JPS60176225A - Liquid-phase epitaxial crowth method - Google Patents

Liquid-phase epitaxial crowth method

Info

Publication number
JPS60176225A
JPS60176225A JP3163684A JP3163684A JPS60176225A JP S60176225 A JPS60176225 A JP S60176225A JP 3163684 A JP3163684 A JP 3163684A JP 3163684 A JP3163684 A JP 3163684A JP S60176225 A JPS60176225 A JP S60176225A
Authority
JP
Japan
Prior art keywords
layer
substrate
type
phase epitaxial
protrusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3163684A
Other languages
Japanese (ja)
Inventor
Takeshi Hamada
健 浜田
Masaru Wada
優 和田
Kunio Ito
国雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3163684A priority Critical patent/JPS60176225A/en
Publication of JPS60176225A publication Critical patent/JPS60176225A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To enable to form a layer of flat surface on a substrate having protrusions by a method wherein a layer growing method is performed under the state having a specific temperature of supersaturation. CONSTITUTION:A layer is grown at the supersaturation temperature of 4 deg.C or above. For exaple, on the surface of a P type GaAs substrate 1 whereon protrusions of 2.2mum in height and 10mum in width are formed by etching, an N type GaAs blocking layer 2 is grown at the growing temperature of 845 deg.C and the supersaturation temperature of 5 deg.C by performing a liquid-phase epitaxial method in such a manner that the layer 2 will be formed at 0.7mum in thickness on the protrusions. On the surface of the substrate whereon the first growing process has been finished. After a ridge erecting in parallel with the surface of the substrate, whereon the first growing of layer was finished, has been formed astriding a groove by performing an etching, the first layer of P type Ga1-yAlyAS clad layer 3, the second layer of non-doped Ga1-xAlxAS active layer 4, the third layer of N type Ga1-yAlyAS clad layer 5, the fourth layer of N type GaAs electrode forming layer 6 are continuously grown by performing a liquid-phase epitaxial method again.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は液相エピタキシャル成長方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a liquid phase epitaxial growth method.

従来例の構成とその問題点 近年、ディスクファイル装置の記録・再生用の光源とし
て、低しきい値、低雑音で高出力が得られる半導体レー
ザ装置がめられている。本発明者らはこの要求に応える
べく、内部ストライプ型のTR3型レーザを提案した2
、 その断面図を第1図に示す。同図において、1はp型G
aAs基板、2はn型GaAsブロッキング層、3はp
型G2LI yAβyAsクラッド層、4はノンドープ
Ga 、1A6xAs活性層、5はn型Fa、 、he
yhsクラッド層、6はn型GaAs電極形成層、7は
n側オーミック電極用金属膜、8はp側オーミック電極
用金属膜である。ストライプ状の突起をつけたp型Ga
As基板1上にn型GaAsブロッキング層2を成長さ
せ、そこに2つの平行なりッジが形成されている。p側
電極8より注入された電流はブロッキング層2の働きで
溝部上の活性層4に集中的に注入される。リッジの働き
で非常に薄い活性層4が形成されているので、この電流
により活性層4内に生じた光はクラツド層3に大きくし
み出す。この光はりッジ部では基板に吸収されるために
結果的に溝部に閉じ込められ、ここで安定な基本横モー
ド発振が得られる。
2. Description of the Related Art Structures and Problems Therein, in recent years, semiconductor laser devices have been attracting attention as light sources for recording and reproducing in disk file devices, as they are capable of producing high output with a low threshold and low noise. In order to meet this demand, the present inventors proposed an internal stripe type TR3 laser.
, Its cross-sectional view is shown in Fig. 1. In the same figure, 1 is p-type G
aAs substrate, 2 is n-type GaAs blocking layer, 3 is p
Type G2LI yAβyAs cladding layer, 4 is non-doped Ga, 1A6xAs active layer, 5 is n-type Fa, ,he
yhs cladding layer, 6 is an n-type GaAs electrode forming layer, 7 is a metal film for n-side ohmic electrode, and 8 is a metal film for p-side ohmic electrode. P-type Ga with striped protrusions
An n-type GaAs blocking layer 2 is grown on an As substrate 1, in which two parallel ridges are formed. The current injected from the p-side electrode 8 is intensively injected into the active layer 4 above the groove by the action of the blocking layer 2. Since the active layer 4 is very thin due to the action of the ridge, the light generated in the active layer 4 due to this current leaks into the cladding layer 3 to a large extent. In this beam part, the light is absorbed by the substrate and is consequently confined in the groove part, where stable fundamental transverse mode oscillation is obtained.

ところが、従来のこの内部ストライプ型TRSレーザで
は、第1回成長によるブロッキング層2の形成の際、第
2図aのように成長表面が平坦とならずうねりが生じる
ことがしばしばある。このようなうねりが生じると第2
図すに示すように、リッジ形成の際のエツチングが溝部
以外でも基板寸で届いてしまい、そのために第2図Cの
ようにレーザを構成した際に矢印で示すように溝部以外
で電流のリークを生じてしまう。これは素子の発振率を
向上させる上で大きな障害となる。
However, in the conventional internal stripe type TRS laser, when the blocking layer 2 is formed by the first growth, the growth surface is often not flat and undulated, as shown in FIG. 2a. When such undulation occurs, the second
As shown in the figure, the etching during ridge formation reaches the substrate size even in areas other than the grooves, and as a result, when the laser is configured as shown in Figure 2C, current leakage occurs outside the grooves as shown by the arrow. will occur. This becomes a major obstacle in improving the oscillation rate of the device.

発明の目的 本発明は上記欠点に鑑み、突起を設けた基板上に平坦な
表面の層を形成することができる液相工・ピタキシャル
成長方法を提供するものである。
OBJECTS OF THE INVENTION In view of the above-mentioned drawbacks, the present invention provides a liquid phase epitaxy/pitaxial growth method capable of forming a layer with a flat surface on a substrate provided with projections.

発明の構成 この目的を達成するために、本発明の液相エピタキシャ
ル成長方法は、過飽和度を4°C以上のもとて成長を行
なうことを特徴としている。
Structure of the Invention In order to achieve this object, the liquid phase epitaxial growth method of the present invention is characterized in that growth is performed with a supersaturation degree of 4° C. or higher.

実施例の説明 1 以下図面を参照しながら、本発明の一実施例について説
明を行なう。第3図a−dは本発明の一実施例の各工程
における断面図である。
DESCRIPTION OF EMBODIMENTS 1 An embodiment of the present invention will be described below with reference to the drawings. FIGS. 3a to 3d are cross-sectional views at each step of an embodiment of the present invention.

エツチングによシ高さ2.2μm1幅10μ〃2の突起
を形成したp型GaAs基板1(第3図a)の表面に液
相エピタキシャル法によりn型GaAsブロッキング層
2を突起の上で0.7μmの厚さになるように成長温度
845°C1過飽和度5°Cの条件のもとて成長を行な
う(第3図b)。この第1回の成長が終らした基板の表
面に、高さ1.5μ22z。
On the surface of a p-type GaAs substrate 1 (FIG. 3a) on which protrusions of 2.2 μm in height and 10 μm in width have been formed by etching, an n-type GaAs blocking layer 2 is formed on the protrusions by a liquid phase epitaxial method. Growth was carried out under the conditions of a growth temperature of 845° C. and a supersaturation degree of 5° C. to obtain a thickness of 7 μm (FIG. 3b). A layer with a height of 1.5μ22z was placed on the surface of the substrate after this first growth.

幅20μmnの2個の平行に直立するりツジを、幅4μ
mの溝をはさんでエツチングにより形成する。
Two parallel ridges with a width of 20 μm are connected to a width of 4 μm.
It is formed by etching across the m groove.

リッジ間の溝は突起の真上に位置し、その底はp型基板
1まで達する。一方リッジ外側の平坦部はエツチング後
もブロッキング層2が残っている(第3図C)。かくし
てリッジを形成した基板10表面に再び液相エピタキシ
ャル法によって第1層のp型GtL + 1Aey A
Sクラッr層3をリッジの上で厚さが約0.2μm1第
2層のノンドープGa、 zhexhs活性層4を同様
に約0.05 li 77K 、第3層のn型Ga、 
、A6yASクラッド層5を同様に約1.6μm1第4
層のn型GaAs電極形成層6を同様に約2.0μmの
厚さにそれぞれなるよう連続成長させる(第3図d)。
The groove between the ridges is located directly above the protrusion, and its bottom reaches the p-type substrate 1. On the other hand, the blocking layer 2 remains on the flat portion outside the ridge even after etching (FIG. 3C). A first layer of p-type GtL + 1Aey A is then applied to the surface of the substrate 10 on which the ridge has been formed by the liquid phase epitaxial method again.
The S crack layer 3 is placed on the ridge with a thickness of about 0.2 μm, the second layer is made of non-doped Ga, the ZHEXHS active layer 4 is made of about 0.05 li 77K, and the third layer is made of n-type Ga.
, the A6yAS cladding layer 5 is also approximately 1.6 μm thick.
Similarly, the n-type GaAs electrode forming layers 6 are continuously grown to a thickness of about 2.0 μm (FIG. 3d).

なお、上記実施例においては7=0.43、X=0.0
8である。
In addition, in the above example, 7=0.43, X=0.0
It is 8.

この第4層の電極形成層6の上にn側電極用金属を蒸着
し、合金処理を行なってn側オーミック電極7f:形成
し、基板1側にはp側電極用金属を蒸着し、合金処理を
行なってp側オーミック電極8を形成する。
A metal for the n-side electrode is deposited on the fourth electrode forming layer 6 and alloyed to form an n-side ohmic electrode 7f, and a metal for the p-side electrode is deposited on the substrate 1 side and alloyed. Processing is performed to form the p-side ohmic electrode 8.

第4図にブロッキング層の成長の際の過飽和度Δと成長
表面の平坦さとの関係を示す。第4図から明らかなよう
に過飽和度Δが4°C以上ならば成長表面は完全に平坦
になる。そのため本実施例に゛従って作製した半導体レ
ーザ装置は電流リークも全くなく、発振率が飛躍的に向
上し再現性良く5QmWの高出力を達成できた。
FIG. 4 shows the relationship between the degree of supersaturation Δ and the flatness of the growth surface during growth of the blocking layer. As is clear from FIG. 4, if the degree of supersaturation Δ is 4°C or more, the growth surface becomes completely flat. Therefore, the semiconductor laser device manufactured according to this example had no current leakage, the oscillation rate was dramatically improved, and a high output of 5 QmW was achieved with good reproducibility.

発明の詳細 な説明したように、本発明の液相エピタキシャル成長方
法によれば、突起を設けた基板上でも平坦な成長表面が
得られるので産業上の利用効果が太きい。
As described in detail, the liquid phase epitaxial growth method of the present invention provides a flat growth surface even on a substrate provided with protrusions, so that it has great industrial utility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は内部ストライプ型TRSレーザの断面図、第2
図a −cはこのレーザの従来の製造方法による各工程
の断面図、第3図a −dは本発明の一実施例における
製造方法の各工程の断面図、第4図はブロッキング層成
長の際の過飽和度と成長表面の関係を示す図である。 1・・・・・・p型GaAs基板、2・・・・・・n型
GaAsブロッキング層、3・・・・・・p型GA 1
y A eyA sクラット層、4・・・・・・ノンド
ープGa1,1xAs活性層、5・・・・・・n型Ga
、 、hey、sクラッド層、6・・・・・・n型GI
LAS電極形成層、了・・・・・・n側オーミック電極
用金属膜、8・・・・・・p側オーミック電極用金属膜
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第 3v4
Figure 1 is a cross-sectional view of an internal stripe type TRS laser;
Figures a-c are cross-sectional views of each step in a conventional manufacturing method for this laser, Figures 3 a-d are cross-sectional views of each step in a manufacturing method according to an embodiment of the present invention, and Figure 4 is a cross-sectional view of the growth of a blocking layer. FIG. 3 is a diagram showing the relationship between the degree of supersaturation and the growth surface. 1...p-type GaAs substrate, 2...n-type GaAs blocking layer, 3...p-type GA 1
y A eyA s crat layer, 4...Non-doped Ga1, 1xAs active layer, 5...n-type Ga
, , hey, s cladding layer, 6...n-type GI
LAS electrode forming layer, R: Metal film for n-side ohmic electrode, 8: Metal film for p-side ohmic electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3v4

Claims (1)

【特許請求の範囲】[Claims] 過飽和度を4°C以上のもとて突起を有する基板上に成
長を行なうことを特徴とする液相エピタキシャル成長方
法。
A liquid phase epitaxial growth method characterized in that growth is performed on a substrate having protrusions with a supersaturation degree of 4°C or higher.
JP3163684A 1984-02-22 1984-02-22 Liquid-phase epitaxial crowth method Pending JPS60176225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3163684A JPS60176225A (en) 1984-02-22 1984-02-22 Liquid-phase epitaxial crowth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3163684A JPS60176225A (en) 1984-02-22 1984-02-22 Liquid-phase epitaxial crowth method

Publications (1)

Publication Number Publication Date
JPS60176225A true JPS60176225A (en) 1985-09-10

Family

ID=12336695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3163684A Pending JPS60176225A (en) 1984-02-22 1984-02-22 Liquid-phase epitaxial crowth method

Country Status (1)

Country Link
JP (1) JPS60176225A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173779A (en) * 1986-01-27 1987-07-30 Matsushita Electric Ind Co Ltd Optical integrated circuit device
JPS63197395A (en) * 1987-02-12 1988-08-16 Matsushita Electric Ind Co Ltd Semiconductor laser device and its manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544088A (en) * 1977-06-13 1979-01-12 Hitachi Ltd Manufacture for semiconductor laser
JPS54152879A (en) * 1978-05-23 1979-12-01 Sharp Corp Structure of semiconductor laser element and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544088A (en) * 1977-06-13 1979-01-12 Hitachi Ltd Manufacture for semiconductor laser
JPS54152879A (en) * 1978-05-23 1979-12-01 Sharp Corp Structure of semiconductor laser element and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173779A (en) * 1986-01-27 1987-07-30 Matsushita Electric Ind Co Ltd Optical integrated circuit device
JPS63197395A (en) * 1987-02-12 1988-08-16 Matsushita Electric Ind Co Ltd Semiconductor laser device and its manufacture

Similar Documents

Publication Publication Date Title
US4675074A (en) Method of manufacturing semiconductor device
US4841532A (en) Semiconductor laser
JP2716693B2 (en) Semiconductor laser
JPS6318877B2 (en)
US5383215A (en) Semiconductor laser which has a (100) top surface and a stripe ridge which extends in the horizontal <01-1> axis direction and has side wall surfaces (110) and a triangular region between (111) faces
JPS60176225A (en) Liquid-phase epitaxial crowth method
JPS6237911B2 (en)
JPH0552676B2 (en)
JPS6260838B2 (en)
JP2002314200A (en) Semiconductor laser device and its manufacturing method
JP3057188B2 (en) Independently driven multi-beam laser and its manufacturing method
JPS5834988A (en) Manufacture of semiconductor laser
JP2804533B2 (en) Manufacturing method of semiconductor laser
JPS6351558B2 (en)
JPH05226774A (en) Semiconductor laser element and its production
JP2525776B2 (en) Method for manufacturing semiconductor device
KR100284760B1 (en) Semiconductor laser diode and manufacturing method thereof
JP4024319B2 (en) Semiconductor light emitting device
JP2538258B2 (en) Semiconductor laser
JP3522151B2 (en) Method for manufacturing compound semiconductor laser
JPS59222984A (en) Semiconductor laser device
JPS6354234B2 (en)
JPH01293686A (en) Manufacture of semiconductor laser element
JPH02231785A (en) Manufacture of semiconductor laser device
JPH0195584A (en) Manufacture of semiconductor laser