JPS60174969A - Light quantity adjustor for light wave range finder - Google Patents

Light quantity adjustor for light wave range finder

Info

Publication number
JPS60174969A
JPS60174969A JP3095684A JP3095684A JPS60174969A JP S60174969 A JPS60174969 A JP S60174969A JP 3095684 A JP3095684 A JP 3095684A JP 3095684 A JP3095684 A JP 3095684A JP S60174969 A JPS60174969 A JP S60174969A
Authority
JP
Japan
Prior art keywords
light
face
optical
optical fiber
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3095684A
Other languages
Japanese (ja)
Inventor
Toshifumi Kaneuma
利文 金馬
Shinichi Suzuki
新一 鈴木
Atsumi Kaneko
敦美 金子
Koji Tsuda
浩二 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP3095684A priority Critical patent/JPS60174969A/en
Publication of JPS60174969A publication Critical patent/JPS60174969A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Abstract

PURPOSE:To enable the adjustment of the quantity of light with a simple construction by making an optical fiber as a part of a reference light optical path and as a part of a light quantity adjustor. CONSTITUTION:The emission end face 10a of the first optical fiber (OF) 11 is set so as to align the optical axis of the incident end face 11a of the second OF11. A rack section 12a formed on a support base 12 of the OF parallel with the optical axis and a rack section 13a formed on a support base 13 of the OF11 parallel with the optical axis are engaged with a pinion 14 and when the pinion 14 is turned in the direction of the arrow R, for instance, the space between the end face 10a of the OF10 and the end face 11a of the OF11 on the optical axis narrows while when it is turned in the direction of the arrow L, the space expands. This permits light to be attenuated according to the distance between the end face 10a of the OF10 and the end face 11a of the OF11 and enter the end face 11a of the OF. Thus, the radiation light attenuated to a desired value is emitted from the emission end provided at a light receiving section passing through the OF11 and incident on a light receiving section to make a reference light thereby enabling the adjusting of light with a simple construction.

Description

【発明の詳細な説明】 本発明は1発光素子から受光素子に到る光路の少なくと
も一部分を二分割し、一方の光路を通して測距光を他方
の光路を通して基準光を夫々受光素子に入射させるよう
にした光学系を有する光波距離計に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention divides at least a portion of the optical path from one light emitting element to the light receiving element into two, and allows the ranging light to pass through one optical path and the reference light to enter the light receiving element through the other optical path. The present invention relates to a light wave rangefinder having an optical system.

上記の光波距離計は、測距光と基準光の位相差を検出し
距離を測定するが、距離測定回路系の測を 定可能範囲を拡大するために基準光光路内に光量 ”調
節装置を設け、測定距離が大になるーに従って、光量調
節装置の透過光量が単調減少するように調節している。
The above-mentioned light wave distance meter measures distance by detecting the phase difference between the distance measurement light and the reference light, but in order to expand the measurement range of the distance measurement circuit system, a light intensity adjustment device is installed in the reference light optical path. The amount of transmitted light of the light amount adjusting device is adjusted so that it decreases monotonically as the measurement distance increases.

従来この光量調節装置には、一般にNDフィルタが用い
られているが、NDフィルタは、フィルムにより形成さ
れているため、耐熱性に乏しく、また、製作方法も写真
現像による処理のため、手間が掛り非能率的であるとい
う欠点を有していた。
Conventionally, ND filters have been generally used in this light amount adjustment device, but since ND filters are made of film, they have poor heat resistance, and the manufacturing method involves photographic development, which is time-consuming. It had the disadvantage of being inefficient.

本発明は、上記のような多くの欠点を有するNDフィル
タ寮用いない全く新しい光量調節装置を提供せんとする
ものであり、基準光光路の一部を複数のオプティカルフ
ァイバによって構成し、該オプティカルファイバ同志の
光軸上の距離変化或は光軸と直交する方向でのずれ量変
化によって光爪を調節せんとするものである。
The present invention aims to provide a completely new light amount adjustment device that does not use an ND filter, which has many drawbacks as described above, and in which a part of the reference light optical path is constituted by a plurality of optical fibers, and the optical fiber The optical claw is adjusted by changing the distance between the two on the optical axis or by changing the amount of deviation in the direction orthogonal to the optical axis.

以下、図面に基づいて本発明の一実施例を説明する。Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は、光波距離計の光学系を示す概略図であり、第
2図は該光波距離計の基準光光路内に設けられた本発明
に係る光量調節装置の一実施例を示す部分拡大図である
FIG. 1 is a schematic diagram showing an optical system of a light wave distance meter, and FIG. 2 is a partially enlarged view showing an embodiment of a light amount adjusting device according to the present invention provided in a reference light optical path of the light wave distance meter. It is a diagram.

送光部1からの放射光はシャッタ駆動装置3により駆動
されたシャッタ2により測距光または基準光のどちらか
に選択される。いま測距光に選択された場合前記測距光
は、シャッタ2を通過し光ビーム分割器6の反射面6a
により対物レンズ7方向に反射され、対物レンズ7を通
り平行光束となって外部へ放射される。この測距光は、
距離測定点に設置されたコーナキューブ8により反射さ
れ、その反射光は再び対物レンズ7を通過し、光ビーム
分割器6の反射面6bにより反射され受光部9に入射し
距離測定情報となる。又基準光に選択された場合送光部
1からの放射光は、シャッタ2に設けられたミラー等の
反射部材4により反射され第1のオプティカルファイバ
10の入射端面10bから入射し該第1のオプティカル
ファイバ10を通りその出射端面10aから放射される
The emitted light from the light transmitting unit 1 is selected by the shutter 2 driven by the shutter drive device 3 as either distance measuring light or reference light. If the distance measuring light is selected now, the distance measuring light passes through the shutter 2 and is reflected by the reflecting surface 6a of the light beam splitter 6.
The light is reflected in the direction of the objective lens 7, passes through the objective lens 7, becomes a parallel beam of light, and is emitted to the outside. This distance measuring light is
It is reflected by the corner cube 8 installed at the distance measurement point, and the reflected light passes through the objective lens 7 again, is reflected by the reflection surface 6b of the light beam splitter 6, and enters the light receiving section 9, where it becomes distance measurement information. In addition, when the reference light is selected, the emitted light from the light transmitting section 1 is reflected by a reflection member 4 such as a mirror provided on the shutter 2, and enters the first optical fiber 10 from the incident end surface 10b. The light passes through the optical fiber 10 and is emitted from its output end face 10a.

ここで、第2図に示すように、第1のオプティカルファ
イバ10の出射端面10aは、第2のオプティカルファ
イバ11の入射端面11aとその光軸が同一となるよう
に対向して設置され、上記第1のオプティカルファイバ
10の支持台12に光軸と平行に形成されたラック部1
2aと第2のオプティカルファイバ11の支持台13に
同じく光軸と平行に形成されたラック部13aとは、夫
夫ピニオン14と噛合し、該ピニオン14を例えば矢印
R方向に回転させると第1のオプティカルファイバ10
の出射端面10aと第2のオプティカルファイバ11の
入射端面11aとの光軸上の間隔が挟まり、矢印り方向
に回転させるとその間隔が拡がるように構成されている
Here, as shown in FIG. 2, the output end face 10a of the first optical fiber 10 is installed to face the input end face 11a of the second optical fiber 11 so that their optical axes are the same. Rack section 1 formed parallel to the optical axis on support base 12 of first optical fiber 10
2a and a rack portion 13a, which is also formed parallel to the optical axis on the support base 13 of the second optical fiber 11, mesh with the husband pinion 14, and when the pinion 14 is rotated, for example, in the direction of arrow R, the first rack portion 13a is formed parallel to the optical axis. optical fiber 10
The distance between the output end surface 10a of the second optical fiber 11 and the input end surface 11a of the second optical fiber 11 on the optical axis is narrowed, and the distance widens when rotated in the direction of the arrow.

従って、オプティカルファイバ10の出射端面10aか
ら出射された光は、光が大気中を距離の2乗で減少する
という性質を有する所から、第1のオプティカルファイ
バ10の出射端面10aと第2のオプティカルファイバ
11の入射端面11aとの間の距離に応じた減衰をして
第2のオプティカルファイバ11の入射端面11aに入
射する。
Therefore, since the light emitted from the output end face 10a of the optical fiber 10 has the property that light decreases as the square of the distance in the atmosphere, the light emitted from the output end face 10a of the first optical fiber 10 and the second optical fiber The light is attenuated in accordance with the distance between it and the incident end surface 11a of the fiber 11, and then enters the incident end surface 11a of the second optical fiber 11.

尚、このときの減衰率は、ピニオン14を回転させるこ
とにより希望の値に設定することができ。
Note that the attenuation rate at this time can be set to a desired value by rotating the pinion 14.

ピニオン14の回転量の調節は測定距離に応じて手動で
調節したり、受光部に到達する基準光と測距光の光量を
比較し、周知のフィートノ(ツタ系によって自動的に調
節したりすることが考えられる。
The amount of rotation of the pinion 14 can be adjusted manually according to the measurement distance, or it can be adjusted automatically by comparing the light intensity of the reference light reaching the light receiving part and the distance measuring light using the well-known foot system. It is possible that

このようにして希望の値に減衰された放射光は、第2の
オプティカルファイバ11を通り受光部9に向けられた
その出射端面11bより出射し受光部9に入射され基準
光となる。
The radiation light thus attenuated to a desired value passes through the second optical fiber 11 and is emitted from its output end face 11b directed toward the light receiving section 9, and enters the light receiving section 9 to become reference light.

第3図は、本発明に係る光量調節装置の他の実施例を示
す部分拡大図であり、第1のオプティカルファイバ10
の出射端側は支持台15により、第2のオプティカルフ
ァイバ11の入射端側は支持台16により支持され、第
1のオプティカルファイバ10の出射端面10aと第2
のオプティカルファイバ11の入射端面11aとは、一
定の間隔を置いて対向的に設置されているが、上記支持
台15のラック部15aと支持台16のラック部16a
は、上記オプティカルファイバ10.11の光軸と直交
する方向に形成され且つピニオン17と夫々噛合してい
るので、ピニオン17を時計方向或は反時計方向に回転
させると、第1のオプティカルファイバ10と第2のオ
プティカルファイバ11との光軸のずれ量が増減するこ
とになる。尚、該光軸のずれ量を増減させる場合、該光
軸同志が一致する点即ち、光軸のずれがない点を必ず含
むように構成する。
FIG. 3 is a partially enlarged view showing another embodiment of the light amount adjusting device according to the present invention, in which the first optical fiber 10
The output end side of the optical fiber 11 is supported by a support stand 15, and the input end side of the second optical fiber 11 is supported by a support stand 16.
The input end face 11a of the optical fiber 11 is placed opposite to the input end face 11a of the optical fiber 11 at a certain interval, but the rack part 15a of the support stand 15 and the rack part 16a of the support stand 16 are
are formed in a direction perpendicular to the optical axis of the optical fiber 10, 11 and mesh with the pinion 17, so when the pinion 17 is rotated clockwise or counterclockwise, the first optical fiber 10 The amount of deviation of the optical axis between the optical fiber 11 and the second optical fiber 11 increases or decreases. In addition, when increasing or decreasing the amount of deviation of the optical axes, the configuration is such that a point where the optical axes coincide, that is, a point where there is no deviation of the optical axes is always included.

ここで、オプティカルファイバ18は、第4図に示す如
く、コア部18bとその周囲のクラッド部18aとから
成り、コア部18bは、下記に示される数式によって算
出させる受光角Oの範囲内でしか受光することができな
い。
Here, as shown in FIG. 4, the optical fiber 18 consists of a core portion 18b and a surrounding cladding portion 18a, and the core portion 18b can only be used within the range of the acceptance angle O calculated by the formula shown below. Unable to receive light.

(1=sin−・6青ゴー1]了 ここで、θは受光角、nlはオプティカルファイバ18
のコア部18bの屈折率+n2はオプテイカルファイバ
18のクラッド部186の屈折率。
(1=sin-・6 blue go 1] where θ is the acceptance angle and nl is the optical fiber 18
The refractive index +n2 of the core portion 18b is the refractive index of the cladding portion 186 of the optical fiber 18.

従って、第1のオプティカルファイバ10の出射端面1
0aから出射された光は、大気を介して第2のオプティ
カルファイバ11の入射端面11aに入射するが、第2
のオプティカルファイバ11のコア部も上述の如く固有
の受光角を有するので、第1のオプティカルファイバ1
0の出射端面10aと第2のオプティカルファイバ11
の入射端面11aとの光軸方向の間隔を一定の値に設定
すると共にピニオン17の回転によって増減できる光軸
と直交する方向へのずれ量を調整することによって、第
1のオプティカルファイバ10の出射端面10aから第
2のオプティカルファイバ11の入射端面11aに至る
光量の増減を調節することが可能となる。
Therefore, the output end face 1 of the first optical fiber 10
The light emitted from 0a enters the input end face 11a of the second optical fiber 11 through the atmosphere, but the light emitted from the second optical fiber 11
Since the core portion of the first optical fiber 11 also has a unique acceptance angle as described above, the first optical fiber 1
0 output end face 10a and second optical fiber 11
The output of the first optical fiber 10 is adjusted by setting the distance in the optical axis direction from the incident end surface 11a to a constant value and adjusting the amount of deviation in the direction orthogonal to the optical axis, which can be increased or decreased by rotating the pinion 17. It becomes possible to adjust the increase/decrease in the amount of light from the end surface 10a to the input end surface 11a of the second optical fiber 11.

尚、光軸と直交する方向へのずれ量の調節は、第2図の
実施例と同様に測定距離に応じて手動で調節したり、周
知のフィードバック系にて自動的に調節したりすること
ができる。
The amount of deviation in the direction perpendicular to the optical axis can be adjusted manually according to the measurement distance, as in the embodiment shown in Fig. 2, or automatically using a well-known feedback system. I can do it.

このようにして第3図の実施例においても、第■のオプ
ティカルファイバ10の出射端面10aから出射された
光は、希望する減衰率で減衰されて第2のオプティカル
ファイバ11の入射端面11aより入射して第2のオプ
ティカルファイバ11を通り、その出射端面11bより
受光部9に入射して基準光となる。
In this way, also in the embodiment shown in FIG. 3, the light emitted from the output end face 10a of the No. The light then passes through the second optical fiber 11, enters the light receiving section 9 from its output end face 11b, and becomes the reference light.

尚、上記第2図の実施例と第3図の実施例を同時に作用
即ち、第1のオプティカルファイバ10の出射端面10
aと第2のオプティカルファイバ11の入射端面11a
との光軸方向の間隔調節及び光軸と直交する方向のずれ
量調節を同時に作用させても希望する減衰率で光量調節
を行なうことができるものであり、また、上記実施例に
おいては、オプティカルファイバ10.11との間の媒
質として大気を用いたがある一定の屈折率を持つ物質を
媒質として用いても同様の効果が得られる。
Note that the embodiment shown in FIG. 2 and the embodiment shown in FIG.
a and the entrance end surface 11a of the second optical fiber 11
It is possible to adjust the amount of light at a desired attenuation rate by simultaneously adjusting the distance in the optical axis direction and adjusting the amount of deviation in the direction perpendicular to the optical axis. A similar effect can be obtained by using air as the medium between the fibers 10 and 11, or by using a substance having a certain refractive index as the medium.

本発明は1以上のように構成される所から、従来用いら
れてきたNDフィルタのような光量減衰部材を基準光光
路内に設ける必要がなくなると共に、従来より基準光光
路の一部として配置されていたオプティカルファイバを
本来の基準光光路の一部として用いると同時に光量調節
装置の一部分として用いることにより極めて簡単な構造
で光量調節を行なうことができ、その効果は極めて大き
い。
Since the present invention is configured as described above, it is not necessary to provide a light amount attenuating member such as a conventionally used ND filter in the reference light optical path, and it is not necessary to provide a light amount attenuating member such as a conventionally used ND filter as a part of the reference light optical path. By using the conventional optical fiber as part of the original reference light optical path and at the same time as part of the light amount adjusting device, the light amount can be adjusted with an extremely simple structure, and the effect is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光波距離計の光学系を示す概略図、第2図は本
発明に係る光量調節装置の一実施例を示す部分拡大図、
第3図は本発明に係る光量調節装置の他の実施例を示す
部分拡大図、第4図は受光角を示すオプティカルファイ
バの断面図である。 1・・・送光部 9・・・受光部 IO・・・第1のオプティカルファイバ10a・・・第
1のオプティカルファイバの出射端面11・・・第2の
オプティカルファイバ11a・・・第2のオプティカル
ファイバの入射端面ha
FIG. 1 is a schematic diagram showing an optical system of a light wave distance meter, and FIG. 2 is a partially enlarged view showing an embodiment of a light amount adjusting device according to the present invention.
FIG. 3 is a partially enlarged view showing another embodiment of the light amount adjusting device according to the present invention, and FIG. 4 is a cross-sectional view of the optical fiber showing the light receiving angle. DESCRIPTION OF SYMBOLS 1... Light transmitting part 9... Light receiving part IO... First optical fiber 10a... Outgoing end face 11 of first optical fiber... Second optical fiber 11a... Second Input end face ha of optical fiber

Claims (1)

【特許請求の範囲】[Claims] 送光部から受光部に到る光路の少なくとも一部分を二分
割し、一方の光路を基準光光路と成し、他方の光路を測
距光光路と成し、更に、該基準光光路の一部をオプティ
カルファイバにて構成した光波距離計、において、上記
オプティカルファイバを基準光光路内に複数個配置し、
測定距離の大きさに応じて、基準光の光量を調整すべく
一方のオプティカルファイバの出射端面と他方のオプテ
ィカルファイバの入射端面の光軸上における間隔或は光
軸と直交する方向におけるずれ量を調節可能となしたこ
とを特徴とする光波距離計における光量調節装置。
At least a part of the optical path from the light transmitting section to the light receiving section is divided into two, one optical path is made into a reference light optical path, the other optical path is made into a distance measurement optical path, and further, a part of the reference light optical path is formed. In an optical distance meter configured with optical fibers, a plurality of the above optical fibers are arranged in the reference light optical path,
Depending on the measurement distance, the distance between the output end face of one optical fiber and the input end face of the other optical fiber on the optical axis or the amount of deviation in the direction orthogonal to the optical axis is adjusted to adjust the light intensity of the reference light. A light amount adjustment device for a light wave distance meter, characterized in that it is adjustable.
JP3095684A 1984-02-21 1984-02-21 Light quantity adjustor for light wave range finder Pending JPS60174969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3095684A JPS60174969A (en) 1984-02-21 1984-02-21 Light quantity adjustor for light wave range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3095684A JPS60174969A (en) 1984-02-21 1984-02-21 Light quantity adjustor for light wave range finder

Publications (1)

Publication Number Publication Date
JPS60174969A true JPS60174969A (en) 1985-09-09

Family

ID=12318131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3095684A Pending JPS60174969A (en) 1984-02-21 1984-02-21 Light quantity adjustor for light wave range finder

Country Status (1)

Country Link
JP (1) JPS60174969A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134285A (en) * 1987-11-20 1989-05-26 Nec Corp Distance measuring instrument
JPH02118284U (en) * 1989-03-07 1990-09-21
US5050956A (en) * 1990-09-20 1991-09-24 Hunter Associates Laboratory Inc. Optical fiber attenuator and connecting element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS542143A (en) * 1977-06-07 1979-01-09 Nippon Telegr & Teleph Corp <Ntt> Variable light attenuator
JPS5732909B2 (en) * 1976-05-20 1982-07-14
JPS58215603A (en) * 1982-06-09 1983-12-15 Fujitsu Ltd Optical fiber pad

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732909B2 (en) * 1976-05-20 1982-07-14
JPS542143A (en) * 1977-06-07 1979-01-09 Nippon Telegr & Teleph Corp <Ntt> Variable light attenuator
JPS58215603A (en) * 1982-06-09 1983-12-15 Fujitsu Ltd Optical fiber pad

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134285A (en) * 1987-11-20 1989-05-26 Nec Corp Distance measuring instrument
JPH02118284U (en) * 1989-03-07 1990-09-21
US5050956A (en) * 1990-09-20 1991-09-24 Hunter Associates Laboratory Inc. Optical fiber attenuator and connecting element

Similar Documents

Publication Publication Date Title
US4380791A (en) Electrically controlled additive lamp housing for optical printing
US5898809A (en) Projecting a sheet of laser light such as a laser reference plane using a fiber optic bundle
US6028660A (en) Illumination unit for an optical apparatus
CN107941477B (en) Spectroscope measurement method and device capable of accurately controlling incident angle
CN211955982U (en) High-precision continuously adjustable stable output laser power attenuation device
JPS60174969A (en) Light quantity adjustor for light wave range finder
CN207741917U (en) A kind of spectroscope measuring device that can accurately control incidence angle
CN110186655A (en) Imaging detection distance test system based on simulated target and optical energy attenuation device
US5319441A (en) Method and apparatus for detecting wavelength of laser beam
JP2554772B2 (en) Laser pulse stretcher
JPH0843305A (en) Smoke density measuring device
RU2335751C1 (en) Laser device control system
SU1437823A1 (en) Variable optical attenuator
JPH07104203B2 (en) Lighting optics
JPS6354235B2 (en)
US4963004A (en) Optical adder for optical attenuation
SU1573342A1 (en) Arrangement for checking rectilinearity
SU669214A1 (en) Optical attenuator
JP3039569B2 (en) Prism for total internal reflection measurement
RU2033570C1 (en) Imitator of illumination source
SU1539713A1 (en) Method of determining losses caused by light diffusion in three-dimensional heterogeneities in planar optic waveguides
SU1500822A1 (en) Method of measuring plane angle of an object
RU2179789C2 (en) Laser centering mount for x-ray radiator
US3395607A (en) Star and sky simulator
JP3021592B2 (en) Optical filter characteristics measurement method