JPH07104203B2 - Illumination optical apparatus - Google Patents

Illumination optical apparatus

Info

Publication number
JPH07104203B2
JPH07104203B2 JP24852387A JP24852387A JPH07104203B2 JP H07104203 B2 JPH07104203 B2 JP H07104203B2 JP 24852387 A JP24852387 A JP 24852387A JP 24852387 A JP24852387 A JP 24852387A JP H07104203 B2 JPH07104203 B2 JP H07104203B2
Authority
JP
Grant status
Grant
Patent type
Prior art keywords
light
beam
reflecting member
light beam
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24852387A
Other languages
Japanese (ja)
Other versions
JPS6491026A (en )
Inventor
正弘 中川
一明 鈴木
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/70058Mask illumination systems

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は照明光学装置に関し、例えば半導体露光装置において、減衰手段を設けることにより、大きいエネルギーをもつ照明光束の光量、照度分布等を容易に測定し得るようにしたものである。 DETAILED DESCRIPTION OF THE INVENTION The present invention [relates] relates illumination optical apparatus, for example, in a semiconductor exposure device, by providing the attenuation means, the light amount of the illumination light beam having a large energy, the illuminance distribution and the like easily is obtained by way be measured.

〔発明の概要〕 SUMMARY OF THE INVENTION

本発明は、光源から射出された照明光束を照明対象に照射する照明光学装置において、第1の透過反射部材によつて主光路の照明光束の光量を減衰させて外部光路に射出させると共に、当該射出された光束を第2の透過反射部材によつて減光させて外部光路から主光路に復帰させるようにしたことにより、簡易な構成によつて大きな減光率で照明光束の光量を減衰させることができる。 The present invention provides an illumination optical apparatus for irradiating an illumination light beam emitted from the light source to the illuminated object, causes emitted outside light path to attenuate the light amount of the illumination light by connexion main optical path to the first transmission reflecting member, the by the light beam irradiated by by by connexion dimming the second transmissive reflective member so as to return from the external optical path in the main optical path, to attenuate the light intensity of the illumination light beam with a large extinction ratio Te cowpea the simple structure be able to.

〔従来の技術〕 [Prior art]

半導体露光装置においては、光源としてレーザを用いてウエハを露光する際に、ウエハをできるだけ高い精度で微細露光し得るように、ウエハに照射する照明光束の照度分布や、光量を測定して露光条件が適正であることを確認する方法が用いられている。 In the semiconductor exposure apparatus, when exposing a wafer using a laser as a light source, as can be finely exposed with the highest possible precision wafer, and the illuminance distribution of the illumination light beam to be irradiated on the wafer, by measuring the amount of light exposure condition and how to check is used that is appropriate.

ここで光源からウエハまでの照明主光路を通る照明光束の光量は、実用上ウエハを露光するのに十分なエネルギーをもつていなければならないのに対して、測定用の検出器が正しく測定動作をするのに必要な測定用照明光束のエネルギーは、格段的に小さいので、適正なエネルギーの測定用照明光束を得るためには、光源と照明対象であるウエハとの間に減光装置を設ける必要がある。 Wherein the light amount of the illumination light beam passing through the illumination main optical path from the light source to the wafer, whereas must have sufficient energy to expose a practical wafer, the detector is correctly measuring operation for measuring energy measuring illumination beams required for, so remarkably small, in order to obtain a measurement illumination light proper energy necessary to provide a dimming device between the wafer as a light source and illumination target there is.

この減光装置として従来は、露光用照明光束を減光フィルタ、ピンホール、エキスパンダ等の減光素子を透過させ、当該減光素子によつて検出器の感度に適合する大きさまで制限されたエネルギーをもついわゆる微弱な測定用照明光束を得るような手法が採用されていた。 Art as the dimming device, the exposure illumination light flux attenuation filter, a pinhole, is transmitted through the dimming element such as expander was limited to a size compatible with the sensitivity of the O connexion detector to the dimming element technique to obtain a so-called weak measuring illumination beam having an energy has been employed.

〔発明が解決しようとする問題点〕 [Problems to be Solved by the Invention]

ところが半導体露光装置においては、スループツトを向上させるため光源の出力を高める傾向があり、これに加えて露光対象としてのウエハに焼き付けるパターンの線幅をできるだけ微細化するために、光源として短波長かつ高出力のレーザ光束を射出し得るようなレーザ発振器(例えばエキシマレーザ発振器等)を用いるようになつて来ている。 However in a semiconductor exposure apparatus, there is a tendency to increase the output of the light source for improving Suruputsuto, to as fine as possible the line width of a pattern to bake the wafer as an exposure target in addition to this, short wavelength and high as the light source It is coming summer to use a laser oscillator that can emit a laser beam output (e.g., an excimer laser oscillator, etc.).

かかる高出力の光源から射出された露光用照明光束から測定検出器の感度に適合した微弱な測定用照明光束を得るための減光装置としては、従来の場合と比較して一段と減光比率が大きいもの(例えば10 -7 〜10 -8程度)にすると共に、かくするにつき露光用照明光束の照度分布、 The dimming device for obtaining such weak measuring illumination beams adapted to the sensitivity of the measurement detector from the injected exposure illumination light beam from a high power light source, is further dimming ratio as compared with the conventional large ones (e.g. 10-7 to about -8) as well as in, the illuminance distribution of the exposure illumination light flux per nuclei,
光量などの情報を安定かつ高い精度で含んだ測定用照明光束を得る必要がある。 Information such as the amount of light it is necessary to obtain a measurement illumination light beam containing in a stable and high accuracy.

ところが従来用いられている減光手段にはそれぞれ次の問題がある。 However the extinction device conventionally used each have the following problems.

先ず減光フィルタは、短波長かつ高エネルギーの光が入射した場合、当該入射光がフイルタの耐熱性を超えて性能の劣化や損傷を生じさせるおそれがあり、かくして安定した減光特性を得ることができない点において未だ不十分である。 First neutral density filter, if short length and high-energy light is incident, the incident light is greater than the heat resistance of the filter which can degrade or damage the performance, thus to obtain a stable dimming characteristics it is still insufficient in that it can not.

またピンホールは、原理上その直径を小さくすれば格段的に大幅な減光動作を得ることができると考えられるが、実際上ピンホールの加工上直径を小さくするにつき限界がある。 The pinhole is believed to be able to obtain a remarkably greatly dimming operation by reducing the principle its diameter, there is a limit per reduce the processing on the diameter of the practice pinholes. またピンホールは構成上照度分布の検出には有効であるが、照明光束を集光して光量を測定したいような場合には適用できない欠点がある。 The pinhole is effective for detection of the configuration on the illuminance distribution, when condenses the illuminating light beam as desired to measure the amount of light may not be applied drawbacks.

これらの手段以外に、倍率をかけて測定用検出器に入射する光束の単位面積当たりの光量を低減させるように動作するエキスパンダ等を減光手段として用いることも考え得るが、実用上全体としての構成がかなり大型になることを避け得ないので、上述のように10 -7 〜10 -8程度にまで大幅な減光をしなければならないような用途には適用し得ない。 In addition to these means, it is also conceivable to use as an extinction device expanders that operates to reduce the amount of light per unit area of ​​the light beam incident on the measuring detector over the magnification, the whole practical since the configuration of inevitable that quite large, not be applied in applications that must be significant dimming down to 10-7 to about -8 as described above.

本発明は以上の点を考慮してなされたもので、測定すべき情報に応じて安定かつ大幅な減光作用を有する簡易な構成の照明光学装置を提供しようとするものである。 The present invention has been made in view of the foregoing, an object of the present invention is to provide an illumination optical apparatus with a simple structure having a stable and substantial dimming effect in response to be measured information.

〔問題点を解決するための手段〕 [Means for Solving the Problems]

かかる問題点を解決するため本発明においては、ほぼ平行な照明光束LB1を射出する光源手段2と、光量減衰手段3とを有し、光量減衰手段3は、所定の透過率又は反射率の入射面及び出射面をもち、照明光束LB1が光源2 Such in problems of the present invention to solve, a light source means 2 for emitting substantially parallel illuminating light beam LB1, and a light amount attenuating means 3, the light amount attenuating means 3, enters the predetermined transmittance or reflectance It has a surface and the exit surface, the illumination light beam LB1 light source 2
から照明対象11に向かう主光路に挿入されて照明光束LB After being inserted into the main optical path towards the illumination target 11 illumination beams LB
1の光量を減衰させてなる第1の減衰光束(LB1 a 、LB First attenuating beam consisting attenuates the first light quantity (LB1 a, LB
1 g )を、主光路から外部光路に射出する第1の透過反射部材(21A、31A〜31B)と、所定の透過率又は反射率の入射面及び射出面をもち、外部光路において第1の透過反射部材(21A、31A〜31B)から射出された第1の減衰光束(LB1 a 、LB1 g )の光量を減衰させてなる第2の減衰光束LB3を、外部光路から主光路に復帰させるように射出する第2の透過反射部材(21B〜21D、31C〜31D)とを設けるようにする。 The 1 g), and the first transmitting reflecting member for emitting outside light path from the main optical path (21A, 31A~31B), having an incident and exit surfaces of the predetermined transmittance or reflectance, the first outside light path transmissive reflecting member (21A, 31A~31B) a second damping beams LB3 comprising the attenuated amount of the first damping light flux emitted (LB1 a, LB1 g) from so as to return from the external optical path in the main optical path second transmitting reflecting member that emits the (21B~21D, 31C~31D) to be provided and.

〔作用〕 [Action]

第1及び第2の透過反射部材(21A、31A〜31B)、(21B First and second transmitting reflecting member (21A, 31A~31B), (21B
〜21D、31C〜31D)は、照明光束LB1の光量を入射面及び射出面によつて決まる透過率又は反射率に対応する量だけ減衰させて第1及び第2の減衰光束(LB1 a 、LB1 g )、 ~21D, 31C~31D), the illumination light flux amount only attenuate the first and second damping beams (LB1 corresponding to the incident surface and by the exit surface connexion determined transmittance or reflectance amount of LB1 a, LB1 g),
LB3を射出する。 Injecting the LB3.

かくして主光路において第1の透過反射部材(21A、31A Thus the first transmission reflecting member in the main optical path (21A, 31A
〜31B)によつて減光されながら外部光路に射出された第1の減衰光束(LB1 a 、LB1 g )は、第2の透過反射部材(21B〜21D、31C〜31D)によつてさらに減光されて主光路に戻される。 First attenuating light beam (LB1 a, LB1 g) is emitted to the outside optical path while being by connexion extinction in ~31B), a second transmission reflecting member (21B~21D, 31C~31D) further reduces Te Niyotsu is light back into the main light path.

このような簡易な構成によつて減光量が格段的に大きな減衰手段3を有する照明光学装置を実現し得る。 Such by connexion dimming amount to a simple configuration can achieve an illumination optical system having a large attenuation means 3 remarkably.

〔実施例〕 〔Example〕

以下図面について、本発明の一実施例を詳述する。 For it is described with reference to the accompanying drawings an embodiment of the present invention.

〔第1の実施例〕 第1図において、1は全体として照明光学装置を示し、 In First embodiment] FIG. 1, 1 denotes an illumination optical system as a whole,
例えばエキシマレーザ発振器でなる光源2から射出された短波長かつ高エネルギーのレーザ光束でなる露光用照明光束LB1が、測定用減衰部3の挿入/引出位置を通つた後、順次ハーフミラー4、ビーム整形光学系5、フライアイインテグレータ6、コンデンサレンズ7、反射ミラー8を介してレチクル9を照明する。 For example an excimer laser oscillator short length emitted from the light source 2 formed by, high energy exposure illumination light beam comprising a laser light beam LB1, after was Tsutsu the insertion / extraction position of the measuring attenuation section 3 sequentially the half mirror 4, the beam shaping optics 5, the fly-eye integrator 6, condenser lens 7 via the reflecting mirror 8 to illuminate the reticle 9. そしてレチクル9上の所定のパターンが投影レンズ10を介して被露光対象としてのウエハ11を照明する照明光束LB2によりウエハ11上に露光転写される。 And it is exposed and transferred onto the wafer 11 by the illumination light beam LB2 which a predetermined pattern on the reticle 9 illuminates the wafer 11 as the exposed workpiece via a projection lens 10. かくして光源2からウエハ11 Thus from the light source 2 wafer 11
に向う露光用照明光束LB1についての主光路が形成されている。 And the main optical path is formed for the exposure illumination light beam LB1 toward the.

測定用減衰部3は矢印aで示すように、光源2及びハーフミラー4間に挿入し又は引き出し得るように着脱自在に構成され、ウエハ11を露光する処理工程(すなわち露光モード)にあるとき測定用減衰部3が露光用照明光束 Measuring attenuation section 3 as indicated by arrow a, measured when being removably configured to obtain inserted or pulled out between the light source 2 and the half mirror 4, in the process step of exposing the wafer 11 (i.e., exposure mode) illumination light beam for exposure use attenuation section 3
LB1の主光路から引き出されることにより、露光用照明光束LB1が直接ハーフミラー4に入射し得るようになされている。 By being drawn from the main optical path of the LB1, the exposure illumination light flux LB1 is made to be directly incident on the half mirror 4.

これにより当該直接入射された露光用照明光束LB1に基づいてハーフミラー4から投影レンズ10に至るまでの光学系を通つて高エネルギーのレーザ光束でなる照明光束 Illumination beams This makes in passing connexion high-energy laser light flux of the optical system up to the projection lens 10 from the half mirror 4 based on the direct incident exposure illumination light flux LB1
LB2が射出される。 LB2 is emitted.

これに対して測定モードにおいては、測定用減衰部3が図示の位置に挿入され、かくして露光用照明光束LB1の光量を測定用減衰部3において減衰させて得られる測定用照明光束LB3をハーフミラー4に入射し、これによりハーフミラー4から投影レンズ10に至るまでの光学系から射出される測定用照明光束LB4の光量を測定用減衰部3の減光率に対応した減衰量だけ低下させるようになされている。 In the measurement mode contrary, the measuring attenuation section 3 is inserted in the position shown, thus a half mirror for measurement illumination beam LB3 obtained by attenuating the light quantity of the exposure illumination light flux LB1 in measuring the attenuation section 3 enters the 4, thereby to reduce by attenuation amount corresponding to the light amount of the measuring illumination beams LB4 emitted from the optical system to the extinction ratio of the measuring attenuation section 3 ranging from the half mirror 4 to the projection lens 10 It has been made to.

この測定モード時には、ウエハ11の位置に破線で示す照射測定部15が配置され、かくしてウエハ11上の照度分布又は照射量を測定するのに最適な光量に調整される。 This measurement mode, the irradiation measuring unit 15 shown by a broken line to the position of the wafer 11 is placed, thus is adjusted to the optimum amount of light to measure the illuminance distribution or amount of irradiation on the wafer 11.

照射測定部15として第2図に示すように、照度分布測定用検出器DT1の表面にピンホール板SPを設けた構成のものを適用し得、ピンホールによつてさらに制限された測定用照明光束LB4によつて照度分布を測定し得るようになされている。 As shown in FIG. 2 as an irradiation measuring section 15, to obtain and apply those configurations in which a pinhole plate SP on the surface of the illumination distribution measuring detector DT1, pinhole further limited measurement illumination Te cowpea in is configured so as to be able to measure the by go-between illuminance distribution on the light beam LB4.

また照射測定部15として第3図に示すように、照射量測定用検出器DT2を有するものを適用し得、これにより測定用照明光束LB4の照射量を表す測定出力を得るようになされている。 In addition, as shown in FIG. 3 as an irradiation measuring section 15, to obtain and apply those with dose measuring detector DT2, thereby being adapted to obtain a measurement output representative of the amount of irradiation of the measurement illumination light flux LB4 .

当該露光モードにあるとき、露光用照明光束LB1の一部L When in the exposure mode, a portion of the exposure illumination light flux LB1 L
B5がハーフミラー4において出力エネルギー測定部16に引き出され、その減衰部17からエネルギー検出用光束LB B5 is drawn into output energy measuring unit 16 in the half mirror 4, the light beam LB for energy detection from the attenuation part 17
6を得てこのエネルギー検出用光束LB6を出力エネルギー光検出器18に入射するようになされている。 6 obtained have been made so as to enter the energy detecting light beam LB6 the output energy photodetector 18.

かくして露光モード時において光源2から出力される露光用照明光束LB1の出力エネルギーを測定するようになされている。 Thus it is adapted to measure the output energy of the exposure illumination light flux LB1 outputted from the light source 2 in an exposure mode.

この実施例の場合ビーム整形光学系5は、光源2として用いられているエキシマレーザ発振器から射出されるレーザ光束の断面形状が長方形であるのに対して、これを正方形に整形する。 If the beam shaping optical system 5 of this embodiment, the sectional shape of the laser beam emitted from an excimer laser oscillator is used as the light source 2 with respect to a rectangular shaping it into a square.

かくして露光モード時照明光学装置1は短波長かつ高出力の露光用照明光束LB1に基づいて投影レンズ10からウエハ11に照射される照明光束LB2によつてレチクル9に形成された露光パターンによつてウエハ11を露光する。 Thus exposure mode illumination optical apparatus 1 is short length and high power Yotsute the exposure pattern to the illumination light beam LB2 formed Yotsute reticle 9 to be irradiated onto the wafer 11 from the projection lens 10 on the basis of the exposure illumination light flux LB1 exposing the wafer 11.

そして露光モード時の光源2の出力エネルギーが出力エネルギー測定部16の出力エネルギー光検出器18において検出され、当該検出結果によつて光源2が正常動作していることを監視し得る。 The output energy of the light source 2 of the exposure mode is detected in the output energy photodetector 18 of the output energy measurement unit 16, it may monitor that the detection result to the I connexion light source 2 is operating normally.

測定用減衰部3は、4つの透過反射部材21A、21B、21 Measuring attenuation section 3 includes four transmission reflection member 21A, 21B, 21
C、21Dと、トラツプ部材22とを有する。 A C, a 21D, and a trap member 22.

透過反射部材21A〜21Dは、第4図に示す構成の反射型の透過反射部材21でなり、平行ガラス板J1の入射面には、 Transmissive reflecting member 21A~21D becomes a reflective transmissive reflecting member 21 having the structure shown in FIG. 4, on the incident surface of the parallel glass plate J1,
所定の低反射率の反射コートを付着するか、又はコートを付着せず用い、当該ガラス板の射出側表面には入射側表面の反射率に比べて十分小さい反射率の透過コートJ2 Or depositing a reflective coating of a predetermined low reflectance, or used without attaching the coating, transparent coating of sufficiently low reflectivity than the reflectivity of the incident surface on the exit side surface of the glass plate J2
を付着した構成をし、平行ガラス板J1の入射面に45゜の入射角で入射光束LB11を受ける。 And a structure attached to, receive incident light beam LB11 in 45 ° angle of incidence on the entrance surface of the parallel glass plate J1.

このような条件の下では、平行ガラス板J1の入射面はごく小さい反射率を呈し、従つて入射光束LB11のうち大部分の光線を平行ガラス板J1内に透過させると共に、射出面側の透過コートJ2を介して実質上反射をさせずにトラツプ光束LB12として射出させる。 Under such conditions, the parallel incidence plane of the glass plate J1 exhibits a very small reflectance, with which transmits light of most parallel glass plate J1 of slave connexion incident light beam LB11, exit surface side transparent via the coated J2 is emitted as a trap beam LB12 without a substantial reflection.

かくして平行ガラス板J1の入射面において反射された僅かな光線が射出減衰光束LB13として入射光束LB11に対して90゜折り曲げた方向に射出される。 Thus slight light beam reflected at the incident surface of the parallel glass plate J1 is emitted in a direction bent 90 ° to the incident light beam LB11 as injection attenuation optical beam LB13.

このようにして透過反射部材21A〜21Dは、射出減衰光束 Transmissive reflecting member 21A~21D this way, the injection attenuation optical beam
LB13として入射光束LB11のエネルギーを格段的に大きい減光率で減衰させてなる射出減衰光束LB13を得ることができる。 LB13 markedly attenuate a large extinction ratio of energy of the incident light beam LB11 can be obtained as an injection attenuation beam LB13 comprising.

第1の透過反射部材21Aは、露光モード時において露光用照明光束LB1が光源2からハーフミラー4に直進する際の主光路に設けられ、かくして露光用照明光束LB1に基づいてこれを90゜外方に折り曲げると共に所定の減光率で減衰してなる減衰光束LB1 aを主光路の外側に設けられた外部光路を構成する第2の透過反射部材21Bに入射させる。 First transmission reflecting member 21A is exposure illumination light beam LB1 is provided in the main light path at the time of straight from the light source 2 to the half mirror 4 in an exposure mode, thus this out 90 ° on the basis of the exposure illumination light flux LB1 to be incident on the second transparent reflecting member 21B constituting the external light path provided a damping beam LB1 a formed by attenuation outside the main optical path at a predetermined extinction ratio with bent towards.

第2の透過反射部材21Bは、その入射面を第1の透過反射部材21Aに対向させるように配設され、かくして入射した減衰光束LB1 aを90゜折り曲げると共に所定の減光率で再度減衰してなる減衰光束LB1 bを露光用照明光束LB1 Second transmitting reflecting member 21B has its entrance surface is disposed so as to face the first transmission reflecting member 21A, thus the incident attenuated beam LB1 a damped again at a predetermined extinction ratio with bending 90 ° attenuating optical beam LB1 illumination light beam LB1 for exposure b comprising Te
の直進主光路とほぼ平行の方向に射出させることにより第3の透過反射部材21Cに入射させる。 Straight main optical path between by injection in a direction substantially parallel to be incident on the third transmissive reflecting member 21C.

第3の透過反射部材21Cは、入射面を第2の透過反射部材21Bに対向させるように配設され、かくして減衰光束L Third transmissive reflecting member 21C is disposed so as to face the incidence surface to the second transmissive reflective member 21B, thus attenuating light beam L
B1 bを90゜折り曲げると共に所定の減光率で再度減衰してなる減衰光束LB1 cを第4の透過反射部材21Dに入射させる。 B1 b and is incident attenuation beam LB1 c formed by attenuated again at a predetermined extinction ratio with bending 90 ° to a fourth transmissive reflecting member 21D.

第4の透過反射部材21Dは、露光モード時に露光用照明光束LB1が通る直進主光路において入射面を第3の透過反射部材21Cに対向させるように配設され、これにより減衰光束LB1 cを60゜折り曲げると共に所定の減光率で減衰してなる減衰光束を露光用照明光束LB1の直進方向と一致する方向に測定用減衰部3の測定用照明光束LB3として送出する。 Fourth transmitting reflecting member 21D is disposed so as to face the incident surface to the third transmissive reflecting member 21C in the straight main optical path through the exposure illumination light flux LB1 to exposure mode, thereby damping beam LB1 c 60 ° sends the attenuation light beam obtained by attenuating a predetermined extinction ratio as the measurement illumination beam LB3 of measuring attenuation section 3 in a direction that coincides with the rectilinear direction of the exposure illumination light flux LB1 with folding.

測定用減衰部3から射出された測定用照明光束LB3は、 Measuring the illumination light beam LB3 emitted from the measurement damping unit 3,
ハーフミラー4から投影レンズ10までの光学系を通つて投影レンズ10から射出され、かくして照射測定部15に測定用照明光束LB4として照射される。 It emitted the optical system from the half mirror 4 to the projection lens 10 from passing connexion projection lens 10, thus being irradiated as the measurement illumination light flux LB4 the irradiation measuring section 15.

このようにして測定モード時、露光用照明光束LB1の光源2からハーフミラー4までの直進主光路に、4段の減衰手段としての透過反射部材21A、21B、21C、21Dが介挿されることにより、露光用照明光束LB1の光量を実用上大幅に減衰させてなる測定用照明光束LB3を得ることができ、これにより照射測定部15に設けられた照度分布測定用検出器DT1(第2図)又は照射量測定用検出器DT2 Measurement mode in this way, the straight main optical path from the light source 2 of the exposure illumination light flux LB1 to the half mirror 4, transmissive reflecting member 21A as the damping means 4 stages, 21B, 21C, by 21D is interposed practically greatly attenuates the light quantity of the exposure illumination light flux LB1 possible to obtain measurement illumination light beam LB3 comprising, thereby illuminance provided to the irradiation measuring unit 15 distribution measuring detector DT1 (Figure 2) or dosimetry detector DT2
(第3図)として微小な光量を検出し得る高感度の検出器を用いることができることにより、高い精度で照度分布、照射量を測定することができる。 The ability to use (FIG. 3) as a detector of high sensitivity capable of detecting very small amount of light, the illuminance distribution with high accuracy, it is possible to measure the amount of radiation.

かくするにつき、ハーフミラー4から照射測定部15までの光路として、露光モード時露光用照明光束LB1が通る光学系をそのまま用いていることにより、照射測定部15 Per to write, as the optical path from the half mirror 4 to the irradiation measuring section 15, by which used as an optical system through which the exposure mode the exposure illumination light flux LB1, illuminated measuring section 15
に入射する測定用照明光束LB4がもつている照度分布、 And that illuminance distribution with the measurement illumination light beam LB4 incident on,
照射量は、露光モード時露光用照明光束LB1に基づいてウエハ11上に照射される照明光束LB2の照度分布、照射量に対応した情報をもつことになる。 Irradiation dose, the illuminance distribution of the illumination light beam LB2 is irradiated on the wafer 11 based on the exposure mode the exposure illumination light flux LB1, it will have information corresponding to the amount of irradiation.

かくして第1図の実施例によれば、高い精度の光検出器を用いて露光モード時の照明光束LB2がもつ光情報を表す測定用照明光束LB4を確実に得ることができる。 Thus, according to the embodiment of FIG. 1, it is possible to obtain a measurement illumination light flux LB4 representing light information held by the illumination light beam LB2 exposure mode by using the high accuracy of the optical detectors reliably.

この実施例の場合トラツプ部材22は遮光板で構成され、 A trap member 22 in this embodiment is constituted by the light shielding plate,
高いエネルギーをもつ露光用照明光束LB1が第1の透過反射部材21Aに入射したとき、これを透過するトラツプ光束LB12(第4図)が射出側に設けられた透過反射部材 When the exposure illumination light beam LB1 having a high energy is incident on the first transmitting reflecting member 21A, transmissive reflecting member a trap light beam LB12 (FIG. 4) is provided on the exit side which transmits this
21D(第1図)に入射するのを防止するように遮光する。 21D shielded to prevent from entering the (Figure 1).

これにより不要な光によつて測定動作に悪影響を生じさせないようにできる。 This makes it so that it does not cause an adverse effect on'll go-between measurement operation to unnecessary light.

因に、第1の透過反射部材21Aに大きなエネルギーをもつ露光用照明光束LB1が入射したとき、その大部分の光束が透過反射部材21Aを透過してトラツプ光束LB12として射出されるから(第4図)、第1の透過反射部材21A In this connection, when the incident exposure illumination light beam LB1 having a large energy in the first transmitting reflecting member 21A, its because most of the light beam is emitted as a trap light beam LB12 transmitted through the transmissive reflecting member 21A (Fourth Figure), the first transmissive reflective member 21A
から第4の透過反射部材21Dに直進しようとするレーザ光束のエネルギーは極端に大きな値をもつ。 The energy of the laser beam to be straight to the fourth transmissive reflecting member 21D from has a extremely large value. 従つてこれがそのまま第4の透過反射部材21Dに入射すれば、投影レンズ10から射出される測定用照明光束LB4として測定用検出器に過大な光量のものが射出されて測定ができなくなるが、遮光板として作用するトラツプ部材22によつてこの問題を簡易に解決し得る。 If incident to the slave connexion which it fourth transmissive reflecting member 21D, although those excessive quantity to the measuring detector as the measurement illumination beams LB4 emitted from the projection lens 10 can not be measured is injected, shielding We can solve this problem in a simple Te a trap member 22 Niyotsu acting as a plate.

第1図の実施例の場合、出力エネルギー測定部16の減衰部17は一対の透過反射部材25A及び25Bを有する。 The embodiment of FIG. 1, the damping portion 17 of the output energy measuring section 16 has a pair of transparent reflecting member 25A and 25B.

透過反射部材25A、25Bは、第5図に示すように、平行ガラス板J11を有し、その入射面に高い反射率を有する高反射コートJ12が付着されていると共に、射出面に実用上反射を生じさせないように作用する透過コートJ13が付着された構成の透過型の透過反射部材25でなる。 Transmissive reflecting member 25A, 25B, as shown in FIG. 5, has a parallel glass plate J11, with a high reflection coating J12 is attached with high reflectivity on the incident surface, practically reflecting on the exit surface made of transparent reflective member 25 transmitting coating J13 is transmissive of the deposited configured to act so as not to cause.

かくして平行ガラス板J11に対して45゜の入射角で入射光束LB21が入射したとき、その大部分の光が高反射コートJ12において反射されて90゜に折り曲げられた方向にトラツプ光束LB22として射出される。 Thus when the incident light beam LB21 are incident at 45 ° angle of incidence with respect to the parallel glass plate J11, is emitted as a trap beam LB22 in a direction bent reflected by 90 ° light most of which in the high-reflection coating J12 that.

これに対して高反射コートJ12によつて反射されずに残つた光が平行ガラス板J11を透過して射出面において透過コートJ13により実質上反射されることなく射出光束L The light flux L without ZanTsuta light without being by connexion reflected in the high reflection coating J12 contrast is substantially reflected by the transmissive coating J13 on the exit surface is transmitted through the parallel glass plate J11
B23として射出される。 It is emitted as B23. その結果、入射光束LB21を所定の減光率で減衰してなる射出光束LB23が透過反射部材25 As a result, the light flux LB23 transmissive reflecting member 25 formed by attenuating the incident light beam LB21 in a predetermined extinction ratio
から得られることになる。 It will be obtained from.

このようにしてハーフミラー4(第1図)において反射されて取り出されたレーザ光束LB5が第1の透過反射部材25Aに入射されたとき、当該第1の透過反射部材25Aの減光率で減衰された減衰光束LB5 aが第2の透過反射部材 When the laser beam LB5 taken out is reflected in the half mirror 4 in this manner (FIG. 1) is incident on the first transmitting reflecting member 25A, the attenuation in the extinction ratio of the first transmission reflecting member 25A attenuation beam LB5 a second transmissive reflective member
25Bに入射される。 It is incident on the 25B.

この第2の透過反射部材25Bは、同様にして入射した減衰光束LB5 aを透過する際に、所定の減光率で再度減衰させた減衰光束をエネルギー検出用光束LB6として出力エネルギー光検出器18に射出する。 The second transmissive reflecting member 25B, at the time of transmitting the attenuated light beam LB5 a incident in the same manner, the output energy photodetector attenuation light beam is attenuated again by a predetermined extinction ratio as an energy detecting light beam LB6 18 It is injected into.

この場合第1の透過反射部材25Aにおいて反射されたトラツプ光束LB22(第5図)はトラツプ部材26によつて吸収され、かくして他の光学系に悪影響を与えないようになされている。 In this case the first transmission reflecting member a trap light beam reflected at 25A LB22 (Figure 5) is by connexion absorbed a trap member 26, thus being made so as not to adversely affect the other optical systems.

第1図の構成の出力エネルギー測定部16によれば、露光用照明光束LB1が光源2から投影レンズ10に至るまでの光学系へ向う主光路からハーフミラー4によつて分離したレーザ光束LB5に基づいて、その光量を、透過型の透過反射部材25A及び25Bを透過する際に減光させることにより、出力エネルギー光検出器18の感度に適合する光量に減衰させることができ、かくして露光モード時の光源2の出力エネルギーを確実に監視し得る。 According to output energy measuring unit 16 of FIG. 1 configuration, the laser beam LB5 of the exposure illumination light beam LB1 is have been conducted under separate half mirror 4 from the main light path toward the optical system up to the projection lens 10 from the light source 2 based on, the light intensity, by dimmed when passing through the transmissive reflecting member 25A and 25B of the transmissive type, it is possible to attenuate the compatible amount of light sensitivity of the output energy photodetector 18, thus exposing mode the output energy of the light source 2 may be reliably monitored.

〔第2の実施例〕 第6図は本発明の第2の実施例を示すもので、第1図との対応部分に同一符号を付して示すように、測定用減衰部3として第5図について上述した透過型の透過反射部材25を用いた2対の透過反射部材31A、31B、及び31C、3 Second Embodiment] FIG. 6 shows a second embodiment of the present invention, as shown by the same reference numerals are applied to parts corresponding to FIG. 1, the fifth as measuring attenuation section 3 two pairs of transmission reflecting member 31A of using a transmission type transmission reflection member 25 described above with reference to FIG, 31B, and 31C, 3
1Dを有し、これらの透過反射部材31A、31B、及び31C、3 Has 1D, these transmission-reflection member 31A, 31B, and 31C, 3
1Dをその順序で露光用照明光束LB1の光源2からハーフミラー4までの直進主光路上に順次配列した構成を有する。 1D has a configuration in which sequentially arranged in the straight main optical path up to the half mirror 4 from the light source 2 of the exposure illumination light beam LB1 in that order a.

すなわち第1の透過反射部材31Aは、光源2から射出された露光用照明光束LB1を+45゜の入射角で受けて所定の減光率で減衰させた減衰光束LB1 fを第2の透過反射部材31Bに入射する。 That is, the first transmitting reflecting member 31A, a second transmitting reflecting member attenuated beam LB1 f obtained by attenuating the injected the exposure illumination light beam LB1 is received by +45 ° incidence angle at a predetermined extinction ratio from the light source 2 incident on the 31B.

第2の透過反射部材31Bは、この減衰光束LB1 fを−45゜の入射角で受けて所定の減光率で再度減衰させた減衰光束LB1 gを第3の透過反射部材31Cに入射する。 Second transmitting reflecting member 31B is incident to the attenuation beam LB1 attenuating light beam is attenuated again by a predetermined extinction ratio by receiving at -45 ° incidence angle f LB1 g to the third transmissive reflecting member 31C.

この第3の透過反射部材31Cは、減衰光束LB1 gを+45゜の入射角で受けて所定の減光率で再度減衰させた減衰光束LB1 hを第4の透過反射部材31Dに入射する。 The third transmissive reflective member 31C is incident attenuation beam LB1 g +45 ° angle of incidence undergoes attenuation optical beam LB1 which is attenuated again by a predetermined dimming rate h to a fourth transmissive reflecting member 31D.

この第4の透過反射部材31Dは、当該減衰光束LB1 hを−4 The fourth transparent reflective member 31D of, the attenuation optical beam LB1 h -4
5゜の入射角で受けて所定の減光率で再度減衰させ、当該減衰光束を測定用減衰部3から測定用照明光束LB3としてハーフミラー4に射出する。 5 ° is received by the angle of incidence is attenuated again by a predetermined extinction ratio and injected into the half mirror 4 the attenuation optical beam from the measurement the attenuation section 3 as the measurement illumination beam LB3.

この場合第1の透過反射部材31Aにおいて反射されるトラツプ光束LB1 jはトラツプ部材32において吸収される。 In this case a trap beam LB1 j reflected at the first transmitting reflecting member 31A is absorbed in a trap member 32.

第6図の構成によれば、透過型の透過反射部材25(第5 According to the configuration of FIG. 6, a transmission type of transmissive reflecting member 25 (5
図)を用いて露光用照明光束LB1の光量を照射測定部15 Irradiating the measuring unit the quantity of exposure illumination light flux LB1 with reference to FIG.) 15
の検出器の検出感度に見合つた値に確実に減衰することができ、かくすることにより高い精度の検出素子を用いて照度分布や照射量の測定をなし得る。 Of the detection sensitivity of the detector can be reliably attenuated commensurate ivy value, can make measurements of the illuminance distribution and the irradiation amount using the high accuracy of the detection element by nuclear.

これに加えて第6図の構成によれば、順次配列された透過反射部材31A、31B、及び31C、31Dの入射角度が順次交互に入れ換わるように配設されていることにより、透過反射部材31A及び31Cにおいて入射光束に対して射出光束が一方向にシフトして主光路から外部光路にずれても、 According Additionally to the six view arrangement, sequentially ordered transmissive reflective member 31A, 31B, and 31C, by the incident angle of 31D are arranged so as interchanged sequentially alternately transmissive reflecting member in 31A and 31C emitted light beam is shifted in one direction relative to the incident beam be deviated from the main optical path in the external optical path,
これを次の透過反射部材31B、31Dによつて主光路に引き戻しながら所定の減光率で光束の光量を減衰させて行くことができる。 This can go attenuates the light intensity of the light beam at a predetermined extinction ratio while pulling back the next transmission reflecting member 31B, the O connexion main optical path 31D.

これと共に、一対の透過反射部材31A、31B、及び31C、3 At the same time, a pair of transparent reflecting member 31A, 31B, and 31C, 3
1Dを組み合わせることによつて各透過反射部材がもつている光学的特性を相補的に補償することができることにより、投影レンズ10から得られる測定用照明光束LB4として、測定用減衰部3を介挿したことによつて照明光束 By being able to complementarily compensate for optical properties that are possessed by'm connexion respective transmissive reflecting member that combines 1D, as the measurement illumination beam LB4 obtained from the projection lens 10, interposing the measuring attenuation section 3 I that was go-between illuminating light beam
LB2に生じる光学特性変化を実用上十分に小さい値に抑えることができる。 It is possible to suppress optical characteristics changes that occur LB2 practically sufficiently small value.

〔第3の実施例〕 第7図は本発明の第3の実施例を示すもので、第1図又は第6図の測定用減衰部3に代えて、第7図の構成を適用し得る。 Third Embodiment of] Figure 7 shows a third embodiment of the present invention, instead of measuring the attenuation section 3 of Figure 1 or Figure 6 may apply the structure of FIG. 7 .

すなわち光源2(第1図又は第6図)から射出された露光用照明光束LB1を入射光結合部35を介して入射し、この露光用照明光束LB1を反射ミラー36、37を順次介して照度分布測定用減衰部38、又は照射量モニタ用減衰部39 That the light source 2 (Fig. 1 or FIG. 6) the exposure illumination light flux LB1 emitted from incident through the incident light coupling section 35, the exposure illumination light flux LB1 sequentially through the reflecting mirrors 36 illuminance distribution measuring attenuation section 38 or the irradiation monitor for attenuating portion 39,
を通すことにより、射出光結合部40から測定用照明光束 By passing the illumination light beam for measuring the emitted light coupling section 40
LB3を射出する。 Injecting the LB3.

ここで照度分布測定用減衰部38及び照射量モニタ用減衰部39は、主光路に対してそれぞれ矢印j及びkの方向に挿入し又は引き出すことができるようになされ、これにより照度分布測定用減衰部38及び照射量モニタ用減衰部 Here illuminance distribution measuring attenuation section 38 and the irradiation monitor for damping unit 39 is adapted to allow insertion or draw it in the direction of the respective arrows j and k with respect to the main optical path, thereby attenuating the illuminance distribution measuring parts 38 and irradiation monitor for attenuating portion
39を同時に引出し方向に移動させたとき反射ミラー37によつて反射された露光用照明光束LB1が直進して射出光結合部40からハーフミラー4(第1図又は第6図)に減衰されずに射出し得るようになされている。 39 simultaneously exposure illumination light beam LB1 had it occurred reflected on the reflecting mirror 37 when moving in the withdrawing direction is straight without being attenuated by the emitted light coupling portion 40 on the half mirror 4 (Figure 1 or Figure 6) It is configured so as to be able to exit the.

この実施例の場合照度分布測定用減衰部38は、第6図について上述したと同様にしてそれぞれ透過型の透過反射部材25(第5図)で構成された2対の透過反射部材38 If the illuminance distribution measuring attenuation section 38 of this embodiment, FIG. 6, respectively in the same manner as described above transmission of transmission reflection member 25 for (Figure 5) two pairs of transmission reflecting member composed of 38
A、38B、及び38C、38Dを直進光路上に配設した構成を有する。 With A, 38B, and 38C, a configuration which is disposed in the straight light path to 38D.

これに対して照射量モニタ用減衰部39は、第4図について上述した反射型の透過反射部材21でなる6枚の透過反射部材39A、39B、39C、39D、39E、39Fを順次入射光束に対して90゜だけ折り曲げた射出光束を得るように構成されている。 Irradiation monitor for attenuating portion 39 on the other hand, FIG. 4 for transmitting reflection of six comprising a transmission reflecting member 21 of the reflection type as described above members 39A, 39B, 39C, 39D, 39E, sequentially incident light beam to 39F It is configured to obtain the light flux that is bent by 90 ° against.

第7図の構成において、測定モードに入つてウエハ11 Seventh in the configuration of Figure, the measurement mode input connexion wafer 11
(第1図)上の照度分布を測定する場合には、照度分布測定用減衰部38を反射ミラー37から射出光結合部40への直進主光路に挿入する。 When measuring the illuminance distribution (FIG. 1) on inserts the illumination distribution measuring attenuation section 38 in the straight main optical path to the exit optical coupling portion 40 from the reflecting mirror 37.

このとき照度分布測定用減衰部38は、反射ミラー37において反射された露光用照明光束LB1を4つの透過型の透過反射部材38A〜38Dによつてその光量を減衰させて測定用照明光束LB3として射出光結合部40に射出する。 In this case the illuminance distribution measuring attenuation unit 38 as the measurement illumination beams LB3 and the amount of light is attenuated Te transmissive reflecting member 38A~38D Niyotsu of the exposure illumination light flux LB1 reflected four transmissive at the reflection mirror 37 It is injected into the injection optical coupling portion 40.

このとき射出量モニタ用減衰部39は引き出された状態を維持し、かくして照度分布測定用減衰部38から射出された測定用照明光束LB3が射出光結合部40からハーフミラー4(第1図)を透過してその後段の光学系に供給される。 At this time it maintains the state injection amount monitoring damping unit 39 is pulled out, thus the illuminance distribution measuring attenuation portion 38 a half mirror 4 emitted measuring illumination beams LB3 were from exiting light coupling portion 40 (first view) transmitted to the supplied to the optical system of the subsequent stage. またウエハ11の位置には照射測定部15として照度分布測定用検出器DT1(第2図)が挿入され、かくして照度分布が検出される。 Also the position of the wafer 11 is illumination distribution measuring detector DT1 (FIG. 2) is inserted as an irradiation measuring section 15, thus the illuminance distribution is detected.

また照射量を測定する場合には、反射ミラー37から射出光結合部40への直進主光路に照射量モニタ用減衰部39が挿入され、かくして反射ミラー37において反射された露光用照明光束LB1が6段の反射型の透過反射部材39A〜39 In the case of measuring the amount of irradiation, irradiation monitor for attenuating unit 39 in the straight main optical path to the exit optical coupling portion 40 is inserted from the reflecting mirror 37, thus the exposure illumination light flux LB1 reflected by the reflection mirror 37 a reflective six stages transmissive reflecting member 39A~39
F間を順次反射されることによりその光量を減衰して測定用照明光束LB3として射出光結合部40に射出される。 Attenuate the amount of light by being sequentially reflected between F is injected into the injection optical coupling section 40 as the measurement illumination beam LB3.

このとき照度分布測定用減衰部38は後退位置に引き出されていることにより、反射ミラー37において反射された露光用照明光束LB1が減衰されることなく照射量モニタ用減衰部39の第1の透過反射部材39Aに直接入射される。 By this time the illuminance distribution measuring attenuation portion 38 is drawn to the retracted position, the first transmission of irradiation monitor for attenuating portion 39 without exposure illumination light beam LB1 reflected by the reflection mirror 37 is damped is directly incident on the reflecting member 39A.

なお、照射量の測定の際に、より減衰率を高める必要のある場合には、照度分布測定用減衰部38をも光路中に挿入しておくことが有効である。 At the time of irradiation of the measurement, when it is necessary to enhance the rate of decay, it is effective to also the illuminance distribution measuring attenuation section 38 previously inserted into the optical path.

この実施例の場合においても、照度分布測定用減衰部38 Also in case of this embodiment, the illuminance distribution measuring attenuation section 38
の第1の透過反射部材38Aのトラツプ光束LB1 nが吸収材料でなるトラツプ部材41において吸収されるようになされ、また照射量モニタ用減衰部39の第1の透過反射部材 First a trap beams LB1 n of transmissive reflecting member 38A is made to be absorbed in a trap member 41 made of an absorbent material, also the first transmission reflecting member irradiation monitor for attenuation section 39 of the
39Aのトラツプ光束LB1 kが同様に吸収材料でなるトラツプ部材42において吸収される。 A trap beam LB1 k of 39A is absorbed in a trap member 42 made of the same absorbing material.

第7図のように構成すれば、第1図及び第6図について上述したと同様の効果を得ることができる。 If configured as FIG. 7, it is possible to obtain the same effect as described above for the first view and Figure 6.

かくするにつき上述の構成のように、照度分布測定用減衰部38を構成する透過反射部材をすべて透過型のものとすれば、反射型のものに比べて透過型のものの方が当該光学系の主光路に挿入されたときに生じる露光モード時と測定モード時の光学系の光路長の違いを最小に抑えることができ、減衰部挿入によつて生じる光路長の変動がもたらすウエハ上の照度分布変化を最小にできる。 To every such construction described above thus, if a transparent reflective members constituting the illumination distribution measuring attenuation section 38 everything transmissive, towards a transmission type than that of the reflection type of the optical system the difference in optical path length of the optical system of the exposure mode and the measurement mode occurring when inserted into the main optical path can be minimized, the illuminance distribution on the wafer variation in optical path length results arising One by the attenuation section inserted change can be minimized. よつて、露光モード時のウエハ上での照度分布を所定の減衰率でより均一に減衰させることができ、高精度で照度分布を測定することが可能である。 Yotsute, the illuminance distribution on the wafer in the exposure mode it is possible to more uniformly attenuated by a predetermined attenuation rate, it is possible to measure the illuminance distribution with high precision.

〔他の実施例〕 Other Embodiments

(1) 第1図の測定用減衰部3のトラツプ部材22に代えて、第8図に示す構成のものを適用し得る。 (1) in place of a trap member 22 of the measuring attenuation section 3 of FIG. 1, it may be applied as the configuration shown in Figure 8.

第8図において、トラツプ部材22は、所定の厚さの光吸収部材を断面「の」字状に整形した構成を有し、第1の透過反射部材21Aを透過したトラツプ光束LB1 eを開口22A The In Figure 8, a trap member 22 is cross-sectional "no" the predetermined thickness of the light absorbing member shaped to have a structure in which shaping, the first transmitting reflecting member 21A a trap beam LB1 e an opening 22A that has passed through the
から内部に導入する。 It is introduced into the interior from. かくしてトラツプ部材22の内部に導入されたトラツプ光束LB1 eは、光吸収部材でなる壁間を反射しながら急速にトラツプ部材22に吸収される。 Thus a trap beam LB1 e introduced into the interior of a trap member 22 is rapidly absorbed in a trap member 22 while being reflected walls made of a light absorbing member.

かくして第8図の構成によれば、エネルギーが未だ十分に大きい第1の透過反射部材21Aからのトラツプ光束LB1 Thus, according to the configuration of Figure 8, a trap light beam LB1 from the first transmitting reflecting member 21A energy to still sufficiently large
eを確実に吸収し得ることにより、光学系にフレア等の悪影響を生じさせるおそれを未然に防止し得る。 By be reliably absorbed e, it may prevent the risk of causing adverse effects such as flare in the optical system in advance.

同様にして第6図の測定用減衰部3のトラツプ部材32として第9図に示すように断面「へ」字状の内部空間を有する吸収部材によつてその開口32Aからトラツプ光束LB1 A trap beam LB1 from the opening 32A Te cowpea the absorbent member having the same way the six views as a trap member 32 of the measuring attenuation section 3 'to the' cross-section as shown in FIG. 9 shaped inner space
jを吸収するように構成することができる。 It can be configured to absorb j.

(2) 上述の実施例においては、透過反射部材として平行ガラス板を用いた場合について述べたが、これに代えプリズムを用いるようにしても上述の場合と同様の効果を得ることができる。 (2) In the embodiment described above has dealt with the case of using a parallel glass plate as the transparent reflective member, also possible to use a prism instead of this it is possible to obtain the same effect as described above.

(3) 第1図においては、測定用減衰部3を4つの反射型の透過反射部材21A〜21Dを用いるようにしたが、反射型の透過反射部材の個数はこれに限らず、要は直進する主光路に対して外部に反射した露光用照明光束を主光路に戻すことができるように構成すれば良く、3個以上複数個の反射型の透過反射部材を用いて構成し得る。 (3) In the first view, although the measurement attenuation section 3 to use a four reflective transmissive reflecting member 21A to 21D, the number of reflective transmissive reflecting member is not limited to this, short straight may be configured so that the illumination light for exposure beam reflected to the outside can be returned to the main optical path with respect to the main optical path, it can be constructed using three or more plurality of reflection type transmissive reflecting member.

(4) 透過反射部材として透過型のものを適用する第6図の実施例において、透過反射部材31A〜31Dに偏光特性がある場合には、第1及び第2の透過反射部材31A及び31Bでなる第1の組に対して第3及び第4の透過反射部材31C及び31Dでなる第2の組を光軸を中心にして90゜回転させた位置に設けるようにすれば、第1の組及び第2の組それぞれがもつている偏光特性を相補的に補償することができることにより、各透過反射部材31A〜31Dの偏光特性の影響を一段と軽減し得る。 (4) In the embodiment of FIG. 6 to apply a transmission type as transmission reflection member, if there is a polarization characteristics in the transmissive reflecting member 31A-31D, the first and second transmissive reflective members 31A and 31B first when the third and fourth second set of in-transmissive reflecting member 31C and 31D with respect to a set so as to provide a position rotated 90 degrees about the optical axis, a first set of and by being able to complementarily compensate polarization characteristics that with the second set, respectively, can reduce the influence of the polarization characteristics of the transmission reflecting member 31A~31D further.

(5) 上述の実施例においては、測定用減衰部3を反射型の透過反射部材のみ、又は透過型の透過反射部材のみを用いて照明光束の光量を減衰させるように構成した場合について述べたが、反射型及び透過型の透過反射部材を必要に応じて組み合わせることにより照明光束の光量を減衰させるようにしても良い。 (5) In the above embodiment, the measuring attenuation section 3 only transmissive reflective member of a reflective or light amount of the illumination light beam using only transmission of transmission reflection member has dealt with the case configured to attenuate but it may be caused to attenuate the amount of the illumination light flux by combining as necessary the transmission-reflection member of the reflection type and transmission type.

(6) 上述の実施例においては、本発明を半導体露光装置においてウエハ上の照度分布や照射量を測定する場合について適用したが、本発明はこれに限らず、要は照明光束の光量を格段的に減衰させる必要がある場合に広く適用し得る。 (6) In the above embodiments, the present invention is applied for the case of measuring the illuminance distribution and the dose on the wafer in a semiconductor exposure apparatus, the present invention is not limited to this, short light amount of the illumination light beam significantly It may be widely applied to a case where it is necessary to attenuate.

(7) 第1図の実施例においては、光源2からハーフミラー4までの主光路として、露光用照明光束LB1が直進するように構成された光学系に本発明を適用した実施例を述べたが、これに代え第10図に示すように、光源2 In the embodiment of (7) FIG. 1, as the main optical path from the light source 2 to the half mirror 4, the exposure illumination light flux LB1 stated an embodiment in which the present invention is applied to optics configured straight but, as shown in FIG. 10 Alternatively, the light source 2
から射出された露光用照明光束LB1を反射ミラー41において90゜折り曲げるように反射することによりハーフミラー4に入射するような光学系をもつている場合には、 If you are having an optical system such that incident on the half mirror 4 by reflecting as bending 90 degrees at the reflection mirror 41 to the exposure illumination light flux LB1 emitted from,
測定用減衰部3として、3つの透過反射部材42A、42B、 As measuring attenuation section 3, three transmissive reflecting member 42A, 42B,
42Cを用いるようにすれば良い。 42C may be so used.

ここで透過反射部材42A、42B、42Cは、第4図について上述した反射型の透過反射部材で構成され、測定モード時には反射ミラー41の入射側に介挿された第1の透過反射部材42Aによつて90゜外方に折り曲げ反射することにより第2の透過反射部材42Bに入射し、この第2の透過反射部材42Bにおいて再度90゜折り曲げ反射して反射ミラー41の射出側主光路に挿入された第3の透過反射部材 Here transmissive reflecting member 42A, 42B, 42C is formed of a transmissive reflecting member reflecting type described above for FIG. 4, the measurement mode to the first transmission reflecting member 42A interposed on the incident side of the reflection mirror 41 incident on the second transparent reflecting member 42B by reflecting folded Yotsute 90 ° outwards, is inserted into an injection-side main optical path of the reflection mirror 41 and again 90 ° folding reflector in the second transmissive reflective member 42B third transmissive reflective member
42Cに入射することにより主光路を通つてハーフミラー4に測定用照明光束LB3を送出するようにする。 So as to deliver a measurement illumination light beam LB3 the main optical path to the through connexion half mirror 4 by entering the 42C.

第10図の構成によれば、3段の透過反射部材42A、42B、 According to the configuration of FIG. 10, three stages of transmissive reflective member 42A, 42B,
42Cによつて露光用照明光束LB1の光量を所定の減光率で減衰させてなる測定用照明光束LB3を得ることができる。 The amount of by connexion exposure illumination light flux LB1 to 42C attenuates at a predetermined extinction ratio can be obtained measuring the illumination light beam LB3 comprising.

(8) 上述の実施例においては、測定用減衰部3に含まれている透過反射部材のうち、入射する照明光束を受ける第1の透過反射部材だけにトラツプ部材を設けたが、これに限らず他の透過反射部材についてもトラツプ部材を設けるようにしても良い。 (8) In the above embodiment, among the transmissive reflecting member that is included in the measurement attenuation section 3 is provided with the a trap member only to the first transmitting reflecting member for receiving the illumination light beam incident, limited to this It not may be provided a trap member for other transmissive reflecting member.

〔発明の効果〕 〔Effect of the invention〕

上述のように本発明によれば、照明光束を主光路から外方に引き出す第1の透過反射部材と、当該引き出した照明光を主光路に戻す第2の透過反射部材とを組み合わせることによつて測定用減衰部を構成するようにしたことにより、測定用減衰部を主光路に挿入し又は引き出すことができるような簡易な構成によつて測定モード時において確実に照明光を減衰させることができる照明光光学装置を容易に実現し得る。 According to the present invention as described above, to be combined with the first transmission reflecting member to withdraw outwardly the illumination light beam from the main optical path and a second transmission reflecting member to which the drawer has illumination light back into the main optical path by you to configure the connexion measuring attenuation section, is a measurement for attenuation unit to attenuate reliably illumination light in due connexion measurement mode to a simple configuration can be derived inserted or the main optical path It can easily realize the illumination optical apparatus capable.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

第1図は本発明による照明光学装置の一実施例示す系統図、第2図及び第3図は照射測定部15の詳細構成を示す略線図、第4図及び第5図は反射型及び透過型の透過反射部材の詳細構成を示す略線図、第6図及び第7図は本発明の第2及び第3の実施例を示す系統図、第8図〜第 Figure 1 is system diagram illustrating an embodiment of the illumination optical apparatus according to the present invention, schematic diagram FIGS. 2 and 3 are showing a detailed structure of the irradiation measuring section 15, FIGS. 4 and 5 is reflective and schematic diagram showing a detailed configuration of a transmission-type transmission reflection member, FIGS. 6 and 7 is system diagram illustrating a second and third embodiment of the present invention, FIG. 8, second
10図は測定用減衰部の他の実施例を示す系統図である。 FIG. 10 is a system diagram showing another embodiment of the measuring attenuation section. 1……照明光学装置、2……光源、3……測定用減衰部、4……ハーフミラー、5……ビーム整形光学系、6 1 ...... illumination optical apparatus, 2 ...... light source, 3 ...... measuring attenuation section, 4 ...... half mirror, 5 ...... beam shaping optical system, 6
……フライアイインテグレータ、7……コンデンサレンズ、8……反射ミラー、9……レチクル、10……投影レンズ、11……ウエハ、16……出力エネルギー測定部、21 ...... fly-eye integrator, 7 ...... condenser lens, 8 ...... reflecting mirror 9 ...... reticle, 10 ...... projection lens, 11 ...... wafer, 16 ...... output energy measuring unit, 21
A〜21D、25A〜25B、31A〜31D、38A〜38D、39A〜39F、42 A~21D, 25A~25B, 31A~31D, 38A~38D, 39A~39F, 42
A〜42C……透過反射部材。 A~42C ...... transmissive reflective member.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 6識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/027 ────────────────────────────────────────────────── ─── front page continued (51) Int.Cl. 6 in identification symbol Agency Docket No. FI art display portion H01L 21/027

Claims (1)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】ほぼ平行な照明光束を射出する光源手段と、 光量減衰手段と を有し、上記光量減衰手段は、 所定の透過率又は反射率の入射面及び射出面をもち、上記照明光束が上記光源から照明対象に向かう主光路に挿入されて上記照明光束の光量を減衰させてなる第1の減衰光束を、上記主光路から外部光路に射出する第1の透過反射部材と、 所定の透過率又は反射率の入射面及び射出面をもち、上記外部光路において上記第1の透過反射部材から射出された上記第1の減衰光束の光量を減衰させてなる第2の減衰光束を、上記外部光路から上記主光路に復帰させるように射出する第2の透過反射部材と を具えることを特徴とする照明光学装置。 1. A light source means for emitting substantially parallel illuminating light beam, and a light amount attenuating means, the light amount attenuating means has an incident surface and an exit surface of the predetermined transmittance or reflectance, the illumination light beam There the first attenuating light beam is inserted into the main optical path towards the illuminated object from the light source consisting attenuates the light quantity of the illuminating light beam, a first transmitting reflecting member for emitting outside light path from the main optical path, predetermined having an incident and exit surfaces of the transmittance or reflectance, the second damping beams made by attenuating the light quantity of the first of said emitted from transmissive reflective member first attenuating beam in the external optical path, the an illumination optical apparatus for the external optical path, characterized in that it comprises a second transmitting reflecting member for emitting so as to return to the main optical path.
JP24852387A 1987-10-01 1987-10-01 Illumination optical apparatus Expired - Fee Related JPH07104203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24852387A JPH07104203B2 (en) 1987-10-01 1987-10-01 Illumination optical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24852387A JPH07104203B2 (en) 1987-10-01 1987-10-01 Illumination optical apparatus

Publications (2)

Publication Number Publication Date
JPS6491026A true JPS6491026A (en) 1989-04-10
JPH07104203B2 true JPH07104203B2 (en) 1995-11-13

Family

ID=17179451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24852387A Expired - Fee Related JPH07104203B2 (en) 1987-10-01 1987-10-01 Illumination optical apparatus

Country Status (1)

Country Link
JP (1) JPH07104203B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8591105B2 (en) * 2005-04-01 2013-11-26 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Optical guide with temperature sensing matrix
US7683300B2 (en) * 2006-10-17 2010-03-23 Asml Netherlands B.V. Using an interferometer as a high speed variable attenuator
JP6116457B2 (en) * 2013-09-26 2017-04-19 株式会社Screenホールディングス Drawing device

Also Published As

Publication number Publication date Type
JPS6491026A (en) 1989-04-10 application

Similar Documents

Publication Publication Date Title
US6878916B2 (en) Method for focus detection for optically detecting deviation of the image plane of a projection lens from the upper surface of a substrate, and an imaging system with a focus-detection system
US6191880B1 (en) Radial polarization-rotating optical arrangement and microlithographic projection exposure system incorporating said arrangement
US5373515A (en) Laser wavelength controlling apparatus
US5502434A (en) Smoke sensor
US20050099613A1 (en) Mask for inspecting an exposure apparatus, a method of inspecting an exposure apparatus, and an exposure apparatus
US5410397A (en) Method and apparatus for holographic wavefront diagnostics
US20030147082A1 (en) Interferometric patterning for lithography
US4676584A (en) Fiber optic light coupling assemblies
US6025917A (en) Polarization characteristic measuring method and apparatus
US3927944A (en) Spectrophotometer
US4185902A (en) Light absorption device for the prevention of stray light in particular in a phototypesetter
US5815268A (en) Lithographic lens wavefront and distortion tester
US5661737A (en) Multi-wavelength laser beam detector with refractive element
US6781135B2 (en) Universal EUV in-band intensity detector
US20030142322A1 (en) Wavefront splitting element for EUV light and phase measuring apparatus using the same
JP2003059821A (en) Optical imaging system having polarizer and quartz plate used therefor
JPH0943057A (en) Wavelength divider
JPH1096862A (en) Down lighting fluorescence microscope
JP2001274081A (en) Method and apparatus for article inspection including speckle reduction
JP2002198568A (en) Light projecting unit and photoelectric sensor
US5177777A (en) X-ray imaging apparatus
US4561748A (en) Focus detection device
JP2003028799A (en) Biochip reader
EP0358936A2 (en) Method of and apparatus for measuring film thickness
US3917406A (en) Optical beam splitter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees