JPS60176280A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60176280A
JPS60176280A JP3173284A JP3173284A JPS60176280A JP S60176280 A JPS60176280 A JP S60176280A JP 3173284 A JP3173284 A JP 3173284A JP 3173284 A JP3173284 A JP 3173284A JP S60176280 A JPS60176280 A JP S60176280A
Authority
JP
Japan
Prior art keywords
film
layer
crystal layer
resist
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3173284A
Other languages
Japanese (ja)
Inventor
Tadatoshi Nozaki
野崎 忠敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP3173284A priority Critical patent/JPS60176280A/en
Publication of JPS60176280A publication Critical patent/JPS60176280A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To reduce parasitic resistance by forming a high-conductivity crystal layer on the surface of an operating layer, implanting the same conduction type impurity ions from the surface of the crystal layer so as to pass through the interface between the high-conductivity layer and the operating layer of a substrate in quantity more than a specific quantity and thermally treating the ions. CONSTITUTION:Si ions are implanted selectively to a GaAs substrate 21 to form an operating layer region 22. A resist is removed, and a TiW film is applied and removed selectively to shape a gate electrode 23. An SiO2 film is formed on the whole surface, the surface of GaAs is exposed through anisotropic etching, and side walls 24 consisting of the SiO2 film are left at the ends of the gate electrode 23. A GaAs film 25 is grown on the whole surface, and Si is doped. Si ions are implanted to the whole surface, and stepped sections in a resist film are smoothed. The resist on the gate electrode, the GaAs film and the resist left on a wafer are removed, and an SiO2 film 27 is applied as an inter-layer film. The whole is thermally treated, and the SiO2 film and the resist are removed selectively and a Ti-Pt-Au film is shaped on the whole surface, and source and drain electrode wirings 28 are formed through patterning.

Description

【発明の詳細な説明】 〔発明の属する技術分野の説明〕 本発明は、ゲート領域に近接して高電導度ソース・ドレ
イン層となる結晶層を形成する化合物半導体電界効果ト
ランジスタの製造方法に関するものである。
[Detailed Description of the Invention] [Description of the Technical Field to Which the Invention Pertains] The present invention relates to a method for manufacturing a compound semiconductor field effect transistor in which a crystal layer serving as a high conductivity source/drain layer is formed in proximity to a gate region. It is.

〔従来技術の説明〕[Description of prior art]

化合物半導体、と9わけ砒化ガリウム(G(Li2)は
ポストシリコン材料と称され、高速動作が可能な電界効
果トランジスタ(FET)並びに集積回路の製造が可能
である事から、現在各所で研究試作がなされている。F
ET特性の高性能化の”!> #i’fから、現状では
ゲート領域に近接して高電導度ソース・ドレイン層(以
下?l+層と称する)を形成する製造方法が知られてい
る。第1図はそれ等FETの模式断面図を示したもので
、高電導度ソース・ドレイン層はゲー)!極をマスクに
動作層と同一電導型を示す不純物をイオン注入法を用い
て高献度に注入する周知の方法で製造されたものである
。第1図において、lは半絶縁性基板、2は動作層、3
はゲート電極、4は高電導度ソース・ドレイン層、5は
層間絶縁膜、6はソース・ドレイン電極配線である。こ
のような高電導層ソース・ドレイン層を有するFETで
は寄生抵抗の低減化が可能であり、相互コンダクタンス
の増大をもたらすだめ、FET特性及び集積回路の性能
向上につなか、る。第1図に示しだように、高′亀導度
ソース・ドレイン層、即ちfL+層をイオン注入法で形
成する場合に、このn+層の深さに関しては深さが大で
ある程?++層の抵抗が小さくなり好ましいが、−11
層の深さが大になるに従がい、いわゆる短チヤネル効果
が顕著となり、ゲート長の縮少化に伴いしきい値電圧の
負方向シフトが生じ、しきい値電圧の制御が困難となる
大きな問題が生ずる。短チヤネル化はFET特性向上の
ため不可欠であるが、短チャネルになる程、寄生抵抗の
低減化が必要となり、1層をイオン注入法により形成す
る方法では、寄生抵抗の低減化と短チヤネル効果の低減
化を両方成立させる事は現状では非常に難かしい。以上
の問題点に関する一つの解決策として、1層をソース・
ドレイン領域となる基板面上に結晶層として設ける方法
が検討されている。第2図がそのようなトランジスタの
模式断面図を示したもので、11が半絶縁性基板、12
が動作層、13がゲート電極、14が層間絶縁膜、15
がン結高層、16がソース・ドレイン電極配線である。
Compound semiconductors, particularly gallium arsenide (G (Li2)), are called post-silicon materials, and are currently being researched and manufactured in various places because they are capable of manufacturing field-effect transistors (FETs) and integrated circuits that can operate at high speeds. It has been done.F
Due to the desire to improve the performance of ET characteristics, a manufacturing method is currently known in which a highly conductive source/drain layer (hereinafter referred to as ?l+ layer) is formed in the vicinity of the gate region. Figure 1 shows a schematic cross-sectional view of these FETs.The high-conductivity source/drain layers are made using ion implantation to implant impurities that have the same conductivity type as the active layer, using the gate electrode as a mask. In Fig. 1, 1 is a semi-insulating substrate, 2 is an active layer, and 3 is a semi-insulating substrate.
4 is a gate electrode, 4 is a high conductivity source/drain layer, 5 is an interlayer insulating film, and 6 is a source/drain electrode wiring. In an FET having such a highly conductive source/drain layer, it is possible to reduce parasitic resistance and increase mutual conductance, which leads to improved FET characteristics and integrated circuit performance. As shown in FIG. 1, when a high conductivity source/drain layer, that is, an fL+ layer, is formed by ion implantation, the depth of the n+ layer should be large. It is preferable that the resistance of the ++ layer is small, but -11
As the layer depth increases, the so-called short channel effect becomes more prominent, and as the gate length decreases, the threshold voltage shifts in the negative direction, making it difficult to control the threshold voltage. A problem arises. Shortening the channel is essential for improving FET characteristics, but the shorter the channel, the more necessary it is to reduce the parasitic resistance, and the method of forming one layer by ion implantation can reduce the parasitic resistance and shorten the channel effect. It is currently extremely difficult to achieve both reductions. As one solution to the above problems, the first layer is
A method of providing a crystal layer on the substrate surface that will become the drain region is being considered. FIG. 2 shows a schematic cross-sectional view of such a transistor, where 11 is a semi-insulating substrate, 12 is a semi-insulating substrate, and 12 is a semi-insulating substrate.
is an operating layer, 13 is a gate electrode, 14 is an interlayer insulating film, 15
The cancer layer 16 is source/drain electrode wiring.

第゛2図ではn1結晶層が動作層表面上に設けられた例
を示したものであるが、動作層を若干エツチングにより
けずった後?結晶層を設ける事も可能である。このよう
な?結晶層を設ける方法においてはこのエツチング深さ
を動作層の深さより浅く保つ事によシ、短チヤネル効果
の低減化がはかれると同時にシリーズ抵抗の低減化が可
能となる小から高性能FETの製造を考えた場合、重要
な製造方法となり得るものである。
Fig. 2 shows an example in which the n1 crystal layer is provided on the surface of the active layer, but after the active layer is slightly scratched by etching? It is also possible to provide a crystal layer. like this? In the method of providing a crystal layer, by keeping the etching depth shallower than the depth of the active layer, the short channel effect can be reduced, and at the same time, the series resistance can be reduced, making it possible to manufacture small to high performance FETs. Considering this, it can become an important manufacturing method.

このn結晶層の形成方法に関しては、いくつかの結晶成
長法が周知であるが、n結晶層の特性は成長が開始する
結晶表面の処理状態に大きく影響され、現状では満足の
ゆく結果が得られていない。
Several crystal growth methods are well known for forming this n-crystal layer, but the characteristics of the n-crystal layer are greatly influenced by the treatment conditions of the crystal surface where growth begins, and currently no satisfactory results have been achieved. It has not been done.

即ちこのn結晶層の形成はFET製造途中において実施
されるが、その場合結晶成長開始面がFET製造上不可
欠な各種処理が施こされている事が原因となり、現実に
は、n結晶層が未処理の結晶面上に形成された場合と同
一の特性を示さず、?結晶層を形成して製造されたトラ
ンジスタにおいて満足のゆく寄生抵抗の低減化がなされ
ていない。n結晶層形成前における各種処理工程数を減
らすため、FET製造初期、動作層上にあらかじめn結
晶層を形成しておく方法が一部検討されているが、この
方法においてもn+結晶層の形成前に、動作層の形成、
即ち動作層形成のだめの不純物の注入及びそれの電気的
活性化がすでになされており、前述と同様の問題が生じ
得る。
In other words, the formation of this n-crystal layer is carried out during FET manufacturing, but in this case, the crystal growth starting surface is subjected to various treatments essential for FET manufacturing, and in reality, the n-crystal layer is Does not exhibit the same properties as when formed on untreated crystal faces? Parasitic resistance has not been satisfactorily reduced in transistors manufactured by forming crystal layers. In order to reduce the number of various processing steps before forming the n-crystal layer, some methods are being considered in which the n-crystal layer is formed on the active layer in the early stage of FET manufacturing. Before the formation of the operating layer,
That is, the impurity implantation for forming the active layer and its electrical activation have already been performed, and the same problem as described above may occur.

以上述べたように、ソース・ドレイン領域上に?結晶層
を設ける事の利点が周知であるにもかかわらず、満足の
ゆく寄生抵抗低減化がなされていないのが実情である。
As mentioned above, on the source/drain region? Although the advantages of providing a crystal layer are well known, the reality is that a satisfactory reduction in parasitic resistance has not been achieved.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明は以上の点を考慮し、寄生抵抗の低減化が充分可
能な?結晶層の形成法を実現した化合物半導体電界効果
トランジスタの新規な製造方法を提供するものである。
Is it possible for the present invention to sufficiently reduce parasitic resistance in consideration of the above points? The present invention provides a novel method for manufacturing a compound semiconductor field effect transistor that realizes a method for forming a crystal layer.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明はソース−ドレイン領域となる領域上に動作層と
同一電導型を示す高電導度結晶層を形成する化合物中導
体電界効果トランジスタの製造において、ソース・ドレ
イン領域となる動作層表面上に高電導度結晶層を形成し
た後、該結晶層表面から高電導度結晶層と同一電導型を
示す不純物イオンを注入イオンが高電導度結晶層と基板
動作層との界面をI XIO”c++t−”以上の量で
通過するようにイオンエネルギーを選んで注入し、かつ
熱処理を施こす工程を行う事を特徴とする半導体装置の
製造方法である。
The present invention relates to the production of a conductor field effect transistor in a compound in which a high conductivity crystal layer having the same conductivity type as the active layer is formed on the region that becomes the source/drain region. After forming a conductivity crystal layer, impurity ions having the same conductivity type as the high conductivity crystal layer are implanted from the surface of the crystal layer. This method of manufacturing a semiconductor device is characterized by performing a process of selecting and implanting ion energy so that the amount of ions passes through the ions, and performing heat treatment.

〔実施例の説明〕[Explanation of Examples]

以下本発明の詳細な説明するため一実施例について述べ
る。第3図(α)において、半絶縁性GaA s基板2
1に、レジストをマスクとしてSiイオンを70KgV
のイオンエネルギーで2 XIO”ci−注入し動作層
領域22を形成する。レジスト除去後、ゲート電極材料
としてTiW膜をスパッタ法により3000^被着し、
パターン化したホトレジストをマスクにTjW膜をドラ
イエツチングで除去し、ゲート電極23t−形成する。
An example will be described below to provide a detailed explanation of the present invention. In FIG. 3 (α), a semi-insulating GaAs substrate 2
1, Si ions were applied at 70KgV using the resist as a mask.
The active layer region 22 is formed by implanting 2XIO"ci with an ion energy of
Using the patterned photoresist as a mask, the TjW film is removed by dry etching to form a gate electrode 23t.

次に試料全面にシリコン酸化膜を300OAの膜厚で形
成し、平行平板ドライエツチング装置を用いCF4ガス
−を用いた異方性エツチング法を用い、シリコン酸化膜
をエツチングしソース・ドレイン領域となるGaps表
面を露出せしめ、かつゲート電極23の端にシリコン酸
化膜の側壁24を残置せしめる。
Next, a silicon oxide film with a thickness of 300 OA is formed on the entire surface of the sample, and the silicon oxide film is etched to become source/drain regions using a parallel plate dry etching device and an anisotropic etching method using CF4 gas. The Gaps surface is exposed, and the sidewall 24 of the silicon oxide film is left at the end of the gate electrode 23.

次に第3図(b)において、分子線結晶成長法を用い、
露出GcLA8表面上に、単結晶膜となるよう@A8膜
25を全面に2000^の膜厚で成長させた。その際、
該Gapsの電子濃度がl XIQ”m−3となるよう
にSiをドープした。次にSiイオンを200 KgV
 、 lX1015CrrL−3の条件で全面に注入し
、更に全面にフォトレジスト26を途布し180℃のベ
ーキングによりレジストを軟化させ、ゲート電極段差を
覆うレジスト膜の段差をなだらかなものとした。第3図
(c)において、イオンミリング装置を用い全面エツチ
ングし、ゲート電極上のレジスト及びG a A s膜
を除去し、さらに、ウエノ・−上残ったレジストを除去
し、層間膜としてシリコン酸化膜27を200OAの膜
厚で被着する。次に800℃、20分のH,ガス中熱処
理を施こし、パターン化されたレジストをマスクにソー
ス・ドレイン電極及びゲート電極の取り出し部分のシリ
コン酸化膜を除去し、更にレジストを除去した後全面に
’l’j−pt−Au膜を形成し、イオンミリング装置
を用いパターニングする事によりソース・ドレイン電極
配線28を形成して図示の[有]A++FETを完成す
る。
Next, in FIG. 3(b), using the molecular beam crystal growth method,
On the exposed GcLA8 surface, an @A8 film 25 was grown to a thickness of 2000^ over the entire surface to form a single crystal film. that time,
Si was doped so that the electron concentration of the Gaps was lXIQ"m-3. Next, Si ions were
, lX1015CrrL-3, a photoresist 26 was further applied over the entire surface, and the resist was softened by baking at 180° C., so that the step of the resist film covering the gate electrode step was smoothed. In FIG. 3(c), the entire surface is etched using an ion milling device, the resist and GaAs film on the gate electrode are removed, the resist remaining on the wafer is removed, and silicon oxide is used as an interlayer film. A film 27 is deposited to a thickness of 200 OA. Next, heat treatment was performed at 800°C for 20 minutes in H gas, and using the patterned resist as a mask, the silicon oxide film at the source/drain electrode and gate electrode extraction parts was removed, and after the resist was further removed, the entire surface was heated. A 'l'j-pt-Au film is formed on the film and patterned using an ion milling device to form source/drain electrode wiring 28, thereby completing the A++FET shown in the figure.

〔発明の詳細な説明〕[Detailed description of the invention]

以上によp本発明の方法によるGaAsFETのほか、
比較のため、?結晶層成長後Arイオン注入及び高温ア
ニール(800°Cl2O分H2ガス中)を伴に実施し
ない従来法によるトランジスタの他n結晶層成長後、S
iイオン注入はしないが、高温アニールは実施する事に
よりトランジスタを製造した。
According to the above, in addition to the GaAsFET produced by the method of the present invention,
For comparison? In addition to transistors using the conventional method without Ar ion implantation and high-temperature annealing (800° Cl2O in H2 gas) after crystal layer growth, S
Although no i-ion implantation was performed, a transistor was manufactured by performing high-temperature annealing.

以上3種類の製造方法により製造されたゲート長1μm
、ゲート幅10μmのトランジスタをそれぞれ20個ず
つ選び相互コンダクタンス及びソース抵抗を測定しそれ
等の平均値をめた。それ等の結果を下表に示すが、本発
明の方法で製造されたトランジスタではソース抵抗が小
さいと同時に、相互コンダクタンス値が大きく、本発明
の効果が確認された。
Gate length 1 μm manufactured by the above three manufacturing methods
, 20 transistors each having a gate width of 10 μm were selected, mutual conductance and source resistance were measured, and their average values were calculated. The results are shown in the table below, and the transistors manufactured by the method of the present invention had a low source resistance and a high mutual conductance value, confirming the effects of the present invention.

以上の実施例では、ソース・ドレイン領域αに八8 を
露出させた後、直ちに高電導度n結晶層を形成したが、
Gaps面露出後若干エツチングした後n結晶層を形成
した場合においても、Siイオンを注入する事により本
発明の効果が確認された。
In the above embodiments, a high conductivity n-crystal layer was formed immediately after exposing 88 to the source/drain region α.
The effect of the present invention was confirmed by implanting Si ions even in the case where the n-crystal layer was formed after exposing the gap plane and slightly etching it.

以上述べた実施例においては、Siイオンを用いた例に
ついて示したが、Si以外にS+StL+Tgを用いた
場合に関しても同等の効果が確認された。
In the examples described above, an example using Si ions was shown, but the same effect was confirmed when S+StL+Tg was used instead of Si.

以上の実施例では、ゲート電極形成後ソース・ドレイン
となる領域のGaps表面を露出せしめた後、?結晶層
を形成した場合について述べたが、動ど「層形成後ゲー
ト電極形成前に?結晶層を形成する方法においても、本
発明の方法が適用出来る事は明らかである。
In the above embodiment, after forming the gate electrode and exposing the Gaps surface in the region that will become the source/drain, ? Although the case where a crystal layer is formed has been described, it is clear that the method of the present invention can also be applied to a method in which a crystal layer is formed after layer formation and before gate electrode formation.

+ 本発明の方法は、n結晶層と同一の電導型を示す不純物
を注入し、?結晶層と基板動作層との界面を通過せしめ
、該界面の結晶性を乱す点が特徴である。該界面を通過
するイオンの量としては、その下限は少なすぎると該界
面の結晶性の乱れの程度が小さくなる事から決定されI
 XIO”cm−2以上に選ぶ事が妥当である。また、
界面を通過するイオンの量の上限は本発明の方法では原
理的に存在しないが、通過イオン量を多く選ぶ場合、そ
れだけ注入時間が長くかかり得策ではない。
+ The method of the present invention implants an impurity having the same conductivity type as the n-crystal layer. It is characterized in that it passes through the interface between the crystal layer and the substrate active layer and disturbs the crystallinity of the interface. The lower limit of the amount of ions passing through the interface is determined from the fact that if it is too small, the degree of disturbance of crystallinity at the interface will be small.
It is reasonable to choose XIO”cm-2 or higher.Also,
In principle, there is no upper limit to the amount of ions passing through the interface in the method of the present invention, but if the amount of ions passing through is selected to be large, the implantation time will take longer, which is not a good idea.

以上はGcLA8を用いた場合について述べだが、本発
明が他の化合物半導体用いた電界効果トランジスタにも
適用出来る事は明らかである。
Although the above description is about the case where GcLA8 is used, it is clear that the present invention can also be applied to field effect transistors using other compound semiconductors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は高電導度ソース・ドレイン層をイオン注入法で
形成する場合の従来より周知の電界効果トランジスタの
模式断面図、第2図は高電導度結晶層をソース・ドレイ
ン領域上に設けた従来よシ周知の電界効果トランジスタ
の模式断面図、第3図(α)〜(c)は本発明の方法を
用いた電界効果トランジスタの製造の一例を工程順の模
式断面図である。 21・・・半絶縁性基板、22・・・動作層、23・・
・ゲート電極、24・・・ゲート電極端に形成したシリ
コン酸化膜側壁、25・−・高電導結晶層、2G・・・
レジスト、27・・・層間絶縁膜、28・・・ソース・
ドレイン電極配線特許出願人 日本電気株式会社 第1図 第2図
Figure 1 is a schematic cross-sectional view of a conventionally well-known field effect transistor in which a high conductivity source/drain layer is formed by ion implantation, and Figure 2 is a schematic cross-sectional view of a field effect transistor in which a high conductivity crystal layer is formed on the source/drain region. FIGS. 3(α) to 3(c) are schematic cross-sectional views of a conventionally well-known field effect transistor. FIGS. 3(a) to 3(c) are schematic cross-sectional views showing an example of the manufacturing process of a field effect transistor using the method of the present invention. 21... Semi-insulating substrate, 22... Operating layer, 23...
・Gate electrode, 24... Silicon oxide film sidewall formed at the end of the gate electrode, 25... Highly conductive crystal layer, 2G...
Resist, 27... Interlayer insulating film, 28... Source.
Drain electrode wiring patent applicant: NEC Corporation Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)ソース・ドレイン領域となる領域上に動作層と同
一電導型を示す高電導度結晶層を形成する化合物半導体
電界効果トランジスタの製造方法において、ソース・ド
レイン領域となる動作層の表面上に高電導度結晶層を形
成した後、該結晶層表面から高電導度結晶層と同一電導
型を示す不純物イオンを注入イオンが高電導度結晶層と
基板動作層との界面をI Xl0I3cIIL−”以上
の量で通過するようにイオンエネルギーを選んで注入し
、かつ熱処理を施こす工程を行う事を特徴とする半導体
装置の製造方法。
(1) In a method for manufacturing a compound semiconductor field effect transistor, in which a high conductivity crystal layer having the same conductivity type as the active layer is formed on the surface of the active layer that will become the source/drain region. After forming a high conductivity crystal layer, impurity ions having the same conductivity type as the high conductivity crystal layer are implanted from the surface of the crystal layer. 1. A method for manufacturing a semiconductor device, comprising the steps of selecting and implanting ion energy such that an amount of ion energy passes through the semiconductor device, and performing heat treatment.
JP3173284A 1984-02-22 1984-02-22 Manufacture of semiconductor device Pending JPS60176280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3173284A JPS60176280A (en) 1984-02-22 1984-02-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3173284A JPS60176280A (en) 1984-02-22 1984-02-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60176280A true JPS60176280A (en) 1985-09-10

Family

ID=12339211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3173284A Pending JPS60176280A (en) 1984-02-22 1984-02-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60176280A (en)

Similar Documents

Publication Publication Date Title
US4149307A (en) Process for fabricating insulated-gate field-effect transistors with self-aligned contacts
JPS58148445A (en) Method of producing complementary field effect transistor
US4143388A (en) Mos type semiconductor device
US4351099A (en) Method of making FET utilizing shadow masking and diffusion from a doped oxide
JPH11102919A (en) Manufacture of dmos transistor
JPS59219967A (en) Method of producing field effect transistor
JPS61263274A (en) Manufacture of semiconductor device
US5780347A (en) Method of forming polysilicon local interconnects
JPS6152578B2 (en)
JPS60176280A (en) Manufacture of semiconductor device
JPH06349856A (en) Thin-film transistor and its manufacture
JPS60176279A (en) Manufacture of semiconductor device
JPS60176278A (en) Manufacture of semiconductor device
JPS6347982A (en) Semiconductor device
JPS594169A (en) Manufacture of semiconductor device
KR940010561B1 (en) Manufacturing method of mesfet
JPS59132678A (en) Manufacture of semiconductor device
JPS60224271A (en) Semiconductor device and manufacture thereof
JPS61229369A (en) Manufacture of semiconductor device
JPS60132377A (en) Manufacture of semiconductor device
JPS6147670A (en) Manufacture of semiconductor device
JPH08204189A (en) Manufacture of semiconductor device
JPS58145161A (en) Manufacture of semiconductor device
JPH07202191A (en) Vertical power mos semiconductor and manufacture thereof
JPS612367A (en) Semiconductor device and manufacture thereof