JPS601717A - Needle-shaped emitter of field emission type liquid metal ion source - Google Patents

Needle-shaped emitter of field emission type liquid metal ion source

Info

Publication number
JPS601717A
JPS601717A JP10938583A JP10938583A JPS601717A JP S601717 A JPS601717 A JP S601717A JP 10938583 A JP10938583 A JP 10938583A JP 10938583 A JP10938583 A JP 10938583A JP S601717 A JPS601717 A JP S601717A
Authority
JP
Japan
Prior art keywords
needle
emitter
liquid metal
shape
shaped emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10938583A
Other languages
Japanese (ja)
Inventor
Yasuhiro Torii
鳥居 康弘
Hiroshi Yamada
宏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10938583A priority Critical patent/JPS601717A/en
Publication of JPS601717A publication Critical patent/JPS601717A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/26Ion sources; Ion guns using surface ionisation, e.g. field effect ion sources, thermionic ion sources

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To smooth feeding of a liquid metal to the tip of a needle-shaped emit ter for giveng high performance and high reliability by forming the needle-shaped emitter in a shape, in which a change of the side shape from the columnar part to the conical part or from the square pillar part to the pyramid part is gentle without any steep boundary. CONSTITUTION:Either one of conductors having high melting points such as boride TiB2, CrB2 compound boride BN-TiB2, carbide TiC or the like is used for an emitter material. And, for instance, a columnar piller 11 having a square section is cut out from a parent metal 10, followed by being machined into a columnar pillar 12 for further being machined into a needle-shaped emitter 13 by mechanically grinding the tip side thereof. Said needle-shaped emitter 13 is further machined into the needle-shaped emitter 14 having a smooth boundary by mechanically grinding the boundary part changing from the columnar pillar to a cone. Thereby, a liquid metal can be fed smoothly to the tip for obtaining the stable ion emissive properties while making it possible to emit an ion beam with the taking-out voltage of low threshold value due to a sufficient amount of supply of the liquid metal serving as an ion source.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電界放出型液体金属イオン源の針状エミッタに
関するもので、特に、イオンビームを高輝度かつ安定に
放出させることを図ったものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a needle-shaped emitter of a field emission liquid metal ion source, and is particularly intended to emit an ion beam with high brightness and stability. .

〔発明の背景〕[Background of the invention]

高輝度イオン源として、針状エミッタを用いた電界放出
型液体金属イオン源が良く知られている。
A field emission type liquid metal ion source using a needle emitter is well known as a high-intensity ion source.

第1図に、従来用いられている電界放出型液体金属イオ
ン源の断面図と電気回路図とを示す。第1図において、
1は支持部とこの支持部の先端側に一体的に形成される
イオン放出部とからガる針状エミッタ、2は液体金属溜
、6は溶融金属、4は絶縁性熱伝導体、5は針状エミッ
タ1の支持部の後端側を保持する保持部、6は加熱用抵
抗線、7は加熱用電源、8はイオンビーム引出し電源、
9はイオンビーム引出し電極である。液体金属溜2の先
端部に開孔があけてあり、との開孔部から針状エミッタ
1は、僅かの間隙(約0.1 mm ’)を保って、金
属溜2の外に突出するように保持される。
FIG. 1 shows a cross-sectional view and an electric circuit diagram of a conventionally used field emission type liquid metal ion source. In Figure 1,
Reference numeral 1 denotes a needle-shaped emitter extending from a support part and an ion emitting part integrally formed on the tip side of the support part, 2 a liquid metal reservoir, 6 a molten metal, 4 an insulating heat conductor, and 5 a A holding part that holds the rear end side of the support part of the needle emitter 1, 6 a heating resistance wire, 7 a heating power source, 8 an ion beam extraction power source,
9 is an ion beam extraction electrode. An opening is made at the tip of the liquid metal reservoir 2, and the needle-shaped emitter 1 projects out of the metal reservoir 2 from the opening with a small gap (approximately 0.1 mm') maintained. It is maintained as follows.

液体金属溜2の中にイオン化すべき金属を入れておいて
加熱用抵抗線乙に電流を流して加熱することにより1.
液体金属溜2の中の金属が溶ける。この溶融金属3は、
液体金属溜2から突出している針状エミッタ1に溢って
流れて針状エミッタ1の先端側のイオン放出部に供給さ
れる。この時、液体金属で覆われた針状エミッタ1の先
端の電界があるしきい値を越えると、液体金属表面に加
わる静電気力が液体金属の表面張力による収縮力を上廻
り、テーラ−・コーンが発生すると同時に、コーン先端
ではイオン放出が始する。このように、イオン放出には
、針状エミッタ1の先端に高電界がかかる必要があるた
め、針状エミッタ1のイオン放出部は第2図に示すよう
々円錐形状(先端曲率:1〜10μm)に加工されてい
る。第2図において、1−1は円柱状の支持部、1−2
は円錐状のイオン放出部を示し、これらの支持部1−1
とイオン放出部1−2とが同一材料で一体的に作られて
針状エミyり1を構成している。なお、支持部1−1が
角柱状で、イオン放出部1−2が角錐状のものも、従来
、採用されている。
1. By placing the metal to be ionized in the liquid metal reservoir 2 and heating it by passing a current through the heating resistance wire B.
The metal in the liquid metal reservoir 2 melts. This molten metal 3 is
The liquid metal flows overflowing into the needle-shaped emitter 1 protruding from the liquid metal reservoir 2 and is supplied to the ion emitting part at the tip side of the needle-shaped emitter 1. At this time, when the electric field at the tip of the needle-shaped emitter 1 covered with liquid metal exceeds a certain threshold, the electrostatic force applied to the liquid metal surface exceeds the contraction force due to the surface tension of the liquid metal, causing a Taylor cone. At the same time as this occurs, ion emission begins at the tip of the cone. In this way, in order to emit ions, it is necessary to apply a high electric field to the tip of the needle-like emitter 1, so the ion-emitting part of the needle-like emitter 1 has a conical shape (tip curvature: 1 to 10 μm) as shown in FIG. ) has been processed. In Fig. 2, 1-1 is a cylindrical support part, 1-2
indicates a conical ion emitting part, and these support parts 1-1
and the ion emitting section 1-2 are integrally made of the same material to constitute the needle-like emitter 1. Incidentally, a structure in which the support portion 1-1 has a prismatic shape and the ion emitting portion 1-2 has a pyramid shape has also been conventionally employed.

このような液体金属イオン源においては、イオンビーム
放出によって消失した液体金属をエミッタ先端に滑らか
に供給する必要があるが、しかし従来のイオン源では液
体金属のスムーズな供給の点に特別な考慮が払われてい
なかっただめ、イオン源として不安定な要因を内蔵して
いた。
In such a liquid metal ion source, it is necessary to smoothly supply the liquid metal dissipated by ion beam emission to the emitter tip, but in conventional ion sources, special consideration is given to the smooth supply of liquid metal. Because it had not been properly cleaned, it had a built-in factor that made it unstable as an ion source.

〔発明の目的〕[Purpose of the invention]

本発明は、これらの点に鑑みてなされたもので・ 6 
・ 針状エミッタ先端への液体金属の供給をスムーズにし、
高性能かつ高信頼性の電界放出型液体金属イオン源用針
状エミッタを提供することを目的とするものである。
The present invention has been made in view of these points.6
- Smoothly supplies liquid metal to the tip of the needle emitter,
The object of the present invention is to provide a needle-like emitter for a field emission type liquid metal ion source that has high performance and high reliability.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、上記目的を達成するために、支持部の
形状がほぼ円柱または角柱に作られ、この支持部の先端
側に一体的に形成されるイオン放出部の形状がほぼ円錐
または角錐に作られる電界放出型液体金属イオン源用針
状エミッタにおいて上記円柱部分から円錐部分へのまた
は角柱部分から角錐部分への側面形状の変化が緩慢であ
り急峻な境界を有しない針状エミッタとすること、さら
に、上記支持部からイオン放出部に向かって少なくとも
1本の溝が側面に形成されている針状エミッタとするこ
とにある。
A feature of the present invention is that, in order to achieve the above object, the shape of the support part is made into a substantially cylindrical or prismatic shape, and the shape of the ion emitting part integrally formed on the tip side of this support part is made into a substantially conical or pyramidal shape. In a needle-shaped emitter for a field emission type liquid metal ion source manufactured in Furthermore, the needle-shaped emitter has at least one groove formed on its side surface from the support section to the ion emitting section.

針状エミッタは、従来、(1)高融点導電母材を機械加
工する方法、あるいは(2)高融点金属線を電解研磨す
る方法、によって作製されている。支持部が円柱状の場
合、上記(1)の方法による時は・ 4 ・ イオン放出部は、第2図(a)のような直線状の側面を
もつ円錐に加工され、(2)の方法による時は第2図(
b)のようか凹状の側面をもつ円錐に研磨されるのが通
常である。しかし、このような針状エミッタでは、円柱
部分から円錐部分に変化する境界が急激な角度(イ)を
もっていることから、エミッタの表面を覆う液体金属の
流れがこの境界部で乱され、液体金属のイオン放出部先
端への供給がスムーズでなかった。本発明は、これを解
決するために、円柱部分から円錐部分への形状変化の境
界をなくし、円柱から円錐にスムーズに変化する形状の
針状エミッタとするものである。
Needle-shaped emitters have conventionally been manufactured by (1) machining a high melting point conductive base material, or (2) electrolytically polishing a high melting point metal wire. When the support part is cylindrical, when using the method (1) above, 4. The ion emitting part is processed into a cone with linear side surfaces as shown in Figure 2 (a), and the method (2) is used. According to Fig. 2 (
It is usually polished into a cone with concave sides as shown in b). However, in such a needle-shaped emitter, since the boundary where the cylindrical part changes to the conical part has a sharp angle (a), the flow of liquid metal covering the emitter surface is disturbed at this boundary, and the liquid metal The supply of ions to the tip of the ion emitting section was not smooth. In order to solve this problem, the present invention eliminates the boundary between the change in shape from a cylindrical part to a conical part, and provides a needle-like emitter with a shape that smoothly changes from a cylindrical part to a conical part.

〔発明の実施例〕 以下、本発明の実施例について述べる。[Embodiments of the invention] Examples of the present invention will be described below.

第6図は本発明の一実施例の針状エミッタ側面図で、(
a)はイオン放出部1−2の形状が、直線状の側面をも
つ円錐の場合、(b)は凹状の側面をもつ円錐の場合で
、いずれも、円柱部分から円錐部分への形状変化が、図
示の(ロ)の形状のように、急峻々境界を持た々いよう
に作られる。最初に、このような形状の針状エミッタの
作製法について述べる。Alイオン源々どのように、反
応性が大きい金属に対しては、高融点金属線をエミッタ
として用いることができないため、硼化物(TI B2
 。
FIG. 6 is a side view of a needle emitter according to an embodiment of the present invention.
(a) shows the case where the shape of the ion emitting part 1-2 is a cone with linear side surfaces, and (b) shows the case where the shape of the ion emitting part 1-2 is a cone with concave sides. , as shown in the figure (b), is made to have sharp boundaries. First, a method for manufacturing a needle emitter having such a shape will be described. For Al ion sources, boride (TI B2
.

CrB2)、複合硼化物(BN TI B2 )、炭化
物(TiC)等の高融点導電体がエミツタ材として用い
られる。このよう々母材から本発明の針状エミッタを作
製する方法を第4図に従って説明する。第4図において
、母材10から断面が正方形の角柱11を、正方形の一
辺の長さが0.3〜[1,7mmの寸法に、切出した後
、円柱12に機械加工する。この円柱12の先端側を機
械的な研磨(グリンデング、ポリシングなど)によって
針状エミッタ16に加工する。さらに、円柱から円錐に
移行する境界部分を機械的な研磨によって、滑らかな境
界を有する針状エミッタ14に加工する。まだ、支持部
を角柱とするときは、角柱11から円柱12への機械加
工が必要でなくなシ、角柱11のまま先端側を角錐に研
磨し、さらに、角柱から角錐への移行部分を滑らかに研
磨することでよいのはいうまでもない。
A high melting point conductor such as CrB2), composite boride (BNTIB2), or carbide (TiC) is used as the emitter material. A method for manufacturing the needle-shaped emitter of the present invention from the base material as described above will be explained with reference to FIG. In FIG. 4, a prism 11 with a square cross section is cut out from a base material 10 to a size of 0.3 to 1.7 mm on one side of the square, and then machined into a cylinder 12. The tip side of this cylinder 12 is processed into a needle-like emitter 16 by mechanical polishing (grinding, polishing, etc.). Furthermore, the boundary portion where the cylinder transitions to the cone is mechanically polished to form a needle-shaped emitter 14 having a smooth boundary. However, when the support part is made into a prism, machining from the prism 11 to the cylinder 12 is not necessary, and the tip side of the prism 11 is polished into a pyramid, and the transition part from the prism to the pyramid is smoothed. Needless to say, it is better to polish it to

次に、 ゛ 、タングステン線などの高融点金属線をエ
ミツタ材とし、電解研磨によって本発明の針状エミッタ
を作製する方法を第5図により説明する。電解槽15の
中に電解液16を入れ電解研磨すべきエミッタ用金属線
171m(17−1)+(17−2))と陰極(白金線
、カーボン電極々ど)18との間に交流もしくは直流電
圧を印加する。このようにして金属線17を電解研磨す
ると金属線は電解液面直下が最も電解研磨されやすいこ
とから、切断面が第2図(b)のよう々形状になる針状
エミッタ17−1と、残りの金属線17−2とに切り離
される。この時、流れる電流を検出することによって、
金属線17−2切断後の電解研磨時間を制御して、針状
エミッタ先端の曲率半径の制御を行なう。しかし、との
針状エミッタのままでは、円柱から円錐への境界部〔第
2図(b)の(イ)〕が電界液面に相当する急峻な境界
をもつ。
Next, a method for producing the needle-shaped emitter of the present invention by electrolytic polishing using a high melting point metal wire such as a tungsten wire as an emitter material will be explained with reference to FIG. An electrolytic solution 16 is placed in an electrolytic bath 15, and an alternating current or an electric current is applied between the emitter metal wire 171m (17-1) + (17-2)) to be electrolytically polished and the cathode (platinum wire, carbon electrode, etc.) 18. Apply DC voltage. When the metal wire 17 is electrolytically polished in this way, since the metal wire is most likely to be electrolytically polished right below the surface of the electrolytic solution, the needle-shaped emitter 17-1 whose cut surface has a shape as shown in FIG. 2(b), The remaining metal wire 17-2 is separated. At this time, by detecting the flowing current,
The radius of curvature of the tip of the needle emitter is controlled by controlling the electrolytic polishing time after cutting the metal wire 17-2. However, if the acicular emitter remains as it is, the boundary from the cylinder to the cone [(a) in FIG. 2(b)] has a steep boundary corresponding to the electrolyte level.

そのため、本発明の針状エミッタ作製のためには金属線
が切断される電解研磨時間の1/3〜2/3の・ 7 
・ 時間の間のみ、金属線17を上下動機構19で振動させ
るか、もしくは少しずつ液面から出すようにして、境界
部を滑らかにした後、金属線17を固定して、さらに電
解研磨を行なう。このようが作製法によって、第6図(
b)のよう々針状エミッタが加工できる。
Therefore, in order to produce the needle-shaped emitter of the present invention, the electrolytic polishing time required for cutting the metal wire is 1/3 to 2/3.
- The metal wire 17 is vibrated by the vertical movement mechanism 19 or brought out of the liquid surface little by little for a period of time to smooth the boundary, and then the metal wire 17 is fixed and further electrolytic polishing is performed. Let's do it. Depending on the manufacturing method, this can be seen in Figure 6 (
Needle-shaped emitters like those shown in b) can be fabricated.

このようにして作製した第6図形状を持つ針状エミッタ
を用いたイオン源では、針状エミッタの先端に液体金属
を滑らかに供給でき、そのため、安定なイオン放出特性
が得られるとともに、イ第1ン源と々る液体金属の供給
量が十分であることから、低いしきい値の引出し電圧で
イオンビームが放出できるようになる。さらに、低温(
融点以上の)でも、液体金属が針状エミッタの先端部に
安定供給されるので、低温時の特性が安定する利点1が
ある。
In the ion source using the needle-shaped emitter having the shape shown in FIG. Since the supply of liquid metal per source is sufficient, the ion beam can be emitted at a low threshold extraction voltage. In addition, low temperatures (
Since the liquid metal is stably supplied to the tip of the needle emitter even when the temperature is higher than the melting point), there is an advantage that the characteristics at low temperatures are stable.

次に、第6図によシ、本発明の針状エミッタを用いたイ
オン源と従来のイオン源との特性比較を行なう。本発明
用の針状エミッタとしては、複合硼化物(BN TI 
B2 )母材を第4図の工程にょっ・ 8 ・ て作製した。イオン源金属はklである。針状エミッタ
の先端の曲率半径は2〜5μm程度である。
Next, as shown in FIG. 6, the characteristics of the ion source using the needle emitter of the present invention and the conventional ion source will be compared. The needle emitter for the present invention is made of composite boride (BN TI
B2) A base material was produced according to the process shown in Fig. 4. The ion source metal is kl. The radius of curvature of the tip of the needle emitter is about 2 to 5 μm.

円錐の先端角度は30度と45度の2種類について従来
形状の針状エミッタと本発明形状の針状エミッタの特性
を比較した。まず、針状エミッタ表面を溶融A7が流れ
る様子を観察したとどろ、従来のエミッタでは、A7が
エミッタ表面の急峻な境界で滞って先端部に流れにくい
のに対し、本発明の針状エミッタでは、スムーズに溶融
Alが先端部に供給できることが確認できた。次に、上
記従来形状の針状エミッタと本発明による針状エミッタ
をそれぞれ装置に組み込み、実際にイオンビーム源とし
て用いて、特性を比較した。第6図はその実験結果の一
例である。イオンビーム引出し電圧に対するソース電流
、即ち、全イオン放出電流1の相関で特性を評価した。
The characteristics of the needle-shaped emitter of the conventional shape and the needle-shaped emitter of the present invention were compared for two types of conical tip angles of 30 degrees and 45 degrees. First, when we observed the flow of molten A7 on the surface of the needle-shaped emitter, we found that in conventional emitters, A7 stagnates at the steep boundaries of the emitter surface and is difficult to flow to the tip, whereas in the needle-shaped emitter of the present invention It was confirmed that molten Al could be smoothly supplied to the tip. Next, the above-mentioned conventionally shaped needle emitter and the needle emitter according to the present invention were incorporated into an apparatus, and the emitters were actually used as an ion beam source and their characteristics were compared. FIG. 6 shows an example of the experimental results. The characteristics were evaluated based on the correlation between the source current, that is, the total ion emission current 1, and the ion beam extraction voltage.

イオンビーム源としての性能としては、低い引出し電圧
でイオンビームが放出でき、さらに、大きなソース電流
が、僅かな引出し電圧の増加で得られ、さらに、上記特
性が安定していることが必要である。第6図(a)、(
b)、(C)が、第2図(a)に示す従来形状の針状エ
ミッタを用いた場合、(d)、(e)が本発明の針状エ
ミッタを用いた場合のイオンビーム引出し電圧とソース
電流(全イオン放出電流)の関係を示す。
In terms of performance as an ion beam source, it is necessary that an ion beam can be emitted with a low extraction voltage, that a large source current can be obtained with a slight increase in the extraction voltage, and that the above characteristics are stable. . Figure 6(a), (
b) and (C) are the ion beam extraction voltages when the conventional shaped needle emitter shown in FIG. 2(a) is used, and (d) and (e) are when the needle emitter of the present invention is used. The relationship between and source current (total ion emission current) is shown.

第6図において、(a)は先端角が45度の従来構造エ
ミッタの、Alの融点以上で、比較的低い温度における
特性であり、しきい値電圧が高く、かつ電圧に対するイ
オン放出特性、即ち曲線の傾斜が緩やかである。このこ
とから、特に比較的低1い温度においては、針状エミッ
タ表面を伝わって先端部に供給される溶融Alの量が十
分でかいことがわかる。また、(b)、(C)は、それ
ぞれ、先端角が45度と30度の従来構造のエミッタを
、klの溶融温度を高め、さらに長時間使用した場合の
特性であり、(a)に比べるとしきい値電圧の低下と、
電圧に対する放出特性の急峻化とが実現されるが、しか
し、このような状態は安定せず、(a)に近い不安定な
特性が時おり、発生することが認められた。一方、(d
)及び(e)は、本発明の針状エミッタを採用した場合
の特性であり、しきい値電圧が、対応する従来特性(b
)、(C)よりも明らかに低く、電圧に対する急峻々放
出特性が得られている。また、従来構造エミッタの場合
に認められたA7の溶融温度に対する依存性もほとんど
認められず、さらに、特性が不安定に変動することも認
められなかった。以上のことから、本発明の効果が実証
された。
In FIG. 6, (a) shows the characteristics of a conventional structure emitter with a tip angle of 45 degrees at a relatively low temperature above the melting point of Al, the threshold voltage is high, and the ion emission characteristics with respect to voltage, i.e. The slope of the curve is gentle. This shows that, especially at relatively low temperatures, the amount of molten Al that passes along the surface of the needle emitter and is supplied to the tip is large enough. In addition, (b) and (C) show the characteristics of emitters with conventional structures with tip angles of 45 degrees and 30 degrees, respectively, when the melting temperature of kl is increased and they are used for a longer time. In comparison, the threshold voltage decreases,
Although a steepening of the emission characteristics with respect to voltage was achieved, such a state was not stable, and unstable characteristics similar to (a) were occasionally observed to occur. On the other hand, (d
) and (e) are the characteristics when the needle emitter of the present invention is adopted, and the threshold voltage is the same as the corresponding conventional characteristic (b).
) and (C), and a steep release characteristic with respect to voltage was obtained. Further, almost no dependence on the melting temperature of A7, which was observed in the case of the emitter with the conventional structure, was observed, and furthermore, no unstable fluctuations in the characteristics were observed. From the above, the effects of the present invention were demonstrated.

なお、第6図に示すように、針状エミッタの先端角度が
小さいほど、しきい値電圧が低く橙っているが、第4図
の針状エミッタ作製法によれば、先端の角度を所望の値
にすることができ、30度程度の先端角度を得ることは
容易である。一般に60度乃至90度の先端角度範囲で
針状エミッタとして使用できる。
As shown in FIG. 6, the smaller the tip angle of the needle-shaped emitter, the lower the threshold voltage becomes orange. However, according to the needle-shaped emitter manufacturing method shown in FIG. It is easy to obtain a tip angle of about 30 degrees. Generally, a tip angle range of 60 degrees to 90 degrees can be used as a needle emitter.

なお、針状エミッタの支持部からイオン放出部に向って
表面に、1本あるいは複数本の溝を設けて、溶融金属の
流れをさらに容易にしてやれば、一層大きな効果を生じ
させることができる。
Note that an even greater effect can be produced by providing one or more grooves on the surface of the needle-shaped emitter from the supporting portion toward the ion emitting portion to further facilitate the flow of the molten metal.

〔発明の効果〕〔Effect of the invention〕

・11 ・ 以上説明したように、本発明によれば、針状エミッタの
先端にスムーズに溶融金属を供給できるため、イオンと
して放出しだ液体金属を直ちに補給でき、イオンビーム
として消失する溶融金属と供給される溶融金属とのバラ
ンスがくずれることがないため、しきい値電圧が低く、
温度依存性が少なく、さらに、再現性に富み信頼性の高
い電界放出型液体金属イオン源用針状エミッタとするこ
とができる。
・11・ As explained above, according to the present invention, since molten metal can be smoothly supplied to the tip of the needle emitter, the liquid metal that is emitted as ions can be immediately replenished, and the molten metal that disappears as an ion beam can be replaced with the molten metal that disappears as an ion beam. Since the balance with the supplied molten metal is not lost, the threshold voltage is low.
A needle-shaped emitter for a field emission type liquid metal ion source that has little temperature dependence, is rich in reproducibility, and is highly reliable can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電界放出型液体金属イオン源の一般説明用の断
面構成図、第2図は従来の針状エミッタの側面図で(a
)はイオン放出部が直線状側面のもの、(b)は凹状側
面のもの、第3図は本発明の針状エミッタの側面図で(
a)はイオン放出部が直線、状側面のもの、(b)は凹
状側面のもの、第4図及び第5図はそれぞれ本発明の針
状エミッタの作製法を説明する図、第6図は本発明と従
来のイオン源との特性の比較図である。 符号の説明 ・12・ 1・・・針状エミッタ 1−1・・・支持部1−2・・
・イオン放出部 2・・・液体金属溜3・・・溶融金属
 4・・・絶縁性熱伝導体5・・・保持部 6・・・加
熱用抵抗線7・・・加熱用電源 8・・・引出し電源9
・・・引出し電極 10・・・母材 11・・・角柱 12・・・円柱 16・・・針状エミッタ 14・・・滑らか々境界の針状エミッタ15・・・電解
槽 16・・・電界液 17’−1,17−2・・・エミッタ用金属線18・・
・陰極 19・・・上下動機構特許出願人 日本電信電
話公社 代理人弁理士 中村純之助
Figure 1 is a cross-sectional configuration diagram for general explanation of a field emission type liquid metal ion source, and Figure 2 is a side view of a conventional needle-shaped emitter (a
) is the one in which the ion emitting part has a straight side surface, (b) is the one in which the ion emitting part is on the concave side surface, and FIG. 3 is a side view of the needle-shaped emitter of the present invention (
(a) shows a case where the ion emitting part is straight and has a concave side surface; (b) shows a case where the ion emitting part is a concave side surface; FIG. 4 and FIG. FIG. 2 is a comparison diagram of the characteristics of the present invention and a conventional ion source. Explanation of symbols ・12・ 1... Needle emitter 1-1... Support part 1-2...
- Ion emitting part 2... Liquid metal reservoir 3... Molten metal 4... Insulating thermal conductor 5... Holding part 6... Heating resistance wire 7... Heating power supply 8...・Drawer power supply 9
...Extraction electrode 10...Base material 11...Prismatic column 12...Cylinder 16...Acicular emitter 14...Acicular emitter with smooth boundary 15...Electrolytic cell 16...Electric field Liquid 17'-1, 17-2... Metal wire for emitter 18...
・Cathode 19... Vertical movement mechanism patent applicant Junnosuke Nakamura, patent attorney representing Nippon Telegraph and Telephone Public Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)支持部と、この支持部の先端側に一体的に形成さ
れるイオン放出部とからなシ、支持部の形状がほぼ円柱
まだは角柱に作られ、イオン放出部の形状がほぼ円錐ま
たは角錐に作られる電界放出型液体金属イオン源の針状
エミッタにおいて、上記円柱部分から円錐部分へのまた
は角柱部分から角錐部分への側面形状の変化が緩慢であ
り急峻な境界を有しないことを特徴とする電界放出型液
体金属イオン源の針状エミッタ。
(1) The support part and the ion emitting part integrally formed on the tip side of the support part are formed so that the shape of the support part is approximately cylindrical or prismatic, and the shape of the ion emitting part is approximately conical. Or, in the needle-shaped emitter of a field emission type liquid metal ion source made in the shape of a pyramid, the change in side shape from the cylindrical part to the conical part or from the prismatic part to the pyramidal part is gradual and does not have a sharp boundary. Features a needle-shaped emitter of a field emission type liquid metal ion source.
(2) 支持部と、この支持部の先端側に一体的に形成
されるイオン放出部とからなり、支持部の形状がほぼ円
柱まだは角柱に作られ、イオン放出部の形状がほぼ円錐
または角錐に作られる電界放出型液体金属イオン源の針
状エミッタにおいて、上記円柱部分から円錐部分へのま
たは角柱部分から角錐部分への側面形状の変化が緩慢で
あり急峻な境界を有することなく、かつ、上記支持部か
らイオン放出部に向って少なくとも1本の溝が側面に形
成されていることを特徴とする電界放出型液体金属イオ
ン源の針状エミッタ。 (ロ)前記イオン放出部は、その先端角度が60度乃至
90度に作られたイオン放出部であることを特徴とする
特許請求の範囲第1項あるいは第2項記載の電界放出型
液体金属イオン源の針状エミッタ。
(2) Consisting of a support part and an ion emitting part integrally formed on the tip side of the support part, the support part has an approximately cylindrical or prismatic shape, and the ion emitting part has an approximately conical or prismatic shape. In the needle-shaped emitter of the field emission type liquid metal ion source made in the shape of a pyramid, the change in side shape from the cylindrical portion to the conical portion or from the prismatic portion to the pyramidal portion is gradual and does not have a steep boundary, and . A needle-shaped emitter for a field emission type liquid metal ion source, characterized in that at least one groove is formed on a side surface from the support section toward the ion emitting section. (b) The field emission type liquid metal according to claim 1 or 2, wherein the ion emitting section is an ion emitting section whose tip angle is formed at 60 degrees to 90 degrees. Needle emitter of ion source.
JP10938583A 1983-06-20 1983-06-20 Needle-shaped emitter of field emission type liquid metal ion source Pending JPS601717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10938583A JPS601717A (en) 1983-06-20 1983-06-20 Needle-shaped emitter of field emission type liquid metal ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10938583A JPS601717A (en) 1983-06-20 1983-06-20 Needle-shaped emitter of field emission type liquid metal ion source

Publications (1)

Publication Number Publication Date
JPS601717A true JPS601717A (en) 1985-01-07

Family

ID=14508891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10938583A Pending JPS601717A (en) 1983-06-20 1983-06-20 Needle-shaped emitter of field emission type liquid metal ion source

Country Status (1)

Country Link
JP (1) JPS601717A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419650A (en) * 1987-07-14 1989-01-23 Denki Kagaku Kogyo Kk Field emission type ion source

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633468A (en) * 1979-08-23 1981-04-03 Atomic Energy Authority Uk Spray generating source of fine droplet and ion of liquid material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633468A (en) * 1979-08-23 1981-04-03 Atomic Energy Authority Uk Spray generating source of fine droplet and ion of liquid material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419650A (en) * 1987-07-14 1989-01-23 Denki Kagaku Kogyo Kk Field emission type ion source

Similar Documents

Publication Publication Date Title
US4055780A (en) Thermionic emission cathode having a tip of a single crystal of lanthanum hexaboride
JPH02270247A (en) Manufacture of cold cathode electric field emission device
US9082578B2 (en) Electron emission element and method for manufacturing the same
US4988552A (en) Electrical discharge machining electrode
US7828622B1 (en) Sharpening metal carbide emitters
JPS601717A (en) Needle-shaped emitter of field emission type liquid metal ion source
US5962961A (en) Thermal field emission electron gun
JP3227420U (en) Cap-type contact tip for arc welding
JPH0437530B2 (en)
JP2000223041A (en) Liquid-metal ion source and manufacture thereof
US3250893A (en) Method for providing a source of heat
KR980005148A (en) Manufacturing method of needle electrode and needle electrode for electron emitter
US4638210A (en) Liquid metal ion source
JPS5846542A (en) Field emission liquid metal aluminum ion gun and its manufacture
WO2011033989A1 (en) Electron source, method for producing electron source, and electron emission method
JPH1064438A (en) Liquid metallic ion source
US5891321A (en) Electrochemical sharpening of field emission tips
GB2190786A (en) Liquid metal field emission electron source
RU2225654C2 (en) Autothermal electronic cathode
SU1701453A1 (en) Device for electrochemical marking
JP2516236Y2 (en) Power supply device for cylindrical electrodes
JP2008270017A (en) Nanochip field emission electron source
JPS6077339A (en) Liquid metal ion source
US6411775B1 (en) Ceramic flash TV evaporator
JPH02247951A (en) Electric field-discharge type ion source