mask 2. 4, and in the portion of the film 1 that is shielded from light by the mask 2, a core portion 5 with a high refractive index, which is the same as the base material, is formed, since photopolymerization does not occur. In this optical waveguide, the refractive index difference distribution seen in the X-Y section in the depth direction is substantially constant as shown in FIG. 1(b). The refractive index distribution seen in the width direction x'-y' cross section is still shown in Figure 1 (
As shown in c), the refractive index is approximately constant in the width direction as well9.
.. It can be seen that this optical waveguide is of a step index type.

ところで、一般に光導波路を用い、高速光伝送。By the way, optical waveguides are generally used for high-speed optical transmission.

光情報処理を行なう場合、光ファイバとしてはコア部に
屈折率分布(二乗分布)のあるグレーティラドインデッ
クスファイバを用い、光のモード分散を低減させる必要
がある。しかし、上記のように従来の先導波路はステッ
プインデックス形であるため、グレーティラドインデッ
クスファイバと結合する際コア部の屈折率分布の整合が
とれずモード分散が大きくなり、光伝送信号の遅れ、波
形ひずみが増大するという欠点があった。
When performing optical information processing, it is necessary to use a gray rad index fiber with a refractive index distribution (square distribution) in the core portion as the optical fiber to reduce mode dispersion of light. However, as mentioned above, the conventional leading waveguide is of the step-index type, so when coupled with a gray-rad index fiber, the refractive index distribution of the core part cannot be matched, resulting in large mode dispersion, resulting in a delay in the optical transmission signal and a waveform. The disadvantage was that the strain increased.

(ハ)発明の目的 この発明の目的は、上記に鑑み、光導波路のコア部の屈
折率分布が略二乗分布となるような光導波路を製作し得
る光導波路の製造方法を提供することである。
(c) Purpose of the Invention In view of the above, an object of the present invention is to provide a method for manufacturing an optical waveguide that can manufacture an optical waveguide in which the refractive index distribution in the core portion of the optical waveguide is approximately a square distribution. .

に)発明の構成と効果 上記目的を達成するだめに、この発明の光導波路の製造
方法は紫外光が照射されると屈折率が変化する透明な光
重合溶液のフィルム状膜の表面に紫外光を照射して、前
記ライlレム状膜の膜厚方向に屈折率分布を形成し、そ
の後前記フィルム状膜の表面に中央部が弱で1周辺部に
なる程強である強度分布を持つ紫外光を照射し、前記フ
ィルム状膜の水平幅方向にも屈折率分布を形成し、前記
フィルム状膜で先導波路を構成する。
B) Structure and effect of the invention In order to achieve the above object, the method for manufacturing an optical waveguide of the present invention applies ultraviolet light to the surface of a film-like film of a transparent photopolymerization solution whose refractive index changes when irradiated with ultraviolet light. to form a refractive index distribution in the film thickness direction of the film-like film, and then irradiate the surface of the film-like film with ultraviolet light having an intensity distribution that is weak in the center and strong enough to reach the periphery. Light is irradiated to form a refractive index distribution also in the horizontal width direction of the film-like film, and the film-like film forms a leading waveguide.

この発明によれば、紫外光による光重合タイミングを2
回に分け、先ず深さ方向への紫外光の減衰度合を利用し
て、膜厚方向、に屈折率分布を形成し1幅方向へは紫外
光の強弱を利用して屈折率分布を形成するものであり、
このようなフィルム状膜を用いて先導波路を構成するも
のであるから。
According to this invention, the photopolymerization timing by ultraviolet light can be adjusted to 2 times.
Firstly, a refractive index distribution is formed in the film thickness direction by using the degree of attenuation of ultraviolet light in the depth direction, and a refractive index distribution is formed in the width direction by using the strength and weakness of the ultraviolet light. It is a thing,
This is because such a film-like membrane is used to construct the leading waveguide.

略二乗分布の屈折率分布を持つ光導波路を得ることがで
きる。また、このようにして得られた光導波路をグレー
ティラドインデックスファイバに結合するとコアの屈折
率分布の整合がとれるので。
An optical waveguide having a refractive index distribution of approximately square distribution can be obtained. Furthermore, when the optical waveguide obtained in this way is coupled to a gray rad index fiber, the refractive index distribution of the core can be matched.

接続損失が減少し、光のモード分散による光信号遅れ波
形ひずみが低減される。そのため、この発明の実施によ
って得られる光導波路は、光フアイバセンサや高速光伝
送、高速光情報処理等へ広く利用することができる。
Splice loss is reduced, and optical signal delay waveform distortion due to optical mode dispersion is reduced. Therefore, the optical waveguide obtained by implementing the present invention can be widely used in optical fiber sensors, high-speed optical transmission, high-speed optical information processing, etc.

次に、この発明の採用原理について、第2図ないし第4
図によシ若干説明する。
Next, the principle of adoption of this invention will be explained in Figures 2 to 4.
A little explanation will be given with reference to the figure.

第2図はキャスティング溶液の蒸発時間に対する光重合
後の屈折率変化の関係を示している。
FIG. 2 shows the relationship between the change in refractive index after photopolymerization and the evaporation time of the casting solution.

図に示すように、蒸発時間が短く、溶媒及びモノマの蒸
発量が小さいほど、すなわち含有モノマ量が多いほど、
光重合後の屈折率の変化△nが大きく、逆に蒸発時間が
長いほど、屈折率の変化△nが小さくなる。すなわち蒸
発時間TI<T2<T6に対して、屈折率変化は△nl
)△n2)△n3の関係がある。
As shown in the figure, the shorter the evaporation time and the smaller the amount of evaporation of the solvent and monomer, that is, the larger the amount of monomer contained,
The larger the change Δn in the refractive index after photopolymerization is, and conversely, the longer the evaporation time, the smaller the change Δn in the refractive index. That is, for the evaporation time TI<T2<T6, the refractive index change is △nl
) Δn2) Δn3.

また蒸発時間が短かいほど、光重合後のフィルム表面の
屈折率変化は大きいが、母材とモノマの相分離による散
乱が大きく、深くまで紫外光が到達しないのでフィルム
の裏面付近での屈折率変化は急激に減少する。今、第6
図(a)に示すように。
In addition, the shorter the evaporation time, the greater the change in the refractive index on the film surface after photopolymerization, but the larger the scattering due to phase separation between the base material and monomer, the more the ultraviolet light does not reach deep, so the refractive index near the back surface of the film increases. Changes decrease rapidly. Now, the 6th
As shown in Figure (a).

第1図(a)と同様のフィルムで、蒸発時間のみを非常
に短かくシ、光重合をして得られる先導波路の深さ方向
と幅方向の屈折率分布を示すと第6図(b)。
Figure 6 (b) shows the refractive index distribution in the depth and width directions of the leading waveguide obtained by photopolymerizing the same film as in Figure 1 (a) but with a very short evaporation time. ).

第6図(c)に示すようになる。第6図(b)で明かな
ように、コア部5とクラッド部4の界面での屈折率差分
布は表面付近で大であり、裏面伺近では急激に減少して
いる。すなわち深さ方向の屈折率分布は略二乗分布に近
い形である。これに対し、コア部5の幅方向の屈折率分
布は第6図(C)に示すように一定となり、ステップイ
ンデックス形となっている。
The result is as shown in FIG. 6(c). As is clear from FIG. 6(b), the refractive index difference distribution at the interface between the core portion 5 and the cladding portion 4 is large near the surface, and rapidly decreases near the back surface. In other words, the refractive index distribution in the depth direction has a shape approximately similar to a square distribution. On the other hand, the refractive index distribution in the width direction of the core portion 5 is constant as shown in FIG. 6(C), and has a step index shape.

第4図は、紫外光の照射量りと光重合率αの関係を示し
ている。図に示すように、照射量りが大となるほど、光
重合率αが大となる。紫外駈の照射量が大となるほど母
材とモノマの重合する割合が大となシ母材に対する光重
合後の屈折率変化も大きくなる。すなわち紫外光の照射
量によって屈折率をコントロールすることができる。
FIG. 4 shows the relationship between the amount of ultraviolet light irradiation and the photopolymerization rate α. As shown in the figure, the larger the irradiation amount, the larger the photopolymerization rate α. As the amount of ultraviolet light irradiation increases, the rate of polymerization between the base material and the monomer increases, and the change in refractive index after photopolymerization of the base material also increases. That is, the refractive index can be controlled by the amount of ultraviolet light irradiated.

この発明は、上記した。短い蒸発時間後の光重合では、
深さ方向に略二乗分布の屈折率分布が生じ、紫外光の照
射量を変えると光重合率が変化し。
This invention has been described above. In photopolymerization after a short evaporation time,
A refractive index distribution of approximately square distribution occurs in the depth direction, and the photopolymerization rate changes when the amount of ultraviolet light irradiation is changed.

屈折率も異なるという2つの原理を利用している。Two principles are used: the refractive index is also different.

(ホ)実施例の説明 以下、実施例によりこの発明をさらに詳細に説明する。(e) Description of examples Hereinafter, this invention will be explained in more detail with reference to Examples.

第5図は、この発明の実施例の1過程を示す断面図であ
る。同図において10はキャスト容器。
FIG. 5 is a sectional view showing one process of the embodiment of the present invention. In the figure, 10 is a cast container.

11はキャスト容器10内のキャスト溶液を水平に保つ
だめの水準器、12は平行な紫外光線16を発生する紫
外線露光装置である。
11 is a level for keeping the casting solution in the casting container 10 horizontal; 12 is an ultraviolet exposure device that generates parallel ultraviolet rays 16;

先ず最初に光導波路の深さ方向(膜厚方向)に二乗分布
の屈折率分布を形成する。そのためキャスト溶液をキャ
スト容器10内に入れる。キャスト容器10はたとえば
塩化メチレンCHzC4zでキャスト溶液を入れる前に
予備洗浄しておく。キャスト溶液としては、母材として
たとえばビスフエ/−/l/Z系ポリカーボネートPC
Z 70 Lモノマとしてアクリル酸メチ/l/M’A
 42. ysl、溶媒として塩化メチレンCH2Cl
21000f、光増感材としてベンゾインエチルエーテ
/L/BZEE2.1 f、 禁止材としてハイドロキ
ノンHQ0.07gをブレンドしたものを使用する。
First, a squared refractive index distribution is formed in the depth direction (film thickness direction) of the optical waveguide. Therefore, the casting solution is placed in the casting container 10. The casting container 10 is pre-cleaned, for example with methylene chloride CHZC4z, before containing the casting solution. As a casting solution, for example, bisfe/-/l/Z-based polycarbonate PC is used as the base material.
Z 70 Methyl acrylate/l/M'A as L monomer
42. ysl, methylene chloride CH2Cl as solvent
A blend of 21,000 f, benzoin ethyl ether/L/BZEE2.1 f as a photosensitizer, and 0.07 g of hydroquinone HQ as an inhibitor is used.

キャスト溶液の量は膜厚が100μIl+となるように
調整する。また液面は水準器11を調整して水平にする
The amount of casting solution is adjusted so that the film thickness is 100 μIl+. Further, the liquid level is leveled by adjusting the spirit level 11.

次にキャスト容器10を半密閉伏頓にして、チッソガス
を1001//分で100分間流し、その後モノマ蒸気
を20分間流して、溶媒及びモノマの一部を蒸発させ、
シート状の透明な半固形状フィルム14を作成する。
Next, the cast container 10 is semi-sealed, nitrogen gas is flowed at 1001/min for 100 minutes, and monomer vapor is then flowed for 20 minutes to evaporate a portion of the solvent and monomer.
A sheet-like transparent semi-solid film 14 is created.

次に紫外線露光装置12を作動させ、紫外光13を発生
させ、約5分間フィルム14に照射する。
Next, the ultraviolet exposure device 12 is activated to generate ultraviolet light 13 and irradiate the film 14 for about 5 minutes.

以上の処理が施されたフィルム14は、第6図(a)、
及び(b)に示すようにフィルム14の表面iJa付近
では光重合を強く受け、裏面14b伺近では紫外光の影
響をほとんど受けず、したがって表面14a付近で屈折
率が非常に小さくなるに対し。
The film 14 subjected to the above treatment is shown in FIG. 6(a),
As shown in (b), the vicinity of the front surface iJa of the film 14 is strongly photopolymerized, while the vicinity of the back surface 14b is hardly affected by ultraviolet light, and therefore the refractive index is extremely small near the front surface 14a.

裏面14b付近では母材であるPO2と等しい屈折率に
なシ、その間の屈折率分布は略二乗分布となる。
Near the back surface 14b, the refractive index is not equal to that of the base material PO2, and the refractive index distribution therebetween is approximately a square distribution.

第5図において、紫外線露光後、さらにチッソガスを1
00#Il/分で50分間流し、その後モノマ蒸気を2
0分間流して、さらに溶媒およびモノマの一部を蒸発さ
せる。
In Figure 5, after exposure to ultraviolet rays, 1 liter of nitrogen gas is added.
00#Il/min for 50 minutes, then the monomer vapor was
Run for 0 minutes to further evaporate some of the solvent and monomer.

次に、光導波路の幅方向に二乗分布の屈折率分布を形成
する過程を説明する。
Next, a process of forming a square distribution refractive index distribution in the width direction of the optical waveguide will be explained.

第8図は、この過程を説明するだめの断面図である。第
5図に示すものに付加してフィルム14上ニマスクパタ
ーン16を持つフォトマスク板15が乗せられている。
FIG. 8 is a cross-sectional view for explaining this process. In addition to what is shown in FIG. 5, a photomask plate 15 having a double mask pattern 16 is placed on the film 14.

このマスク板15のマスクパターン16は、第7図(a
)に示すように、先導波路のコア部幅に対して中心部か
ら周辺部にかけて、透過率が順次大きくなるように構成
されている。そのため、紫外光の透過量は第7図(b)
に示すように中心はど小さく周辺部へ行くにしたがい大
きくなっている。このようなマスクパターンは1例えば
01μmφ程度のクロムマスクパターンの組合セで濃淡
を形成することにより実現される。
The mask pattern 16 of this mask plate 15 is shown in FIG.
), the transmittance is configured to increase sequentially from the center to the periphery with respect to the width of the core portion of the guiding waveguide. Therefore, the amount of ultraviolet light transmitted is shown in Figure 7(b).
As shown in the figure, the center is small and it gets larger towards the periphery. Such a mask pattern is realized by forming shading by a combination of chrome mask patterns having a diameter of, for example, about 01 μm.

第8図において、蒸発時間を充分長くとった状態で、紫
外線露光装置12を作動させ、マスク板15の上から、
紫外光16を照射する。これによ9.37部の中央部は
余り光重合を受けず1周辺部は大きく光重合を受けるの
で1周辺部はど母材に対する屈折率変化が大となる。す
なわち光導波路の幅中心付近が最も屈折率が大きく9周
辺部はど小さくなり、略、二乗分布の屈折率分布が幅方
向に形成される。
In FIG. 8, with a sufficiently long evaporation time, the ultraviolet exposure device 12 is operated, and from above the mask plate 15,
Ultraviolet light 16 is irradiated. As a result, the central portion of 9.37 parts undergoes little photopolymerization, while the one peripheral portion undergoes photopolymerization to a large extent, resulting in a large change in the refractive index of the first peripheral portion relative to the base material. In other words, the refractive index is highest near the center of the width of the optical waveguide, and is the smallest at the periphery, so that an approximately square-law distribution of refractive index is formed in the width direction.

上記露光の完了後、後処理として、60分以上常温で放
置した後、キャスト容に20毎、真空乾燥機(図示せず
)に移し、90°Cで約10時間乾燥させる。次に表面
を低屈折率のコーティング剤で厚さ10μmにバーコー
ドし、コート層21〔第9図(a)参照〕を形成し、熱
風乾燥機で90°Cで5時間乾燥する。
After the above exposure is completed, as a post-processing, the cast material is left at room temperature for 60 minutes or more, and then transferred to a vacuum dryer (not shown) every 20 minutes, and dried at 90° C. for about 10 hours. Next, the surface is barcoded with a low refractive index coating agent to a thickness of 10 μm to form a coating layer 21 (see FIG. 9(a)), and dried in a hot air dryer at 90° C. for 5 hours.

さらに1以上の手順で作成した光導波路2個22゜23
を第9図(a)に示すように重ね合せる。これにより、
深さ方向と幅方向の屈折率分布が第9図(b)及び((
1)に示すような、200X200μmの先導波路24
を得ることができる。この光導波路24は略二乗分布の
屈折率分布を持つので、コア径200μfilO大【口
径グレーディッドインデックスファイバと整合よく納会
することかでする。
Furthermore, 2 optical waveguides created by steps 1 or more 22゜23
are superimposed as shown in FIG. 9(a). This results in
The refractive index distributions in the depth and width directions are shown in Figure 9(b) and ((
1) A leading waveguide 24 of 200×200 μm as shown in
can be obtained. Since this optical waveguide 24 has a refractive index distribution of approximately square distribution, it can be matched well with a graded index fiber having a core diameter of 200 μfilO.

なお、上記実施例において、フィルムはキャスティング
法によシ作成する場合について説明したが、他の方法、
たとえばスピナー等による遠心力で1漢ヲ作成してもよ
い。
In the above embodiments, the case where the film was produced by a casting method was explained, but other methods,
For example, one kanji may be created using centrifugal force using a spinner or the like.

また上記実施例において1幅方向の屈折率分布を形成す
るのに、マスク板を用いて行なっているが、レーザ光を
光変調および光偏向することによシ光を選択的にスキャ
ニングしてもよい。
Further, in the above embodiment, a mask plate is used to form the refractive index distribution in one width direction, but it is also possible to selectively scan the laser beam by modulating and deflecting the laser beam. good.

上記実施例においては、最終的に2個の光導波路を貼り
合わせる場合について説明したが1表面及び裏面を同時
露光して一体的に屈折率分布形光導波路t−作成しても
よい。
In the above embodiment, the case where two optical waveguides are finally bonded together has been described, but a gradient index optical waveguide may be integrally formed by simultaneously exposing one surface and the back surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光導波路の製造方法を説明する図であっ
て、第1図(a)は従来の光導波路の断面図。 第1図(b)は同光導波路の深さ方向の屈折率分布を示
す図、第1図(C)は同先導波路の幅方向の屈折率分布
を示す図、第2図はキャスト溶液の蒸発時間に対する屈
折率変化を示す図、第6図は前記蒸発時間を短くした場
合の屈折率変化を説明する図で為って第3図(a)は光
導波路の断im図、第6図(b)は深さ方向の屈折率分
布を示す図、第6図(C)は幅方向の屈折率分布を示す
図、第4図は光の照1A4欲と光重合率の関係を示す図
、第5図はこの発明の実施例の1過程を説明する断面図
、第6図(a)、 (b)は同、賎程で得られるフィル
ムの屈折率分布を示す図。 第7図(a)はこの発明の実施例に(吏用されるマスク
板のマスクパターンを示す図、第7図(b)は同マスク
板の光透過特性を示す図、第8図はこの発明の実施例の
他の1@程を説明する断面図、第9図(11)は前記実
施例によって製作された光フ痺波路の断面図、第9図(
b)は同光導波路の深さ方向の屈折率分布を示す図、第
9図(C)は同先導波路の幅方向の屈折率分布を示す図
である。 10:キャスト容器、12:紫外線露光装置。 16:紫外光、14:フィルム膜。 15:マスク板、16:マスクパターン。 第6図 第7図 第8図
FIG. 1 is a diagram illustrating a conventional optical waveguide manufacturing method, and FIG. 1(a) is a cross-sectional view of the conventional optical waveguide. Figure 1(b) is a diagram showing the refractive index distribution in the depth direction of the optical waveguide, Figure 1(C) is a diagram showing the refractive index distribution in the width direction of the leading waveguide, and Figure 2 is a diagram showing the refractive index distribution in the width direction of the leading waveguide. FIG. 6 is a diagram illustrating changes in refractive index with respect to evaporation time, and FIG. 6 is a diagram illustrating changes in refractive index when the evaporation time is shortened. FIG. (b) is a diagram showing the refractive index distribution in the depth direction, FIG. 6 (C) is a diagram showing the refractive index distribution in the width direction, and FIG. 4 is a diagram showing the relationship between light illumination 1A4 desire and photopolymerization rate. , FIG. 5 is a sectional view explaining one process of an embodiment of the present invention, and FIGS. 6(a) and 6(b) are diagrams showing the refractive index distribution of the film obtained in the same process. FIG. 7(a) is a diagram showing the mask pattern of a mask plate used in an embodiment of the present invention, FIG. 7(b) is a diagram showing the light transmission characteristics of the same mask plate, and FIG. FIG. 9 (11) is a sectional view illustrating another part of the embodiment of the invention, and FIG.
b) is a diagram showing the refractive index distribution in the depth direction of the optical waveguide, and FIG. 9(C) is a diagram showing the refractive index distribution in the width direction of the leading waveguide. 10: Cast container, 12: Ultraviolet exposure device. 16: Ultraviolet light, 14: Film membrane. 15: Mask board, 16: Mask pattern. Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] (1) 紫外光が照射されると屈折率が変化する透明な
光重合浴液のフィルム状膜の表面に紫外光を照射して、
前記フィルム状膜の膜厚方向に屈折率分布を形成し、そ
の後前記フィルム状膜の表面に中央部が弱で周辺部にな
る程強である強度分布を持つ紫外光を照射し、前記フィ
ルム状膜の水平幅方向にも屈折率分布を形成し、前記フ
ィルム状膜で先導波路を構成することを特徴とする光導
波路の製造方法。
(1) By irradiating ultraviolet light onto the surface of a film-like film of a transparent photopolymerization bath liquid whose refractive index changes when irradiated with ultraviolet light,
A refractive index distribution is formed in the thickness direction of the film-like film, and then the surface of the film-like film is irradiated with ultraviolet light having an intensity distribution that is weak at the center and stronger at the periphery. A method for manufacturing an optical waveguide, characterized in that a refractive index distribution is also formed in the horizontal width direction of the film, and a leading waveguide is configured with the film-like film.
JP12748983A 1983-07-11 1983-07-12 Manufacture of optical waveguide Pending JPS6019107A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12748983A JPS6019107A (en) 1983-07-12 1983-07-12 Manufacture of optical waveguide
US06/629,442 US4712854A (en) 1983-07-11 1984-07-10 Optical waveguide and method of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12748983A JPS6019107A (en) 1983-07-12 1983-07-12 Manufacture of optical waveguide

Publications (1)

Publication Number Publication Date
JPS6019107A true JPS6019107A (en) 1985-01-31

Family

ID=14961211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12748983A Pending JPS6019107A (en) 1983-07-11 1983-07-12 Manufacture of optical waveguide

Country Status (1)

Country Link
JP (1) JPS6019107A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005114278A1 (en) * 2004-05-21 2005-12-01 Matsushita Electric Industrial Co., Ltd. Refractive index distribution type optical member, and production method for refractive index distribution type optical member
JP2008242449A (en) * 2007-02-27 2008-10-09 Keio Gijuku Polymer parallel optical waveguide and its manufacturing method
JP2012163839A (en) * 2011-02-08 2012-08-30 Sumitomo Bakelite Co Ltd Manufacturing method of optical waveguide, optical waveguide, and electronic apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323207A (en) * 1976-08-16 1978-03-03 Hitachi Ltd Telephone subscriber's circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323207A (en) * 1976-08-16 1978-03-03 Hitachi Ltd Telephone subscriber's circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005114278A1 (en) * 2004-05-21 2005-12-01 Matsushita Electric Industrial Co., Ltd. Refractive index distribution type optical member, and production method for refractive index distribution type optical member
JPWO2005114278A1 (en) * 2004-05-21 2008-03-27 松下電器産業株式会社 Refractive index distribution type optical member, refractive index distribution type optical member manufacturing method, optical module, and optical module manufacturing method
US7653278B2 (en) 2004-05-21 2010-01-26 Panasonic Corporation Refractive index distribution type optical member, and production method for refractive index distribution type optical member
JP2008242449A (en) * 2007-02-27 2008-10-09 Keio Gijuku Polymer parallel optical waveguide and its manufacturing method
JP2012163839A (en) * 2011-02-08 2012-08-30 Sumitomo Bakelite Co Ltd Manufacturing method of optical waveguide, optical waveguide, and electronic apparatus

Similar Documents

Publication Publication Date Title
US4712854A (en) Optical waveguide and method of making the same
US4609252A (en) Organic optical waveguide device and method of making
Krchnavek et al. Laser direct writing of channel waveguides using spin‐on polymers
KR101430266B1 (en) Method for manufacturing optical waveguide
KR100288742B1 (en) Fabrication method for optical waveguide
JP3987580B2 (en) Optical waveguide
Grabulosa et al. Combining one and two photon polymerization for accelerated high performance (3+ 1) D photonic integration
JPH03288102A (en) Manufacture of light beam shape converting element
US7031584B2 (en) Method for manufacturing optical waveguide using laser direct writing method and optical waveguide manufactured by using the same
JPH0618739A (en) Production of waveguide
JPS6019107A (en) Manufacture of optical waveguide
Yamashita et al. Fabrication of light-induced self-written waveguides with a W-shaped refractive index profile
JP3706496B2 (en) Manufacturing method of optical waveguide
JP2007183468A (en) Manufacturing method of optical waveguide with mirror
US6577799B1 (en) Laser direct writing of planar lightwave circuits
Weyers et al. Analysis of polymeric singlemode waveguides for inter-system communication
JPH04165311A (en) Manufacture of photo waveguide passage
JP2000297110A (en) Composition for anisotropic light scattering film
JPS6017705A (en) Manufacture of circular optical waveguide
JPH01134309A (en) Production of light guide
JPS5929210A (en) Production of optical transmission coupler
JP2002031733A (en) Method for manufacturing polymer optical waveguide element
Sakaguchi et al. Simulation of refractive index profile formed in polymer optical waveguides fabricated using the Mosquito method
JPH063506A (en) Production of lens and production of lens array plate
JP2002249541A (en) Composition for anisotropic light scattering film and anisotropic light scattering film