JPS60176236A - Resist processing device - Google Patents

Resist processing device

Info

Publication number
JPS60176236A
JPS60176236A JP3206684A JP3206684A JPS60176236A JP S60176236 A JPS60176236 A JP S60176236A JP 3206684 A JP3206684 A JP 3206684A JP 3206684 A JP3206684 A JP 3206684A JP S60176236 A JPS60176236 A JP S60176236A
Authority
JP
Japan
Prior art keywords
resist
cooling
substrate
temperature
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3206684A
Other languages
Japanese (ja)
Inventor
Kei Kirita
桐田 慶
Toshiaki Shinozaki
篠崎 俊昭
Yoshihide Kato
加藤 芳秀
Takashi Suzuki
隆 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3206684A priority Critical patent/JPS60176236A/en
Publication of JPS60176236A publication Critical patent/JPS60176236A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/162Coating on a rotating support, e.g. using a whirler or a spinner

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To form a resist pattern with high precision efficiently and rapidly by controlling the sensitivity to electromagnetic wave of resist or corpuscular irradiation without deteriorating the resolving power by a method wherein a resist film is baked and cooled at the same place by means of spraying process to cool its surface evenly. CONSTITUTION:A substrate to be processed 42 is coated with a resist film in the place other than a table 41 by means of e.g. a spin coating process. Firstly the resist film baked by a heater 43 at the specific temperature exceeding the glass transition point of resist for specific time. Secondly cooling regrigerant is sprayed while turning the substrate 42 with resist film to be processed using multiple nozzles 45 to cool the overall resist film evenly. At this time, the nozzles 45 spray the refrigerant with temperature and flow rate preliminarily and independently programmed. After the cooling process, the substrate 42 with resist film may be selectively irradiated by electromagnetic wave with specific wave length or corpuscular ray with energy specific to expose the resist film.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、レジストパターンの形成技術に係わり、特に
レジストの感度を制御して高精度のレジストパターンを
形成するためのレジスト処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a resist pattern forming technique, and more particularly to a resist processing apparatus for forming a highly accurate resist pattern by controlling the sensitivity of the resist.

〔発明の技術的背明とその問題点〕[Technical background of the invention and its problems]

超L″S−’Iを始めとして、半導体素子の集積度が高
まるにつれて、微細にして且つ高精度のパターン形成技
術が要求されている。このため、最先端分野では、ロイ
ンチロマスク或いは5インチ径ウェハの場合、パターン
の基板面内平均寸法値に対する寸法誤差として例えば3
ρ<Oyl[μTrL]が要求されている。また、量産
ラインでは、パターン形成プロセスの迅速性も必須であ
り、レジストの感度としては高いものが望まれている。
As the degree of integration of semiconductor devices, including ultra-L''S-'I, increases, finer and more precise pattern forming technology is required. In the case of a diameter wafer, the dimensional error with respect to the average dimension value of the pattern within the substrate surface is, for example, 3
It is required that ρ<Oyl[μTrL]. Furthermore, in a mass production line, speed of the pattern formation process is essential, and high sensitivity of the resist is desired.

しかし、従来のレジストは解像性が劣るために所定のパ
ターン寸法精度を得ることが困難であり、逆に高解像性
を有するレジストは低感度であるために量産ラインにお
いてパターン形成の高スループツト化がはかれない等の
問題があった。
However, because conventional resists have poor resolution, it is difficult to obtain the desired pattern dimensional accuracy.On the other hand, resists with high resolution have low sensitivity, which makes it difficult to achieve high throughput of pattern formation on mass production lines. There were problems such as not being able to measure compatibility.

第1図は従来技術によるレジストパターン形成プロセス
を示すフローチャートである。まず、被処理基板上に周
知の回転塗布法により所定の膜厚にレジストを塗布する
。次いで、塗布溶媒の除去並びにレジストと基板との密
着性を向上させるために、オーブン等を用いレジストに
応じた所定の温度< r−b ’>でレジストのベーク
〈プリベーク〉を行う。この後、オーブンから取り出さ
れたレジスト膜付被処理基板を大気中で支持台にて自然
放冷することにより、室温まで20〜30分かけて冷却
する。冷却の完了したレジスト膜付被処理基板に対して
、レジストの種類に応じた所定の照射量で所定波長域の
電磁波、例えば紫外光或いは所定エネルギーの粒子線、
例えば電子線を選択的に照射してレジストを露光する。
FIG. 1 is a flowchart showing a resist pattern forming process according to the prior art. First, a resist is applied to a predetermined thickness on a substrate to be processed by a well-known spin coating method. Next, in order to remove the coating solvent and improve the adhesion between the resist and the substrate, the resist is baked (prebaked) using an oven or the like at a predetermined temperature <r-b'> depending on the resist. Thereafter, the resist film-coated substrate to be processed taken out from the oven is allowed to cool naturally on a support stand in the atmosphere to cool to room temperature over 20 to 30 minutes. The cooled resist film-coated substrate is exposed to electromagnetic waves in a predetermined wavelength range, such as ultraviolet light or particle beams with a predetermined energy, at a predetermined dose depending on the type of resist.
For example, the resist is exposed by selectively irradiating an electron beam.

その後、現像・リンス処理工程を経て所望のレジストパ
ターンが形成されることになる。
Thereafter, a desired resist pattern is formed through a development and rinsing process.

ところで、上述した自然放冷中の被処理基板上のレジス
ト膜についてζある断点における膜面全体の温度分布を
赤外線放射温度計によって本発明者等が調べたところ、
第2図に示すような結果が得られた。なお、この場合の
自然放冷に先立つべ−り時の温度Tbは〜160 [℃
1であった。第2図において、レジスト膜付被処理基板
21の中央部上方(A点)では温度が高く(冷却のされ
方が遅り)、中心領[(B点)を経て下方(0点)に進
むにつれて温度が低く(冷却のされ方が速く)なってい
る。なお、図中の各曲線は等混線である。
By the way, when the present inventors investigated the temperature distribution of the entire film surface at a certain cut point with respect to the resist film on the substrate to be processed during the natural cooling described above using an infrared radiation thermometer, we found that
The results shown in FIG. 2 were obtained. In this case, the temperature Tb at the time of baking prior to natural cooling is ~160 [℃
It was 1. In FIG. 2, the temperature is high (cooling is slow) at the upper central part (point A) of the substrate 21 to be processed with a resist film, and it progresses downward (point 0) through the central area [(point B). As the temperature increases, the temperature becomes lower (cooling speed becomes faster). Note that each curve in the figure is an equicross line.

第3図は第2図のA、B、C各点における詩間に対する
温度変化を示したもので、曲線31.32゜33はそれ
ぞれA、B、0点に対応する冷却特性である。A点とB
点の最大温度差は15[’C]程度、A点と0点の最大
温度差は30[℃]程度であった。これらの温度測定は
レジスト膜上の被測定部分に熱電対を接触させて行った
。このような温度分布(冷部速度村)が生じる原因とし
ては、自然放冷中波処理基板が支持台等の上に立てられ
ているために、熱放散による雰囲気の自然対流が基板面
に沿って上向きに起り易いこと、及び基板下方部が支持
台により熱を奪われ易いこと等が考えられる。また、本
発明者等は上記レジスト膜付被処理基板の冷却時温度分
布と照射・現像処理後の膜付レジストパターンの寸法精
度との関係について着目し、第2図の温度測定点A、B
、C領域にお番プる形成パターンの寸法を測定したとこ
ろ、本来例えば2[μtrt ]の同寸法であるべきバ
ターンに8点において0.1[μ77L]、、C点にお
いて0.2[μm]程度の誤差が生じており、レジスト
膜付基板の冷却時の温度分布と形成されるレジストパタ
ーンの寸法分布とが、レジストの感度分布を通して完全
に対応していることを確認した。
FIG. 3 shows the temperature change at points A, B, and C in FIG. 2 with respect to the temperature, and curves 31.32° and 33 are cooling characteristics corresponding to points A, B, and 0, respectively. point A and B
The maximum temperature difference between points was about 15 [°C], and the maximum temperature difference between point A and point 0 was about 30 [°C]. These temperature measurements were performed by bringing a thermocouple into contact with the portion to be measured on the resist film. The reason why such a temperature distribution (cold part velocity village) occurs is that the natural convection of the atmosphere due to heat dissipation occurs along the substrate surface because the naturally cooled medium wave processed substrate is placed on a support stand etc. This is thought to be due to the fact that the substrate tends to tilt upward, and that the lower part of the substrate is more likely to lose heat due to the support. In addition, the present inventors focused on the relationship between the temperature distribution during cooling of the resist film-coated substrate to be processed and the dimensional accuracy of the film-coated resist pattern after irradiation and development processing, and found that the temperature measurement points A and B in FIG.
, when we measured the dimensions of the pattern formed in area C, we found that the pattern, which should originally have the same dimensions of, for example, 2 [μtrt], had 0.1 [μ77L] at 8 points, and 0.2 [μm] at point C. It was confirmed that the temperature distribution during cooling of the substrate with a resist film and the size distribution of the formed resist pattern completely corresponded to each other through the sensitivity distribution of the resist.

従って、パターン寸法むらのない高感度のレジトスパタ
ーンを得るには、レジストベーク後基板面内で温度分布
を生じせしめないような均一な冷却が不可欠であること
が判った。
Therefore, in order to obtain a highly sensitive resist pattern with uniform pattern dimensions, it has been found that uniform cooling that does not cause temperature distribution within the substrate surface after resist baking is essential.

一方、本発明者等がベーク後のレジストの冷却過程とレ
ジスト感度との関係に着目し、種々実験を重ねた結果、
レジスト膜を該レジストのガラス転移温度以上の温度で
ベークした後急速に冷却させると、レジスト感度が飛躍
的に高まることを見出だした。また、ガラス転移温度以
上でレジストベークを行った後、冷却時間若しくは冷却
速度を制御してレジスト冷却を行えば、レジスト感度を
任意の値に制御できることも見出だした。加えて、これ
ら急速冷却過程を経て形成されたレジストパターン及び
制御された冷却過程を経て形成されたレジストパターン
の解像性はいずれも、レジスト本来のパターン解像性に
比べていささかも劣化していないことが判った。また、
上記レジスト膜の冷却を基板面上全体に亙っで均一に行
うことにより寸法精度の高いレジストパターンが得られ
ることも判明した。
On the other hand, the present inventors focused on the relationship between the resist cooling process after baking and resist sensitivity, and as a result of various experiments,
It has been found that when a resist film is baked at a temperature equal to or higher than the glass transition temperature of the resist and then rapidly cooled, the resist sensitivity is dramatically increased. It has also been found that the resist sensitivity can be controlled to an arbitrary value by performing resist baking at a temperature equal to or higher than the glass transition temperature and then cooling the resist by controlling the cooling time or cooling rate. In addition, the resolution of the resist pattern formed through these rapid cooling processes and the resist pattern formed through the controlled cooling process is slightly degraded compared to the original pattern resolution of the resist. It turns out there isn't. Also,
It has also been found that a resist pattern with high dimensional accuracy can be obtained by uniformly cooling the resist film over the entire substrate surface.

さらに、本発明者等はレジスト膜を所定の温度Tbで所
定時間ベータした後、該レジスト膜の温度をまずTbか
ら任意の中間冷却温度Tmまで下げ、次いでTmから例
えば室温以下の任意の最終冷却温度TCまで急速冷却さ
せる(Tb≧Tm≧Tc)ことによって、先と同様にレ
ジストの感度を完全に再現性良く制御できることを見出
だした。
Furthermore, the present inventors have developed a method of beta-rotating a resist film at a predetermined temperature Tb for a predetermined period of time, first lowering the temperature of the resist film from Tb to an arbitrary intermediate cooling temperature Tm, and then performing arbitrary final cooling from Tm to, for example, room temperature or lower. It has been found that by rapidly cooling to the temperature TC (Tb≧Tm≧Tc), the sensitivity of the resist can be controlled with complete reproducibility as before.

また、本発明者等が更に鋭意研究を重ねた結果、上記制
御されたベータ・冷却工程によって生じる諸効果は、該
ベータ・冷却工程をレジスト膜の露光工程の直前に施し
ても、また露光工程後で現像工程の直前に施しても、同
様に現われることを確認した。
Further, as a result of further intensive research by the present inventors, it has been found that the effects produced by the above-mentioned controlled beta/cooling process are the same even when the beta/cooling process is performed immediately before the exposure process of the resist film. It was confirmed that the same effect appeared even if it was applied later just before the developing process.

このようにレジスト膜のベーク冷却を制御することによ
って、レジスト膜の感度を任意に設定し1qることが判
ったが、上述したレジスト処理に好適する装置は今だ実
用化されていない。特に、レジスト膜の冷却を膜面全体
に亙って均一に行い、且つその冷却速度や冷却時間を任
意に可変できるレジスト処理装置は全く存在しないのが
現状である。
Although it has been found that the sensitivity of the resist film can be arbitrarily set to 1q by controlling the bake cooling of the resist film in this manner, an apparatus suitable for the above-mentioned resist processing has not yet been put into practical use. In particular, at present, there is no resist processing apparatus that can uniformly cool a resist film over the entire film surface and can arbitrarily vary the cooling rate and cooling time.

(発明の目的〕 本発明の目的は、解像性を劣化させることなく、レジス
トの電磁波若しくは粒子線照射に対する感度を任意に制
御し、高精度のレジストパターンを効率良く且つ迅速に
形成するためのレジスト処理装置を提供することにある
(Object of the Invention) The object of the present invention is to arbitrarily control the sensitivity of a resist to electromagnetic waves or particle beam irradiation without deteriorating resolution, and to form a highly accurate resist pattern efficiently and quickly. An object of the present invention is to provide a resist processing device.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、レジスト膜のベーク及び冷却を同一場
所で行うと共に、該膜の冷却をスプレー法によって均一
に行うことにある。
The gist of the present invention is to bake and cool a resist film at the same location, and to cool the film uniformly by a spray method.

即ち本発明は、レジストをベーク冷却するレジスト処理
装置において、レジスト感度を塗布された被処理基板が
載置されるテーブルと、上記基板を上記レジストのガラ
ス転移温度以上に加熱づる加熱機構と、この加熱機構に
よる前記基板の加熱を阻害する熱遮蔽機構と、複数個の
ノズルからなり前記基板に対して冷却用冷媒を吹き付は
該基板を冷却する冷却機構とを設け、レジストの冷却を
均一に行い、且つ冷却速度を任意に制御するようにした
ものである。
That is, the present invention provides a resist processing apparatus for baking and cooling a resist, which includes: a table on which a substrate to be processed coated with a resist sensitivity is placed; a heating mechanism for heating the substrate to a temperature higher than the glass transition temperature of the resist; A heat shielding mechanism that inhibits heating of the substrate by a heating mechanism, and a cooling mechanism that includes a plurality of nozzles and sprays a cooling refrigerant onto the substrate to cool the substrate are provided to uniformly cool the resist. The cooling rate can be controlled arbitrarily.

また本発明は、上記構成に加えテーブルを回転可能な構
造とし、被処理基板の中心付近に液状のレジストを滴下
するレジスト滴下機構を設け、べ−り・冷却と共にレジ
スト塗布も同一場所で行うようにしたものである。
Furthermore, in addition to the above configuration, the present invention has a rotatable table structure and is provided with a resist dropping mechanism that drops liquid resist near the center of the substrate to be processed, so that resist coating as well as baking and cooling can be performed at the same location. This is what I did.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、レジスト膜のベータ・冷却を同じテー
ブル上で行うことができる。しかも、レジスト冷却のた
めに冷却用冷媒を吹き付けるためのノズルを複数個用い
ているので、レジスト膜の冷却を均一に行うことができ
、且つレジスト膜の冷却速度を任意に制御することがで
きる。従って、前述したベーク冷却工程を施すことが容
易であり、このためレジストの1m波若しくは粒子線照
射に対する感度を、その解像性を劣化させることなく、
任意に設定することができる。故に、低感度のレジトス
でも解像性を劣化させることなく高感度化され、電磁波
若しくは粒子線による照射処理時間を短縮することがで
きる。しかも、ベーク後のレジスト膜が膜全体に亙って
均一に冷却されるので、被処理基板上全体に亙って寸法
ばらつきの少ない極めて高精度のレジストパターンを形
成することができる。また、ベーク冷却を同一の装置で
行うことができるので、全体のシステムの簡略化をはか
り得る等の利点がある。また、レジスト滴下機構を付加
することにより、レジストの塗布、べ−り、冷却の全て
を同一場所で行うことができ、これにより全体のシステ
ムのより一層の簡略化をはかり得る等の利点もある。
According to the present invention, beta cooling of the resist film can be performed on the same table. Furthermore, since a plurality of nozzles for spraying a cooling refrigerant are used to cool the resist, the resist film can be cooled uniformly, and the cooling rate of the resist film can be arbitrarily controlled. Therefore, it is easy to perform the above-mentioned bake-cooling process, and for this reason, the sensitivity of the resist to 1 m wave or particle beam irradiation can be improved without deteriorating its resolution.
Can be set arbitrarily. Therefore, even a resist with low sensitivity can be made highly sensitive without deteriorating its resolution, and the time for irradiation treatment with electromagnetic waves or particle beams can be shortened. Moreover, since the resist film after baking is cooled uniformly over the entire film, it is possible to form a highly accurate resist pattern with little dimensional variation over the entire substrate to be processed. Furthermore, since bake cooling can be performed using the same device, there are advantages such as the simplification of the entire system. Additionally, by adding a resist dripping mechanism, resist coating, baking, and cooling can all be performed in the same place, which has the advantage of further simplifying the overall system. .

〔発明の実施例〕[Embodiments of the invention]

第4図は本発明の一実施例に係わるレジスト処理装置を
示す概略構成図である。図中41は被処理基板42が載
置されるテーブルで、このテーブル41は真空チャック
等により被処理基板42を固定し、図示しないモータ等
により回転するものとなっている。テーブル41の周囲
には、ヒータ(加熱機構)43が配置されている。この
ヒータ43はレジスト膜付被処理基板42を該レジスト
のガラス転移温度T(1以上の所定温度Tbまで加熱す
るものである。また、テーブル41とヒータ43との間
には、熱遮蔽板(熱遮蔽機構)44が配置されている。
FIG. 4 is a schematic configuration diagram showing a resist processing apparatus according to an embodiment of the present invention. In the figure, reference numeral 41 denotes a table on which a substrate to be processed 42 is placed, and this table 41 fixes the substrate to be processed 42 by a vacuum chuck or the like and is rotated by a motor or the like (not shown). A heater (heating mechanism) 43 is arranged around the table 41. This heater 43 heats the resist film-coated substrate 42 to the glass transition temperature T (predetermined temperature Tb of 1 or more) of the resist. Also, between the table 41 and the heater 43, there is a heat shielding plate ( A heat shielding mechanism) 44 is arranged.

この熱遮蔽板44は、図示しない駆動部により上下方向
に移動可能な構成となっている。そして、レジスト膜付
被処理基板42のベーク時には上方に移動され、基板4
2の冷却時には図に示す如くテーブル41とヒータ43
との間に介在されるものとなっている。
This heat shielding plate 44 is configured to be movable in the vertical direction by a drive section (not shown). When baking the resist film-coated substrate 42, it is moved upward and the substrate 42 is moved upward.
2, the table 41 and heater 43 are connected as shown in the figure.
It is something that is interposed between.

一方、テーブル41の上方には冷却用冷媒をテーブル4
1上の基板42に吹き付けるための複数のノズル(冷却
i構)45が設けられている。これらのノズル45は、
例えばテーブル41の中心を通る直線上に配置され、且
つ中心部より周辺部の方が密に配置されている。そして
、これらのノズル45から温度及び流量が各ノズル毎に
独立的に制御されて、基板42上に冷却用冷媒が吹き付
けられ、これによりレジスト膜付被処理基板42が冷却
されるものとなって戸る。
On the other hand, a cooling refrigerant is applied to the table 41 above the table 41.
A plurality of nozzles (cooling i structure) 45 are provided for spraying onto the substrate 42 on the substrate 1 . These nozzles 45 are
For example, they are arranged on a straight line passing through the center of the table 41, and are arranged more densely at the periphery than at the center. The temperature and flow rate are controlled independently for each nozzle from these nozzles 45, and the cooling refrigerant is sprayed onto the substrate 42, thereby cooling the resist film-coated substrate 42. Door.

このような構成であれば、熱遮蔽板44を上方に移動し
た状態で、ヒータ43によりレジスト膜付被処理基板4
2を該レジストのガラス転移温度Tg以上の所定温度T
bまで加熱することができる。その後、熱遮蔽板44を
ヒータ43とテーブル41との間に移動し、ノズル45
から冷却用冷媒をテーブル41上の基板42に吹き付け
ることによって、基板42を上記温度Tbから最終冷却
温度TCまで急速且つ均一に冷却することができる。こ
のため、レジスト付被処理基板42のべ一り冷却処理を
効果的に行うことができる。
With this configuration, the resist film-coated substrate 4 is heated by the heater 43 while the heat shield plate 44 is moved upward.
2 at a predetermined temperature T higher than the glass transition temperature Tg of the resist.
It can be heated up to b. After that, the heat shield plate 44 is moved between the heater 43 and the table 41, and the nozzle 45
By spraying the cooling refrigerant onto the substrate 42 on the table 41, the substrate 42 can be rapidly and uniformly cooled from the temperature Tb to the final cooling temperature TC. Therefore, the entire cooling process of the resist-coated substrate to be processed 42 can be effectively performed.

なお、均一冷却を行うためにはノズルの数及び開孔面積
を適正に設定しておくことが重要であり、それぞれのノ
ズルを通流させる冷媒の温度や流量を個々に独立的に制
御できることが重要である。
In order to achieve uniform cooling, it is important to set the number of nozzles and the opening area appropriately, and it is important to be able to independently control the temperature and flow rate of the refrigerant flowing through each nozzle. is important.

さらに、ノズルの配置位置は基板42の均一冷却を可能
ならしめるならば基板周囲の如何なる位置であってもよ
い。また、冷却用冷媒としては清浄な窒素ガス等を用い
ればよい。
Furthermore, the nozzle may be arranged at any position around the substrate 42 as long as uniform cooling of the substrate 42 is possible. Furthermore, clean nitrogen gas or the like may be used as the cooling refrigerant.

第5図(a)〜(d)はそれぞれ上記実施例装置を用い
たレジストパターン形成プロセスを示ずフローチャート
である。第5図(a)の場合は、まず被処理基板42上
にレジスト膜を塗布する。
FIGS. 5(a) to 5(d) are flowcharts, each not showing a resist pattern forming process using the apparatus of the above embodiment. In the case of FIG. 5(a), a resist film is first applied onto the substrate 42 to be processed.

このレジスト塗布は前記テーブル41とは別の場所で、
例えばスピンコード法により行う。次いで、ヒータ43
によりレジスト膜を該レジストのガラス転移温度l+以
上の所定温度Tbにて所定の時間ベーク(プリベーク)
する。次いで、レジスト膜付被処理基板42を回転させ
ながら該基板面に複数個のノズル45を用いて冷却用冷
媒をスプレーし、レジスト膜全体に亙る均一な冷却を行
う。
This resist application is performed at a location different from the table 41,
For example, the spin code method is used. Next, the heater 43
Baking the resist film at a predetermined temperature Tb higher than the glass transition temperature l+ of the resist for a predetermined time (prebaking)
do. Next, while rotating the resist film-coated substrate 42 to be processed, a cooling refrigerant is sprayed onto the surface of the substrate using a plurality of nozzles 45 to uniformly cool the entire resist film.

この場合、冷却時間若しくは冷却速度を制御しながら均
一な温度分布の冷却を行うために、上記複数個のノズル
45からは予め独立的にプログラムされた温度及び流量
の冷媒をスプレーする。この冷却1粉の後、レジスト膜
付基板に対して所定波長の電磁波或いは所定エネルギー
の粒子線を選択的に照射して該レジスト膜を露光する。
In this case, in order to perform cooling with uniform temperature distribution while controlling the cooling time or cooling rate, the plurality of nozzles 45 spray refrigerant at a temperature and flow rate that are independently programmed in advance. After this cooling, the substrate with the resist film is selectively irradiated with electromagnetic waves of a predetermined wavelength or particle beams of a predetermined energy to expose the resist film.

その後、現像・リンス処理を施すことによって、所望の
レジストパターンが形成されることになる。
Thereafter, a desired resist pattern is formed by performing development and rinsing processing.

第5図(b)は中間冷却温度Tmを設けた方法である。FIG. 5(b) shows a method in which an intermediate cooling temperature Tm is provided.

即ち、レジストのべLり工程までは同図(a)と同様で
あり、この後レジスト膜付基板42をベータ温度Tbか
ら任意の中間濃度Tm(Tb >Tm )へ下げる第1
の冷却を行う。次いで、中間温度T Illから最終冷
却温度Tcまで下げる第2の冷却を先と同様にノズル4
5を用いたスプレー法にて行う。これ以降は先の例と同
様である。
That is, the process up to the resist leveling process is the same as that shown in FIG.
cooling. Next, the second cooling is performed from the intermediate temperature T Ill to the final cooling temperature Tc using the nozzle 4 in the same manner as before.
This is done by the spray method using 5. The rest is the same as the previous example.

第5図(c)(d)に示す例はそれぞれ同図(a)(E
))の改良で、レジストのベーク・冷却を露光後に行う
ようにした方法である。即ち、第5図(C)に示す例は
露光工程までは従来と同様であり、露光後現像処理の前
に同図(a)に示したようなベーク・冷却工程を施す方
法である。さらに、第5図(d)に示す例は露光工程ま
では従来と同様であり、露光後同図(b)に示したよう
なベーク・冷却工程を施すようにした方法である。
The examples shown in FIGS. 5(c) and 5(d) are respectively shown in FIGS.
)) is an improvement in that the resist is baked and cooled after exposure. That is, the example shown in FIG. 5(C) is the same as the conventional method up to the exposure step, and a baking and cooling step as shown in FIG. 5(a) is performed after exposure and before development processing. Furthermore, the example shown in FIG. 5(d) is the same as the conventional method up to the exposure step, but after the exposure, a baking and cooling step as shown in FIG. 5(b) is performed.

なお、上記各工程ではレジスト膜の塗布を前記テーブル
41と異なる場所で行っているが、第6図に示す如くレ
ジスト滴下機構61を新たに設けることによって、レジ
スト塗布、ベーク、冷却の各工程を同一の場所で行うこ
とが可能である。ここで、レジスト滴下機構61は導管
部62を回動させることによりレジスト射出部63をテ
ーブル41上に移動するものとなっている。そして、レ
ジストを塗布する場合、テーブル41を回転させながら
テーブル41上の基板42の中心部に液状のレジストを
滴下することにより、該レジストがスビンコー1〜され
るものとなっている。この場合、レジストの塗布、ベー
ク、冷却の各工程を同一の場所で行うことができ、全体
のシステムの簡略化をはかり得る。
In each of the above steps, the resist film is applied at a location different from the table 41, but by newly providing a resist dropping mechanism 61 as shown in FIG. 6, each step of resist application, baking, and cooling can be performed. It is possible to do it in the same place. Here, the resist dropping mechanism 61 moves the resist injection section 63 onto the table 41 by rotating the conduit section 62. When applying the resist, the resist is coated by dropping liquid resist onto the center of the substrate 42 on the table 41 while rotating the table 41. In this case, the steps of resist application, baking, and cooling can be performed at the same location, and the entire system can be simplified.

次に、上記各実施例装置を用いた前記第5図(a)〜(
d)に相当する実際のレジストパターン形成工程につい
て説明する。
Next, FIGS. 5(a)-(
The actual resist pattern forming process corresponding to step d) will be explained.

〈実験例1〉 この例ではポリ(2,2,2−1−リフルオロエチル−
α−クロロアクリレ−1−)よりなるポジ形電子線感応
しジストを用い、第5図(a>の工程に対応するレジス
トパターン形成工程について述べる。まず、上記レジス
トを周知の回転塗布法により被処理基板上に塗布する。
<Experimental Example 1> In this example, poly(2,2,2-1-lifluoroethyl-
The resist pattern forming process corresponding to the process in FIG. Apply on the substrate.

塗布膜厚は、例えば0.3〜1[μ771]程度でよい
が、ここでは0゜8cμm〕とした。被処理基板として
は、半導体ウェハやガラス基板等様々あるが、ここでは
金属膜付ガラス基板を用いた。次に、前記レジスト処理
装置を用い、レジメ1〜膜のベーク・冷却処理を行った
。へ−ク渇度Tbは上記レジストのガラス転移温度Tg
 (〜110℃)を越える190[℃]に設定した。約
1時間のベータの後、室温までの冷却を冷却時間(冷却
速度)を変えて行った。温度Tbから室温までの冷却時
間は、例えば■30分、■5分、■1分、■10秒、0
5秒となるように冷m91!1理を操作した。第7図は
これらの冷却処理時における基板温度変化について示し
たちのである。これらのベータ・冷却プロセスを経たレ
ジスト試料について電子線感度特性を調べた結果、第8
図に示す如き感度曲線が得られた。第8図の感度特性は
、上記ベーク・冷却プロレスを経た、レジスト塗布に加
速電圧20[Ke’V]の電子線を照0A(l、室温で
メチルイソブヂルケ1−ン(MIBK):イソプロビル
アルコール(IPA)=7:3現像液で10分間の現像
処理を施し、次いてIPAにて30秒間のリンス処理を
施して得られたもので、第7図のそれぞれの冷却プロセ
スに対応するレジスト感度(残III亭ゼロとなる電子
線照射量)は■4X 10−6 [c/ci] 、■2
X10−”[C/cIAl 、 @9x 10− T[
C/crl] 、 @5x10−7[C/cffl] 
、■3X 10−7[c、/cnfJであった。一方、
これら■、■、■、■、■と同様のベーク・冷却プロセ
スを経たレジスト膜付被処理基板(金属膜付6インチロ
ガラス基板)へ、加速電圧20 [KeV]の電子線描
画装置により、それぞれに対応する感度(照射量)で選
択的にパターン露光を行ない、室温におけるMIBK/
1PA (=7/3)現像、IPAリンス処理を行って
レジストパターンを形成した。■〜■いずれのプロセス
を経たレジストパターンも解像性は良好であった。また
、例えば線幅0.5〜2.0Lμm]の範囲のレジスト
パターンの寸法精度で基板面内の寸法変動誤差3ρ<0
.1 [μm]を十分に満足させるものであった。
The coating film thickness may be, for example, about 0.3 to 1 [μ771], but here it was set to 0°8 cm]. Although there are various types of substrates to be processed, such as semiconductor wafers and glass substrates, a glass substrate with a metal film was used here. Next, using the resist processing apparatus described above, a baking and cooling process of Regime 1 was performed on the film. The dryness Tb is the glass transition temperature Tg of the resist.
(~110°C) was set at 190[°C]. After about 1 hour of beta, cooling to room temperature was performed by changing the cooling time (cooling rate). The cooling time from temperature Tb to room temperature is, for example, ■30 minutes, ■5 minutes, ■1 minute, ■10 seconds, 0
The cold m91!1 system was operated so that the time was 5 seconds. FIG. 7 shows changes in substrate temperature during these cooling treatments. As a result of investigating the electron beam sensitivity characteristics of the resist samples that underwent these beta cooling processes, the 8th
A sensitivity curve as shown in the figure was obtained. The sensitivity characteristics shown in FIG. 8 are as follows: After the baking and cooling process described above, the resist coating was irradiated with an electron beam at an acceleration voltage of 20 [Ke'V] at 0 A (l, methyl isobutylene (MIBK) at room temperature): These were obtained by developing with isopropyl alcohol (IPA) = 7:3 developer for 10 minutes and then rinsing with IPA for 30 seconds, corresponding to each cooling process shown in Figure 7. The resist sensitivity (electron beam irradiation amount at which residual III-temperature is zero) is ■4X 10-6 [c/ci], ■2
X10-”[C/cIAL, @9x 10-T[
C/crl], @5x10-7[C/cffl]
, ■3X 10-7[c,/cnfJ. on the other hand,
A substrate to be processed with a resist film (a 6-inch glass substrate with a metal film) that has gone through the same baking and cooling process as in these ■, ■, ■, ■, and ■ is then exposed using an electron beam lithography system with an acceleration voltage of 20 [KeV]. Selective pattern exposure is performed at the sensitivity (dose) corresponding to each, and MIBK/
1PA (=7/3) development and IPA rinsing treatment were performed to form a resist pattern. The resist patterns obtained through any of the processes (1) to (2) had good resolution. In addition, with the dimensional accuracy of the resist pattern in the range of, for example, line width 0.5 to 2.0 Lμm, the dimensional variation error 3ρ<0 within the substrate surface.
.. 1 [μm].

〈実験例2〉 この例は第5図(b)に対応する方法である。<Experiment example 2> This example is a method corresponding to FIG. 5(b).

レジスト材料、塗布膜厚及び被処理基板は実験例1と同
様であり、またレジスト塗布工程も同様である。次いで
、前記レジスト処理装置を用いてレジスト膜のベーク・
冷却処理を行った。ベーク温度Tbはレジストのカラス
転移温度Tl1lを越える180[℃]に設定した。約
40分のベークの後、リンス1へ膜付基板の温度を任意
の中間温度Tm(Tm <Tb )まで均一に下げた。
The resist material, coating film thickness, and substrate to be processed are the same as in Experimental Example 1, and the resist coating process is also the same. Next, the resist film is baked using the resist processing device.
Cooling treatment was performed. The baking temperature Tb was set at 180 [° C.] exceeding the resist's glass transition temperature Tl1l. After baking for about 40 minutes, the temperature of the film-coated substrate was uniformly lowered to an arbitrary intermediate temperature Tm (Tm < Tb ) in Rinse 1.

次いで、被処理基板を中間湿度Tmから最終冷却温度T
cまで冷媒スプレーにより急速且つ均一に冷却した。
Next, the substrate to be processed is cooled from the intermediate humidity Tm to the final cooling temperature T.
It was rapidly and uniformly cooled down to c by refrigerant spray.

ここで、中間冷fJI温度(急速冷却開始温度)TII
lは該レジスト膜のガラス転移温度Toを挟んだ、18
0〜40[℃コの範囲で10[’C]ずつ変化させた。
Here, intermediate cooling fJI temperature (rapid cooling start temperature) TII
l is 18, sandwiching the glass transition temperature To of the resist film.
The temperature was varied by 10['C] in the range of 0 to 40[C].

また、最終冷fiI]温度Tcとして空温(25”C)
を選んだ。第9図は中間冷fJI温度、即ち急速冷却開
始温度Tmが、例えば150[’C]の場合の上記レジ
スト膜付被処理基板の冷却時の温度変化Tb −+Tm
−+Tcを示したもので、被処理基板上のレジスト面で
前記第2図に示したA。
In addition, the final cooling fiI] temperature Tc is the air temperature (25”C)
I chose. FIG. 9 shows a temperature change Tb −+Tm during cooling of the resist film-coated substrate when the intermediate cooling fJI temperature, that is, the rapid cooling start temperature Tm is, for example, 150 ['C].
-+Tc, and A shown in FIG. 2 above on the resist surface on the substrate to be processed.

B、C領域と略同等の3領域における温度変化を測定し
た結果である。上記A、B、’C各領域の温度変化に対
応する特性がそれぞれ曲線91.92゜93で、第3図
の従来法の場合の冷却特性に比べ全体に屋って(Tb→
Tc)均一な冷却がなされ、特にTm−)TOの冷却領
域では均−且つ急速な冷却が行われていることがよく判
る。このような均一 (Tb −)TIIl −+Tc
 )で急速(Tlll −+TO)な冷却は他の任意の
Tl1lについても同様に認められた。なお、被処理基
板それぞれのTmから”lcまでの冷却時間は、本例の
場合いずれも10秒以下であった。中間冷却温度、即ち
急速冷却開始温度Tmの値を種々変えた場合の上記ベー
ク・冷却プロセス(Tb=180℃−)Tm −>To
 = 25℃)を経たそれぞれのレジスト試料について
電子線に対する感度(所定現像条件下でレジスト膜の膜
厚残存率がゼロとなる場合の電子線照射量)を調べた結
果、第10図(a)に示す特性が得られた。
These are the results of measuring temperature changes in three regions substantially equivalent to regions B and C. The characteristics corresponding to the temperature changes in each of the above regions A, B, and 'C are curves 91.92°93, respectively, and compared to the cooling characteristics of the conventional method shown in Figure 3, the overall characteristics are (Tb→
It is clearly seen that uniform cooling is achieved, especially in the Tm-)TO cooling region. Such a uniform (Tb −)TIIl −+Tc
) and rapid cooling (Tlll −+TO) was similarly observed for other arbitrary Tl1l. Note that the cooling time from Tm to ``lc'' of each substrate to be processed was 10 seconds or less in all cases in this example.・Cooling process (Tb=180°C-) Tm ->To
As a result of examining the sensitivity to electron beams (the amount of electron beam irradiation when the remaining thickness of the resist film becomes zero under the specified development conditions) for each resist sample after the resist sample was heated at 25°C, the results are shown in Figure 10 (a). The following characteristics were obtained.

第10図(a)の特性は、前記それぞれのベーク・冷却
プロセスを経たリンス1へ膜に20 [KeV]の電子
線を照射後、空温でメチルイソブチルケトン(MIBK
):イソプロビルアルコール(IPA)−7:3現像液
で10分間の現像処理、次いでIPA液にて30秒間の
リンス処理を施して得られたものである。第10図(a
)に見られるように、Tl1−ITIII→TCのレジ
スト冷却過程で、中間冷却温度、即ち急速冷却開始)温
度Tmが該リンストのガラス転移温度To (〜133
℃)と略等しくなる温度領域でレジスト感度に幅広い変
化が現れる。Tb≧Tl1l>TIJ領域では高いレジ
スト感度が得られ、TlnがTbに近付くにつれて感度
が高くなり、最大レジスト感度として〜1.2×10−
B [C/cdコが得られる。7g >Tm >Tc 
(=25℃)領域では、急速冷却開始温度Tmが下降す
るにつれてレジスト感度が低くなり、従来の自然放冷の
場合の感度〜8X10’[C/’d]に近付く。
The characteristics shown in FIG. 10(a) are as follows. After irradiating the film with an electron beam of 20 [KeV] to the rinse 1 that has gone through each of the above baking and cooling processes, methyl isobutyl ketone (MIBK
): Obtained by developing with isopropyl alcohol (IPA)-7:3 developer for 10 minutes and then rinsing with IPA solution for 30 seconds. Figure 10 (a
), in the resist cooling process from Tl1-ITIII to TC, the intermediate cooling temperature, that is, the rapid cooling start) temperature Tm, is equal to the glass transition temperature To (~133
A wide range of changes in resist sensitivity appears in the temperature range approximately equal to (°C). High resist sensitivity is obtained in the Tb≧Tl1l>TIJ region, and as Tln approaches Tb, the sensitivity increases, and the maximum resist sensitivity is ~1.2×10−
B [C/cd is obtained. 7g >Tm >Tc
(=25° C.), as the rapid cooling start temperature Tm decreases, the resist sensitivity decreases and approaches the sensitivity of conventional natural cooling ~8×10'[C/'d].

一方、上記したプロセスと同様のベーク・冷却工程を施
した該レジスト膜付被処理基板(金属膜付6インチロガ
ラス基板)の周辺部分を除く全面へ、20 [KeV]
電子線描画装置を用いて、上記それぞれの感度に対応す
る照射量で選択的パターン照射を行ない、空温における
MIBK/IPA(=7/3)現像、IPAリンス処理
工程を行ってレジストパターンを形成した。これらレジ
ストパターンの解像性は全て良好であった。また、例え
ば線幅0.5〜2.OFμ尻]の範囲のレジストパター
ンの寸法精度を測定評価した結果、いずれの場合のレジ
ストパターンも全て高精度で、基板面内の寸法変動誤差
3ρ<0.1 [μm]を十分に満足するものであった
On the other hand, 20 [KeV] was applied to the entire surface of the substrate to be processed with the resist film (a 6-inch glass substrate with a metal film), which had been subjected to a baking and cooling process similar to the process described above, except for the peripheral part.
Selective pattern irradiation is performed using an electron beam lithography device at a dose corresponding to each of the above sensitivities, and a resist pattern is formed by performing MIBK/IPA (=7/3) development at air temperature and IPA rinsing process. did. All of these resist patterns had good resolution. Also, for example, the line width is 0.5 to 2. As a result of measuring and evaluating the dimensional accuracy of resist patterns in the range of [OF μ bottom], all resist patterns in each case were highly accurate and fully satisfied the in-plane dimensional variation error 3ρ < 0.1 [μm]. Met.

〈実膿例3〉 この例ではレジストとしてポリメチルメタクリレートを
用い、第5図(C)の工程に対応するレジストパターン
形成工程について述べる。実験例1と同様に被処理基板
として金属膜付ガラス基板を用い、まず該基板上に上記
レジスト膜を膜厚0゜8[IITrL]に塗布形成する
。次に、上記レジスト膜をプリベークし、自然放冷した
。プリベーク温度は160[’C]であり、プリベーク
時間は30分であった。自然放冷時におけるレジスト膜
全体に亙る温度分布については意図的な均一冷却は行わ
なかった。次いで、前記レジスト感度に加速電圧20 
[KeV]の電子線を照射し該レジスト膜を露光する。
<Example 3> In this example, polymethyl methacrylate is used as a resist, and a resist pattern forming process corresponding to the process shown in FIG. 5(C) will be described. As in Experimental Example 1, a glass substrate with a metal film was used as the substrate to be processed, and the resist film was first coated onto the substrate to a thickness of 0°8 [IITrL]. Next, the resist film was prebaked and allowed to cool naturally. The prebake temperature was 160 ['C] and the prebake time was 30 minutes. Regarding the temperature distribution over the entire resist film during natural cooling, intentional uniform cooling was not performed. Next, an accelerating voltage of 20% is applied to the resist sensitivity.
The resist film is exposed to a [KeV] electron beam.

しかるのち、前記レジスト処理装置を用いて前記レジス
ト膜の現像前ベークと制御された均一冷却を行った。現
像前ベータ時のベーク温度Tbは、本レジストのガラス
転移温度下g〜110[’C]を越える180[℃]に
設定した。現像前ベーク温度時間は長くなる必要はなく
、ここでは10分間とした。前記現像前ベーク後、前記
装置の均一制御冷却により室温までの冷却時間を■30
分、■5分、■1分、■10秒、■5秒と変えた。これ
らのリンスI・試料に室温で13分間のMIBK現像、
30秒間のIPAリンスを行って、それぞれに対応する
感度を調べた結果、■9X10−B [c/cM]、■
6.’5X10−6 [C/cIIl コ 、 ■5x
 1 0− ’ [C/ 7] 、■3 、5 ×10
−6[c’/CIA] 、■2.5X10−6 Cc/
crA ]であった。
Thereafter, the resist film was baked before development and controlled uniformly cooled using the resist processing apparatus. The baking temperature Tb during the pre-development beta was set at 180[° C.], which is higher than the glass transition temperature g~110['C] of this resist. The pre-development baking temperature time does not need to be long and was set to 10 minutes here. After the pre-development bake, the cooling time to room temperature is 30 by uniformly controlled cooling of the device.
I changed it to minutes, ■5 minutes, ■1 minute, ■10 seconds, and ■5 seconds. MIBK development for 13 minutes at room temperature on these Rinse I samples.
As a result of performing IPA rinsing for 30 seconds and examining the corresponding sensitivity, ■9X10-B [c/cM], ■
6. '5X10-6 [C/cIIl Ko, ■5x
1 0-' [C/ 7], ■3, 5 ×10
-6 [c'/CIA], ■2.5X10-6 Cc/
crA].

一方、上記レジスト膜を〜0.8[μm]の厚さに塗布
したレジスト膜付基板(金属膜付6インチロガラス基板
を用いて、上記と同様のプリベーク、自然放冷を行った
後、該レジスト膜付基板の周辺部分を除く全面へ20[
KeV]電子線描画装置を用いて、上記■〜■それぞれ
の感度に対応する照射凹で選択的にパターン露光を行っ
た。しかるのち、前記それぞれの感度が得られるように
、それぞれに対応する現像前ベーク(Tb=180℃)
と均一スプレー冷却処理を行い、室温にお()るMIB
K現像、IPAリンス処理を施してレジストパターンを
形成した。■〜Oいずれのプロセスを経たレジストパタ
ーンも解像性は良好であった。また、先の実験例1と同
様に線幅0.5〜2゜0[μm]の範囲のレジストパタ
ーンの寸法精度を評価した結果、いずれのレジストパタ
ーンも高精度で基板面内の寸法変動誤差3ρ<0.1[
μTrL]を十分に満足するものであった。
On the other hand, a substrate with a resist film (a 6-inch glass substrate with a metal film) coated with the above resist film to a thickness of ~0.8 [μm] was prebaked and allowed to cool naturally in the same manner as above. 20[
[KeV] Using an electron beam lithography system, pattern exposure was performed selectively at the irradiation concavities corresponding to the sensitivities of each of the above items (1) to (2). After that, in order to obtain each of the above-mentioned sensitivities, a corresponding pre-development bake (Tb=180°C) is carried out.
MIB is then uniformly spray cooled and brought to room temperature.
A resist pattern was formed by performing K development and IPA rinsing. The resist patterns obtained through any of the processes (1) to (O) had good resolution. In addition, as in Experimental Example 1, we evaluated the dimensional accuracy of resist patterns in the line width range of 0.5 to 2°0 [μm], and found that all resist patterns had high accuracy and no dimensional variation error within the substrate surface. 3ρ<0.1[
μTrL].

〈実験例4〉 この例は第5図(d)に対応する方法である。<Experiment example 4> This example is a method corresponding to FIG. 5(d).

レジスト材料、塗布膜厚及び被処理基板は実験例3と同
様であり、またレジスト膜の露光工程までは同様である
。次いで、前記レジスト処理装置を用いてレジスト膜の
ベーク・冷却処理を行った。
The resist material, coating film thickness, and substrate to be processed are the same as those in Experimental Example 3, and the process up to the exposure process of the resist film is the same. Next, the resist film was baked and cooled using the resist processing apparatus.

べ−り温度Tbはリンストのガラス転移温度TOを越え
る170[℃]に設定した。ベーク時間は10分とした
。この現像前ベークの後、ベーク温度Tb=170[℃
]からレジスト膜付基板の温度を任意の中間温度Tm 
(Tm <Tb >まで均一に下げた。次いて、被処理
基板を中間温度Tfflから最終冷却温度Tcまで冷媒
スプレーにより急速且つ均一に冷却した。
The baking temperature Tb was set at 170[° C.], which exceeds the glass transition temperature TO of linst. The baking time was 10 minutes. After this pre-development baking, the baking temperature Tb=170[℃
] to set the temperature of the resist film coated substrate to an arbitrary intermediate temperature Tm
(Tm <Tb>). Next, the substrate to be processed was rapidly and uniformly cooled from the intermediate temperature Tffl to the final cooling temperature Tc by a refrigerant spray.

ここで、中間冷却温度(急速冷却開始温度)TDIは該
レジスト膜のガラス転移温度T(+を挟んだ、170〜
40[℃]の範囲で10[℃コずつ変化させた。また、
最終冷却温度Tcとして室温(25℃)を選んだ。それ
ぞれのTmからTcまでの冷却時間は本例の場合につい
ても〜10秒以下であった。上記種々の冷却プロセスを
経たレジスト膜に室温にて13分間のMIBK現像、3
0分間のIPAす・ンス処理工程を行って、それぞれの
感度特性を調べた。第、10図(b)は中間冷却温度、
即ち急速冷却開始温度Tmに対するレジスト感度の変化
を現わしたものである。この例においても、急速冷却温
度Tll+がレジストのガラス転移温度Tg (〜11
0℃)と略等しくなる温度領域でレジスト感度に幅広い
変化が現れる。T l)≧Tl1l>T(]領域ではT
mを高くする程レジスト感度が高くなり、〜2×10−
6 [C/cIIi]もの感度に達する。TQ >T1
1+ >TO(=25℃)領域では、Tmを下げる程す
ンスト感痕は低くなり、従来の自然放冷の場合の感度〜
lXl0’ [c/d]に近付く。
Here, the intermediate cooling temperature (rapid cooling start temperature) TDI is the glass transition temperature T (+) of the resist film, from 170 to
The temperature was changed in steps of 10 [°C] within a range of 40 [°C]. Also,
Room temperature (25°C) was chosen as the final cooling temperature Tc. The cooling time from each Tm to Tc was ~10 seconds or less in this example as well. MIBK development for 13 minutes at room temperature was applied to the resist film that had undergone the various cooling processes described above.
A 0-minute IPA bath treatment process was performed to examine the sensitivity characteristics of each sample. 10(b) is the intermediate cooling temperature,
That is, it shows the change in resist sensitivity with respect to the rapid cooling start temperature Tm. In this example as well, the rapid cooling temperature Tll+ is the resist glass transition temperature Tg (~11
A wide range of changes appear in resist sensitivity in a temperature range approximately equal to 0° C.). Tl)≧Tl1l>T(] in the region
The higher m is, the higher the resist sensitivity becomes, ~2×10−
It reaches a sensitivity of 6 [C/cIIi]. TQ > T1
In the 1+ > TO (=25℃) region, the lower the Tm, the lower the instantaneous impression, and the sensitivity in the case of conventional natural cooling is ~
It approaches lXl0' [c/d].

一方、上記したレジストを〜0.8[μTrL]の厚さ
に塗布したレジスト膜付被処理基板(金属膜付ロインチ
ロカラス基板)を用意し、上記と同様のプリベータ、自
然放冷、露光(電子線照射量は上記それぞれの電子線感
度に対応)、現像前べ一り、Tb−+Tm−ITC冷却
プロセス(上記それぞれの感度に対応する冷却プロセス
)、現像、リンス処理等の処理を施し、レジストパター
ンを形成した。その結果、全ての基板上全体に亙りレジ
ストパターンの解像性は良好であった。また、例えば線
幅0.5〜2.○[μm]の範囲のレジストパターンの
寸法精度を測定評価した結果、いずれの場合のレジスト
パターンも全て高精度で、基板面内の寸法変動誤差3ρ
<0.1 [μ7111を十分に満足するものであった
On the other hand, a substrate to be processed with a resist film coated with the above-mentioned resist to a thickness of ~0.8 [μTrL] (a metal film-coated thin glass substrate) was prepared, and the same pre-beta as above, natural cooling, and exposure ( The amount of electron beam irradiation corresponds to each of the above-mentioned electron beam sensitivities), pre-development baking, Tb-+Tm-ITC cooling process (cooling process corresponding to each of the above-mentioned sensitivities), development, rinsing, etc. A resist pattern was formed. As a result, the resolution of the resist pattern was good over all the substrates. Also, for example, the line width is 0.5 to 2. As a result of measuring and evaluating the dimensional accuracy of resist patterns in the range of ○ [μm], all resist patterns in each case were highly accurate, with a dimensional variation error of 3ρ within the substrate plane.
<0.1 [μ7111 was sufficiently satisfied.

このように本実施例装置を用いることにより、レジスト
感度の均−冷却及び冷却速度の制御を効果的に行うこと
ができ、基板面内の寸法誤差の極めて小さい高精度なレ
ジストパターンを形成することが可能となった。
As described above, by using the apparatus of this embodiment, it is possible to effectively uniformly cool the resist sensitivity and control the cooling rate, and it is possible to form a highly accurate resist pattern with extremely small dimensional errors in the substrate plane. became possible.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、前記被処理基板を加熱する機構としては、
ヒータに限らず被処理基板に熱風を吹き付けるものであ
ってもよい。また、冷却機構してのノズルの数、開孔面
積、配置位置及びノズルに通流させる冷媒の温度、流量
等の条件は仕様に応じて適宜定めればよい。さらに、冷
却用冷媒としては、レジスト膜を変質させないガスであ
れば何でもよく、ガスの他水、フレオン或いtよ高級ア
ルコール等の液体材料を用いることも可能である。但し
、急速冷却用冷媒としては熱容量の大きいものが望まし
い。また、前記テーブルの材料としては特に限定されな
いが、レジスト膜付被処理基板の急速冷却が迅速にでき
るように熱容量の小さいものが望ましい。ざらに、被処
理基板とテーブルとの接触面積もできるだけ小さい方が
望ましい。その他、本発明の要旨を逸肌しない範囲で、
種々変形して実施することができる。
Note that the present invention is not limited to the embodiments described above. For example, as a mechanism for heating the substrate to be processed,
The device is not limited to a heater, and may be one that blows hot air onto the substrate to be processed. Further, conditions such as the number of nozzles of the cooling mechanism, the opening area, the arrangement position, and the temperature and flow rate of the refrigerant flowing through the nozzles may be appropriately determined according to the specifications. Further, as the cooling refrigerant, any gas may be used as long as it does not alter the quality of the resist film, and in addition to gas, it is also possible to use liquid materials such as water, Freon, and higher alcohols. However, it is desirable that the rapid cooling refrigerant has a large heat capacity. Further, the material of the table is not particularly limited, but it is desirable that the material has a small heat capacity so that the resist film-coated substrate to be processed can be rapidly cooled. Generally speaking, it is desirable that the contact area between the substrate to be processed and the table be as small as possible. In addition, within the scope of not departing from the gist of the present invention,
Various modifications can be made.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のレジストパターン形成工程を概略的に示
す流れ作業図、第2図は従来工程におけるレジストベー
ク後の被処理基板の各点の温度変化の様子を等温曲線で
示す模式図、第3図は前記)温度変化の様子を時間対温
度曲線で示す特性図、第4図は本発明の一実施例に係わ
るリンスト処理装置を示す概略構成図、第5図(a)〜
(d)は上記実施例装置を用いたレジストパターン形成
工程を概略的に示す流れ作業図、第6図は他の実施例装
置を示す概略構成図、第7図乃至第10図はそれぞれ上
記実施例装置を用いた実験例を説明するためのもので第
7図はレジスト冷却速度を示す特性図、第8図は照射量
と膜厚残存間との関係を示す特性図、第9図はレジスト
冷却速度を示す特性図、第10図(a)(b)はレジス
ト感度に関する特性図である。 41・・・テーブル、42・・・被処理基板、43・・
・ヒータ(加熱機構)、44・・・熱遮蔽板 (熱遮蔽
機構)、45・・・ノズル(冷却mtf4)、、61・
・・レジスト滴下機構、62・・・導入管、63・・・
レジスト射出部。 出願人代理人 弁理士 鈴江武彦 第1図 叫F、Fl [貧]□ 第4図 第6図 2 第5図 (a) (b) 一−H 二1m (c) (d) ニニニニニコ ■■二==コ 第7図 第8図 第9図
Figure 1 is a flowchart schematically showing a conventional resist pattern forming process, Figure 2 is a schematic diagram showing isothermal curves of temperature changes at various points on the substrate after resist baking in the conventional process; FIG. 3 is a characteristic diagram showing the state of temperature change as a time vs. temperature curve, FIG. 4 is a schematic configuration diagram showing a rinsing treatment apparatus according to an embodiment of the present invention, and FIGS.
(d) is a flowchart schematically showing the resist pattern forming process using the above embodiment apparatus, FIG. 6 is a schematic configuration diagram showing another embodiment apparatus, and FIGS. 7 to 10 are respectively Figure 7 is a characteristic diagram showing the resist cooling rate, Figure 8 is a characteristic diagram showing the relationship between irradiation amount and remaining film thickness, and Figure 9 is a characteristic diagram showing the relationship between the resist cooling rate and the remaining film thickness. Characteristic diagrams showing the cooling rate, and FIGS. 10(a) and 10(b) are characteristic diagrams relating to resist sensitivity. 41...Table, 42...Substrate to be processed, 43...
・Heater (heating mechanism), 44... Heat shielding plate (heat shielding mechanism), 45... Nozzle (cooling mtf4), 61.
...Resist dropping mechanism, 62...Introduction tube, 63...
Resist injection part. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Shouting F, Fl [Poor] □ Figure 4 Figure 6 Figure 2 Figure 5 (a) (b) 1-H 21m (c) (d) Nini ni niko ■■ 2 ==ko Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】 (1) レジストを塗布された被処理基板が載置される
テーブルと、上記基板を上記レジストのガラス転移温度
以上に加熱する加熱機構と、この加熱機構による前記基
板の加熱を阻害する熱遮蔽機構と、複数個のノズルから
なり前記基板に対して冷却用冷媒を吹き付は該基板を冷
却する冷却(幾構とを具備してなることを特徴とするレ
ジスト処理装置。 (2前記テーブルは、回転可能に構成され、前記加熱機
構による加熱時及び前記冷却機構による冷却時に回転さ
れるものであることを特徴とする特許請求の範囲第1項
記載のレジスト処理装置。 (3)前記加熱機構は、電気抵抗加熱体からなり、前記
テーブルの外周外側に該テーブルと離間して配置された
ものであることを特徴とする特許請求の範囲第1項記載
のレジスト処理装置。 (4)前記熱遮蔽機構は、移動可能に設けられた熱遮蔽
板からなり、前記冷却機構による冷却時に前記テーブル
と加熱機構との間に介在されるものであることを特徴と
する特許請求の範囲第1項記載のレジスト処理装置。 (5)前記冷却機構は、前記ノズルから吹き出される冷
媒の温度及び流量を各ノズル毎に独立的に制御して前記
基板を冷却するものであることを特徴とする特許請求の
範囲第1項記載のレジスト処理装置。 (6)被処理基板が載置される回転テーブルと、このテ
ーブル上の基板の中心付近に液状のレジストを滴下し該
基板上にレジストをスピンコードするレジスト滴下機構
と、前記基板を前記レジストのガラス転移温度以上に加
熱する加熱機構と、この加熱機構による前記基板の加熱
を阻害する熱遮蔽機構と、複数個のノズルからなり前記
基板に対して冷却用冷媒を吹き付は該基板を冷却する冷
却機構とを具備してなることを特徴とするレジスト処理
装置。 (7) 前記加熱lII構は、電気抵抗加熱体からなり
、前記テーブルの外周外側に該テーブルと離間して配置
されたものであることを特徴とする特許請求の範囲第6
項記載のレジスト処理装置。 (8) 前記熱遮蔽機構は、移動可能に設けられた熱遮
蔽板からなり、前記冷却機構による冷却時に前記テーブ
ルと加熱機構との間に介在されるものであることを特徴
とする特許請求の範囲第6項記載のレジスト処理装置。 (9) 前記冷却機構は、前記ノズルから吹き出される
冷媒の温度及び流量を各ノズル毎に独立的に制御して前
記基板を冷却するものであることを特徴とする特許請求
の範囲第6項記載のレジスト処理装置。
[Scope of Claims] (1) A table on which a substrate to be processed coated with a resist is placed, a heating mechanism that heats the substrate to a temperature equal to or higher than the glass transition temperature of the resist, and heating of the substrate by the heating mechanism. 1. A resist processing apparatus comprising: a heat shielding mechanism for inhibiting the cooling; and a cooling device comprising a plurality of nozzles for spraying a cooling refrigerant onto the substrate to cool the substrate. (2) The resist processing apparatus according to claim 1, wherein the table is configured to be rotatable and is rotated during heating by the heating mechanism and during cooling by the cooling mechanism. 3) The resist processing apparatus according to claim 1, wherein the heating mechanism is made of an electric resistance heating element and is arranged outside the outer periphery of the table and spaced apart from the table. (4) The heat shielding mechanism is comprised of a movably provided heat shielding plate, and is interposed between the table and the heating mechanism during cooling by the cooling mechanism. The resist processing apparatus according to Item 1. (5) The cooling mechanism cools the substrate by independently controlling the temperature and flow rate of the coolant blown out from the nozzles for each nozzle. The resist processing apparatus according to claim 1, characterized in that: (6) a rotary table on which a substrate to be processed is placed, and a liquid resist dripping onto the substrate near the center of the table; A resist dropping mechanism for spin-coding the resist, a heating mechanism for heating the substrate to a temperature higher than the glass transition temperature of the resist, a heat shielding mechanism for inhibiting heating of the substrate by the heating mechanism, and a plurality of nozzles. A resist processing apparatus characterized by comprising a cooling mechanism for spraying a cooling refrigerant onto a substrate and cooling the substrate. (7) The heating III structure is composed of an electric resistance heating element, Claim 6, characterized in that the device is arranged outside the outer periphery of the table and separated from the table.
The resist processing apparatus described in . (8) The heat shielding mechanism is comprised of a movably provided heat shielding plate, and is interposed between the table and the heating mechanism during cooling by the cooling mechanism. The resist processing apparatus according to scope 6. (9) Claim 6, wherein the cooling mechanism cools the substrate by independently controlling the temperature and flow rate of the coolant blown out from the nozzles for each nozzle. The resist processing device described.
JP3206684A 1984-02-22 1984-02-22 Resist processing device Pending JPS60176236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3206684A JPS60176236A (en) 1984-02-22 1984-02-22 Resist processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3206684A JPS60176236A (en) 1984-02-22 1984-02-22 Resist processing device

Publications (1)

Publication Number Publication Date
JPS60176236A true JPS60176236A (en) 1985-09-10

Family

ID=12348504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3206684A Pending JPS60176236A (en) 1984-02-22 1984-02-22 Resist processing device

Country Status (1)

Country Link
JP (1) JPS60176236A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250163A (en) * 1988-05-09 1990-02-20 Mitsubishi Electric Corp Pattern forming method
JPH0250165A (en) * 1988-05-09 1990-02-20 Mitsubishi Electric Corp Pattern forming method
JPH0265120A (en) * 1988-08-30 1990-03-05 Dainippon Screen Mfg Co Ltd Rotary processing
WO1999046804A1 (en) * 1998-03-11 1999-09-16 Applied Materials, Inc. Thermal cycling module
CN106113898A (en) * 2016-06-23 2016-11-16 成都新图新材料股份有限公司 A kind of drying mechanism after aluminum plate foundation coating
CN106113899A (en) * 2016-06-23 2016-11-16 成都新图新材料股份有限公司 A kind of two-sided drying system of aluminum plate foundation coating process

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250163A (en) * 1988-05-09 1990-02-20 Mitsubishi Electric Corp Pattern forming method
JPH0250165A (en) * 1988-05-09 1990-02-20 Mitsubishi Electric Corp Pattern forming method
JPH0265120A (en) * 1988-08-30 1990-03-05 Dainippon Screen Mfg Co Ltd Rotary processing
WO1999046804A1 (en) * 1998-03-11 1999-09-16 Applied Materials, Inc. Thermal cycling module
CN106113898A (en) * 2016-06-23 2016-11-16 成都新图新材料股份有限公司 A kind of drying mechanism after aluminum plate foundation coating
CN106113899A (en) * 2016-06-23 2016-11-16 成都新图新材料股份有限公司 A kind of two-sided drying system of aluminum plate foundation coating process
CN106113899B (en) * 2016-06-23 2018-12-04 成都新图新材料股份有限公司 A kind of two-sided drying system of aluminum plate foundation coating process
CN106113898B (en) * 2016-06-23 2018-12-28 成都新图新材料股份有限公司 A kind of drying mechanism after aluminum plate foundation coating

Similar Documents

Publication Publication Date Title
KR860002082B1 (en) Forming method and apparatus of resistor pattern
US6303526B1 (en) Temperature controlled spin chuck
US6834158B1 (en) Pinhole defect repair by resist flow
JPS60176236A (en) Resist processing device
JPS6021522A (en) Formation of resist pattern
US4897337A (en) Method and apparatus for forming resist pattern
JPS61156814A (en) Method and apparatus for resist baking
JPH0746676B2 (en) Resist pattern formation method
JPH0480531B2 (en)
JPS6189632A (en) Formation of resist pattern
JPH0464171B2 (en)
JPS60117626A (en) Forming method of resist pattern and processing device for resist
JPS60157222A (en) Resist pattern forming method and resist treating apparatus
JPH0142624B2 (en)
EP0185366B1 (en) Method of forming resist pattern
JPH0586642B2 (en)
JPS61147528A (en) Resist treating device
JPS60157225A (en) Resist pattern forming method
JPS59231814A (en) Resist pattern formation and resist processing apparatus
JPS59231813A (en) Resist pattern formation and resist processing apparatus
JPS60117625A (en) Forming method of resist pattern and processing device for resist
JPS60157224A (en) Resist pattern forming method and resist treating apparatus
JPS59195828A (en) Formation of resist pattern and resist processing apparatus
JPS60157223A (en) Resist pattern forming method and resist treating apparatus
JPS60157226A (en) Resist pattern forming method and resist treating apparatus