JPS5846542A - Field emission liquid metal aluminum ion gun and its manufacture - Google Patents

Field emission liquid metal aluminum ion gun and its manufacture

Info

Publication number
JPS5846542A
JPS5846542A JP14252981A JP14252981A JPS5846542A JP S5846542 A JPS5846542 A JP S5846542A JP 14252981 A JP14252981 A JP 14252981A JP 14252981 A JP14252981 A JP 14252981A JP S5846542 A JPS5846542 A JP S5846542A
Authority
JP
Japan
Prior art keywords
needle
emitter
boride
conductive
ion gun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14252981A
Other languages
Japanese (ja)
Other versions
JPH026184B2 (en
Inventor
Yasuhiro Torii
鳥居 康弘
Hiroshi Yamada
宏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14252981A priority Critical patent/JPS5846542A/en
Publication of JPS5846542A publication Critical patent/JPS5846542A/en
Publication of JPH026184B2 publication Critical patent/JPH026184B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/26Ion sources; Ion guns using surface ionisation, e.g. field effect ion sources, thermionic ion sources

Abstract

PURPOSE:To obtain an Al ion beam of high luminance stable for a long time and narrow an energy width further increase angular current density, by constituting a needle-shaped emitter with either conductive boride or conductive compound boride or conductive carbide. CONSTITUTION:A metallic fine wire of diameter 0.15-0.3mm.phi made of Ti, Zr, etc. is spot welded to conductive supporting parts 8, extensibly fixed through an insulating holder 7, to build up the original form of an Al ion gun having a heating support unit and needle-shaped metallic emitter unit. The point end of the needle-shaped metallic emitter unit 10 is formed to a needle shape of radius of curvature 1-10mum by the method of electrolytic sharpening or chemical polishing and the like. And then the metallic wire of Ti, Zr, etc. of the heating support unit 9 and the needle-shaped metallic emitter unit 10 is processed with inversion to obtain a heating support unit 11 and needle-shaped emitter unit 12 inverted into boride and carbide of TiB2, ZrB2, TiC, etc.

Description

【発明の詳細な説明】 本発明は、高輝度なアルミニウム(At)イオンビーム
を放出する電界放出型液体金属イオン銃及びその製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a field emission type liquid metal ion gun that emits a high-intensity aluminum (At) ion beam, and a method for manufacturing the same.

高輝度イオン銃として、針状の金属エミッタを1用いた
電界放出型液体金属イオン銃が良く知られている。第1
図に電界放出型液体金属イオン銃の構成図を示す。針状
の金属エミッタ1は導電性の細い線(〜0.2 mmφ
)で構成、されておシ、その先端曲率半径は1〜10μ
mである。よって、金属工ミッタ1と引出し電極2との
間に電源6により引出、し電圧が印加されると、金属エ
ミッタ1の先端に高電界が印加される。この金属エミッ
タ1は加熱用支持体4にスポット溶接されている。加熱
用支持体4にイオン放出用金属5を溶融付着させておき
、加熱用電源6で加熱用支持体4を高温にすれば、金属
5が溶融して金属エミッタ1の先端の方に供給される。
A field emission type liquid metal ion gun using a needle-shaped metal emitter is well known as a high-intensity ion gun. 1st
The figure shows a configuration diagram of a field emission type liquid metal ion gun. The needle-shaped metal emitter 1 is a conductive thin wire (~0.2 mmφ
), its tip radius of curvature is 1 to 10μ
It is m. Therefore, when a voltage is applied between the metal emitter 1 and the extraction electrode 2 by the power source 6, a high electric field is applied to the tip of the metal emitter 1. This metal emitter 1 is spot welded to a heating support 4. When the ion emitting metal 5 is melted and adhered to the heating support 4 and the heating support 4 is heated to a high temperature using the heating power source 6, the metal 5 is melted and supplied to the tip of the metal emitter 1. Ru.

こ゛の時、液体金属5で覆われた針状の金属エミッタ1
の先端電界がある閾直になると、液体金属表面に加わる
静電気力は液体金属の表面張力による収縮力を上回り、
液体金属はティラー(Taylor)コーンと呼ばれる
1錐状を呈する。同時にコーン先端では液体金属の蒸発
電界に達しイオン放出が始まる。しかしながら、従来の
電界放出型液体金属イオン銃の針状エミッタは、W、 
Ni 、 Ni−Crなどの金属エミッタに限定されて
いた。そのため、ALのような反応性に富む金属は既存
の金属エミッタと反応するため、実用的な電界放出型液
体金属Atイオン銃は実現されていなかった口 本発明は、この欠点を除去するためAtイオン銃実現に
必要な条件を満たす針状エミッタ材料を見出すことによ
り、電界放出型液体金属イオン銃を開発したものである
。すなわち、本発明においては、針状エミッタを導電性
硼化物か導電性複合硼化物又は導電性炭化物のいずれか
で構成した。
At this time, the needle-shaped metal emitter 1 covered with liquid metal 5
When the tip electric field reaches a certain threshold, the electrostatic force applied to the liquid metal surface exceeds the contraction force due to the surface tension of the liquid metal,
The liquid metal has a conical shape called a Taylor cone. At the same time, the liquid metal's evaporation electric field is reached at the tip of the cone, and ion emission begins. However, the needle emitter of the conventional field emission type liquid metal ion gun is W,
It was limited to metal emitters such as Ni and Ni-Cr. Therefore, highly reactive metals such as AL react with existing metal emitters, so a practical field emission type liquid metal At ion gun has not been realized.The present invention aims to eliminate this drawback by using At A field emission type liquid metal ion gun was developed by finding a needle-shaped emitter material that satisfies the conditions necessary for realizing an ion gun. That is, in the present invention, the needle emitter is made of either a conductive boride, a conductive composite boride, or a conductive carbide.

以下、本発明を実施例によって詳細に説明する第2図(
a)、、 fb)は本発明の実施例であって、高融点金
属線を硼化物、炭化物に転化処理して作製した針状エミ
ッタを用いるMイオン銃の基本構成図である。第2図の
7は絶縁ホルダ、8は導電性支持部、9は加熱用支持部
、10は針状の金属エミッタ部、11.j2はそれぞれ
硼化物かもしくは炭化、物に転化処理された加熱用支持
部および針状エミッタ部である。先ず、第2図(alに
示すように絶縁ホルダ7に貫通固定された導電性支持部
8に0、15〜0.5 mmφのTi、Zrなどの金属
細線をスポット溶接して加熱用支持部および針状の金属
エミッタ部を有するktイオン銃の原型を組立てる。針
状の金属エミッタ部10の先端は電解研摩もしくは化学
研摩などによって、曲率半径1〜10μn1の針状にす
る。その後、加熱用支持部9と針状の金属エミッタ部1
0のTi、Zr などの金属線は転化処理を行なうこと
によって、TiB2. ZrB2. TiCなどの硼化
物、炭化物に転化された加熱用支持部11および針状エ
ミッタ部12になる・転化方法としては、反応媒体に液
体を用いる固液反応と気体を用いる固気反応による処理
方法が良(知られている。例えば、固液反応としてはN
a2B4O7とSiCをるつぼの中で溶融させ、その中
に第2図(alの加熱用支持部9および金属エミッタ部
10を浸すことにより硼化物に転化される。一方、固気
反応の例としては第2図(a)の原型Atイオン銃を真
空中に保持し、その中にBCl2もしくはB2H6もし
くはC2H4とともにAr、H2などのガスを導入し、
加熱用支持部−9に電流を流して、加熱用支持部9およ
び金属エミッタ部10を高温にすると加熱用、支持部9
および金属エミッタ部10は硼化物もしくは炭化物に転
化される。また〜後者と類似の方法として、電気炉の中
にBNと第2図の原型イオン銃を同時に入れ°、高温処
理を行なえば硼化物に転化される。また、加熱用支持部
9および金属エミッタ部10の母線として被転化材を用
いる方法について述べたが、高融点で強靭な芯線(例え
ば、W、 Moなど)の上にTi 、 Zr、 Crな
どを溶融被覆させた後、前述の転化処理を行なってイオ
ン銃を構成しても良いことは云うまでもない。
Hereinafter, the present invention will be explained in detail with reference to examples as shown in FIG.
Figs. a), fb) are basic configuration diagrams of an M ion gun according to an embodiment of the present invention, which uses a needle-like emitter manufactured by converting a high-melting point metal wire into boride or carbide. In FIG. 2, 7 is an insulating holder, 8 is a conductive support part, 9 is a heating support part, 10 is a needle-shaped metal emitter part, 11. j2 is a heating support portion and a needle-shaped emitter portion, which are respectively converted into boride or carbonized material. First, as shown in FIG. 2 (al), a thin metal wire such as Ti or Zr with a diameter of 0.15 to 0.5 mm is spot welded to the conductive support part 8 fixed through the insulating holder 7 to form a heating support part. Then, a prototype of a KT ion gun having a needle-shaped metal emitter part is assembled.The tip of the needle-shaped metal emitter part 10 is made into a needle shape with a radius of curvature of 1 to 10 μn1 by electrolytic polishing or chemical polishing. Support part 9 and needle-shaped metal emitter part 1
0 Ti, Zr, etc. metal wires can be converted into TiB2. ZrB2. The heating support part 11 and the needle-shaped emitter part 12 are converted into borides and carbides such as TiC. Conversion methods include a solid-liquid reaction using a liquid as a reaction medium and a solid-gas reaction using a gas. Good (known. For example, as a solid-liquid reaction, N
By melting a2B4O7 and SiC in a crucible and immersing the al heating support part 9 and metal emitter part 10 in the crucible, it is converted into boride.On the other hand, as an example of a solid-gas reaction, The prototype At ion gun shown in FIG. 2(a) is held in a vacuum, and a gas such as Ar or H2 is introduced into it along with BCl2, B2H6, or C2H4,
When a current is passed through the heating support part 9 and the heating support part 9 and the metal emitter part 10 are heated to a high temperature, the heating support part 9
and the metal emitter portion 10 is converted to boride or carbide. Also, as a method similar to the latter, BN and the prototype ion gun shown in FIG. 2 are placed in an electric furnace at the same time and subjected to high-temperature treatment to convert it into boride. In addition, we have described a method of using a material to be converted as the generatrix of the heating support part 9 and the metal emitter part 10, but it is also possible to use Ti, Zr, Cr, etc. on a high melting point and strong core wire (for example, W, Mo, etc.). Needless to say, the ion gun may be constructed by performing the above-mentioned conversion treatment after melt coating.

第3図(a)〜(clは、本発明の別の実施例であって
、硼化物、複合硼化物、炭化物の母材から作製した針状
エミッタを用いる電界放出型液体金属klイオン銃の基
本構成図を示す。第3図の16は母材、14は針状エミ
ッタの母型、15は加熱部を一体化した針状エミッタ部
、16は接続部である。母材16の材質は、TiB2.
 ZrB、 CrB2などの硼化物、T r 82とM
oもしくはTiC2とTiCもしくはTiB2とBNな
どの複合硼化物、TiCなどの炭化物である。これらの
母材16から針状エミッタ部1の母型14を放電加工1
機械加工(ダイアモンドカッタなど)又は超音波加工に
よって切出した後先端曲率をボリシ加工、電解研摩加工
などにより1〜10μm K 1.、て針状エミッタに
する。その後、絶縁ホルダ7に貫通されている導電性支
持部8に針状エミッタ部15を接続部16で接続すると
同時に堅固に固定する。このようにして、電界放出型液
体金属Atイオン銃を構成する。
FIGS. 3(a)-(cl) show another embodiment of the present invention, in which a field-emission liquid metal kl ion gun using a needle-like emitter made from a matrix of boride, composite boride, or carbide is shown. The basic configuration diagram is shown. In Fig. 3, 16 is a base material, 14 is a matrix for a needle-shaped emitter, 15 is a needle-shaped emitter part with an integrated heating part, and 16 is a connection part. The material of the base material 16 is , TiB2.
Borides such as ZrB and CrB2, T r 82 and M
or a composite boride such as TiC2 and TiC or TiB2 and BN, or a carbide such as TiC. From these base materials 16, the base mold 14 of the needle-shaped emitter part 1 is machined by electrical discharge machining 1.
After cutting by mechanical processing (diamond cutter, etc.) or ultrasonic processing, the tip curvature is polished to 1 to 10 μm K by grinding, electrolytic polishing, etc. 1. , to make a needle-like emitter. Thereafter, the needle-shaped emitter section 15 is connected to the conductive support section 8 penetrated through the insulating holder 7 by the connecting section 16 and at the same time is firmly fixed. In this way, a field emission type liquid metal At ion gun is constructed.

第2図(b)と第3図(c)は作製方法が異なるのみで
基本的には同一の構成を有するイオン銃である。
FIG. 2(b) and FIG. 3(c) are ion guns having basically the same configuration, except for the manufacturing method.

ここで用いた針状エミッタ材TiB2. ZrB2など
の硼化物、Ti82などを含む複合硼化物、TiCなど
の炭化物は、電界放出型液体金属イオン銃の針状□エミ
ッタとしての必須要件、すなわち(1)溶融A/−と反
応が進行しにくい、(2)溶融Atに対してぬれ性が良
い、(3)導電性がある、(41Atよりも電界蒸発し
にくい、(5)蒸気圧が低い、(61Atよりも融一点
がはるかに高い、(7)針状エミッタに加工できるなど
の条件を満足している。よって、第1図そ述べたように
、第2図(第3図)においてAtを加熱用支持部11(
加熱部を一体化した針状エミッタ部15)に溶融付着さ
せた後、加熱用支持部11および針状エミッタ部12(
針状エミッタ部15)を加熱すれば、ALは溶融し、針
状エミンタ部12(15)の先端に供給される。、この
時引出し電極2と針状エミッタ部12(15)との間に
高電圧(5〜10kV )を印加すれば、針状エミッタ
部12(15)の先端に高電界がかかり、長時間安定な
Atイオンビームが連続的に得られる。
The acicular emitter material TiB2 used here. Borides such as ZrB2, composite borides containing Ti82, etc., and carbides such as TiC meet the essential requirements as a needle-shaped emitter of a field emission type liquid metal ion gun, namely (1) that the reaction with molten A/- proceeds. (2) good wettability with molten At, (3) electrical conductivity, (harder to undergo electric field evaporation than 41At, (5) low vapor pressure, (much higher melting point than 61At) , (7) It satisfies the conditions such as being able to be processed into a needle-shaped emitter. Therefore, as mentioned in FIG. 1, in FIG.
After melting and adhering the heating part to the integrated needle-like emitter part 15), the heating support part 11 and the needle-like emitter part 12 (
When the needle emitter section 15) is heated, AL is melted and supplied to the tip of the needle emitter section 12 (15). At this time, if a high voltage (5 to 10 kV) is applied between the extraction electrode 2 and the needle-shaped emitter section 12 (15), a high electric field will be applied to the tip of the needle-shaped emitter section 12 (15), and it will remain stable for a long time. A continuous At ion beam can be obtained.

第4図は本発明の別の実施例を示したもので、電界放出
型液体金属Mイオン銃の基本構成図とその針状エミッタ
の作製法の説明図である。本実施例は、溶融At金属溜
を設けてA4”イオン銃の長寿命動作を可能にしたもの
である。第4図(a)は高融点金属細線(0,15〜0
.3 mmφ)17を転化処理によって硼化物もしくは
炭化物の針状エミッタ18にする方法を示して、いる。
FIG. 4 shows another embodiment of the present invention, and is a basic configuration diagram of a field emission type liquid metal M ion gun and an explanatory diagram of a method for manufacturing its needle-like emitter. In this example, a molten At metal reservoir is provided to enable long-life operation of an A4" ion gun. Figure 4(a) shows a high melting point metal thin wire (0.15~0.0
.. 3 mmφ) 17 into a boride or carbide acicular emitter 18 by conversion treatment.

すなわち、金属細線17の先端曲率を電解研摩もしくは
化学研摩などによって1〜10μmにした後、固液反応
、固気反応によって転化して、硼化物、炭化物の針状エ
ミッタ18にする。第4図(b)は硼化物、複合硼化物
、炭化物の母材19から針状エミッタ21を作製する方
法を示している。すなわち、母材19から0.6〜0.
7 mmの角柱もしくは円柱のロッド20を放電加工1
機械加工(ダイヤモンドカッタなど)により切出し、こ
の切出したロッド20の先端曲率半径をポリシ加工もし
くは電解研摩加工などによって1〜10μmにして、針
状エミッタ21を作製する。第4図fcl、(d)は、
このようにして作製した針状エミッタ18か21を用い
た電界放出型液体金属イオン銃の基本構成図を示してい
る。第4図(C)の22はAt金属溜、23は一針状エ
ミッタの支持部24は加熱用抵抗線、25は絶縁性熱伝
導体である。At金属溜22の先端には穴がおいており
、その部分から針状エミッタ18か21は、わずかの間
隙(約0.1 mm )を保って金属溜22の外に突出
している。このような構成になっているから、At金属
溜22の中にAtを入れておき、加熱用抵抗線24に電
流を流して加熱すると、金属溜22にあるklは、絶縁
性熱伝導体25を介して溶融される。この溶融したAt
は、金属溜22から突出している針状エミッタ18か2
1にそってその先端に供給される。よって、第1図で説
明したように、引出し電極2と針状エミッタ18か21
との間に高電圧を印加すれば、針′状エミッタ18が2
1の先端に高電界がかかりイオンビームが放出される。
That is, after the tip curvature of the thin metal wire 17 is set to 1 to 10 μm by electropolishing or chemical polishing, it is converted into a needle-shaped emitter 18 of boride or carbide by solid-liquid reaction or solid-gas reaction. FIG. 4(b) shows a method of manufacturing a needle-shaped emitter 21 from a base material 19 of boride, composite boride, or carbide. That is, from the base material 19 0.6 to 0.
Electric discharge machining 1 of a 7 mm square or cylindrical rod 20
The rod 20 is cut out by mechanical processing (diamond cutter, etc.), and the radius of curvature at the tip of the cut rod 20 is set to 1 to 10 μm by polishing or electrolytic polishing, thereby producing a needle-shaped emitter 21. Figure 4 fcl, (d) is
A basic configuration diagram of a field emission type liquid metal ion gun using the needle emitter 18 or 21 produced in this manner is shown. In FIG. 4(C), 22 is an At metal reservoir, 23 is a single-needle emitter support 24 is a heating resistance wire, and 25 is an insulating thermal conductor. A hole is provided at the tip of the At metal reservoir 22, and the needle-like emitter 18 or 21 protrudes from the hole through the metal reservoir 22 with a small gap (approximately 0.1 mm). With such a configuration, when At is placed in the At metal reservoir 22 and heated by passing a current through the heating resistance wire 24, the kl in the metal reservoir 22 becomes the insulating thermal conductor 25. is melted through. This molten At
is a needle emitter 18 or 2 protruding from the metal reservoir 22.
1 and is fed to its tip. Therefore, as explained in FIG.
If a high voltage is applied between
A high electric field is applied to the tip of 1, and an ion beam is emitted.

針状エミッタ18か21はAtに対しで反応が進行しな
く、しかも金属溜22にAti貯えられているため、A
tがなくなるまで長時□間安定なAtイオンビームが得
られる。
Since the needle emitter 18 or 21 does not react with At and moreover, A is stored in the metal reservoir 22, A
A stable At ion beam can be obtained for a long time until t disappears.

第4図(d)の26はAt金属溜、27は導電性支柱2
Bは抵抗加熱板、29はエミッタ支持部であるエミッタ
支i部29に支持された針状エミッタ18か21はA4
金属溜26および抵抗加熱板28を貫 ′通して外側に
突出している。この時、各貫通部分では、溶融Atが針
状エミツタ18か21の先端忙供給されるようにわずか
に間隙がおいている。抵抗加熱板28としては、Atに
反応しないカーボンB N K T iB 2を複合し
た複合硼化物などを用い−ることができる。このような
構成になっているから、金属溜26にAtを入れておき
、導電性支柱27に電流を流せば、抵抗加熱板28が加
熱され゛、針状エミッタ18か21および金属溜26が
熱せられ・金属溜26のAtが溶融され、針状エミッタ
18か21の先端に供給される。よって、第4図(cl
の場合゛と全く同様にして、長時間安定なMイオンビー
ムが得られる。
In FIG. 4(d), 26 is an At metal reservoir, and 27 is a conductive column 2.
B is a resistance heating plate, 29 is an emitter support part, and the needle-like emitter 18 or 21 supported by the emitter support part 29 is A4.
It penetrates the metal reservoir 26 and the resistance heating plate 28 and projects outward. At this time, a slight gap is left between each penetrating portion so that molten At can be supplied to the tip of the needle emitter 18 or 21. As the resistance heating plate 28, a composite boride made of carbon BNKTiB2 which does not react with At can be used. With this configuration, if At is placed in the metal reservoir 26 and a current is passed through the conductive column 27, the resistance heating plate 28 will be heated, and the needle emitter 18 or 21 and the metal reservoir 26 will be heated. The heated At in the metal reservoir 26 is melted and supplied to the tip of the needle emitter 18 or 21. Therefore, Fig. 4 (cl
In the same way as in case 2, an M ion beam that is stable for a long time can be obtained.

第5図に本願発明のAtイオン銃のイオンビーム放出特
性を示す。Atイオン銃は第4図(b)および(diを
用いたものである。母材19として、TiB2とBNの
複合硼化物を用いて0.5’ mmφの円柱07ド20
を切出した後、ボリシ加工によって先端曲率〜5μmの
針状エミッタ21を作製した。この針状エミッタ21を
カーボンの抵抗加熱板28に挿入してAtイオン銃を構
成した。放出イオン電流は5 mmφのアパーチャをも
つファラデイカノブによりイオン銃より16mm離れた
場所で測定した。
FIG. 5 shows the ion beam emission characteristics of the At ion gun of the present invention. The At ion gun uses FIG.
After cutting out, a needle-shaped emitter 21 having a tip curvature of ~5 μm was produced by boring. This needle-shaped emitter 21 was inserted into a carbon resistance heating plate 28 to construct an At ion gun. The emitted ion current was measured at a location 16 mm away from the ion gun using a Faraday cannob with an aperture of 5 mmφ.

第5図に示すように、87kV付近でイオンビームが放
出し始め、夫きな角度電流密度が得られるとともに長時
間安定に動作した。エミッタとA/、との−反応は見ら
れず、動作中に特性が変動することはなかった。なお、
イオン放出の閾値電圧は、エミッタの先端曲率を小さく
すると低くなる。
As shown in FIG. 5, the ion beam started to be emitted at around 87 kV, a large angular current density was obtained, and the device operated stably for a long time. No reaction between the emitter and A/ was observed, and the characteristics did not change during operation. In addition,
The threshold voltage for ion emission is lowered by reducing the curvature of the emitter tip.

以上説明したように5電界放出型液体金属イオン銃の針
状エミッタとして、溶融Mに反応が進行しにくいものを
用いているから、長時間安定な高輝度Mイオンビームな
得ることができるという利点がある。しかも、このMイ
オンビームは従来の電界放出型液体金属イオン銃で得ら
れているGa。
As explained above, the acicular emitter of the 5-field emission type liquid metal ion gun uses a material that does not easily react with molten M, so it has the advantage of being able to obtain a high-intensity M ion beam that is stable for a long time. There is. Furthermore, this M ion beam is a Ga ion beam obtained using a conventional field emission type liquid metal ion gun.

In、Auなどに比較して質量数が小さいため、エネル
ギー幅が狭くかつ角度電流密度が大きくとれる。すなわ
ち、同一の電子光学系性能で収束イオンビームのビーム
径を小さくかつ電流密度を大きくとることができる。よ
って、AtはLSIプロセスへの適合性が良いため各種
のパタニング(露光など)、イオン打込み、マイクロエ
ツチング、マイクロ付着さらにはイオンビームマイクロ
アナIJシスなど”め応用が可能である。
Since it has a smaller mass number than In, Au, etc., it has a narrow energy width and a large angular current density. That is, the beam diameter of the focused ion beam can be reduced and the current density can be increased with the same electron optical system performance. Therefore, since At has good compatibility with LSI processes, it can be applied to various patterning (exposure, etc.), ion implantation, microetching, microadhesion, and ion beam microanalysis IJ system.

なお、本発明の電界放出型液体金属イオン銃はMイオン
ビームを得るために開発されたものであるが、M以外の
金属(例えばGa、 In、 8n、 Au等)イオン
ビームを発生させる場合にも用いられることは言うまで
もないことである。
Although the field emission type liquid metal ion gun of the present invention was developed to obtain an M ion beam, it can also be used when generating an ion beam of metals other than M (for example, Ga, In, 8n, Au, etc.). Needless to say, it is also used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電界放出型液体金属イオン銃の構成図、
第2図(al 〜(b) 、第3図(a)〜(c)及び
第4図(al〜(d)はそれぞれ本発明の電界放出型液
体金属A、aAtイオン銃本構成図とその針状エミッタ
の作製法の説明図、第5図は本発明のA/=イオン銃の
イオンビーム放出特性図である。 1・・・針状の金属エミッタ 2・・・引出し電極    3・・・電源 −4・・・
加熱用支持体  °5・・・イオン敢出用金属6・・・
加熱用電源    7・・・絶縁ホルダ8・・・導電性
支持部   9・・・加熱用支持部10・・・針状の金
属エミッタ部 11・・・硼化物か炭化物に転化処理された加熱用支持
部 12・・・硼化物か炭化物に転化処理された針状エミッ
タ部 13・・・母材 14・・・針状エミッタの母型 15・・・加熱部を一体化した針状エミッタ部16・・
・接続部     17・・・高融点金属細線18・・
・転化処理された硼化物、炭化物の針状エミッタ 19・・・母材      20・・・ロッド21・・
・針−拷エミッタ  22・・・kA 金属溜26・・
・針状壬ミッタの支持部 24・・・加熱用抵抗線  25・・・絶縁性熱伝導体
26・・・At金属溜    27・・・導電性支柱2
8・・・抵抗加熱板   29・・・エミッタ支持部特
許出願人 日本電信電話公社 代理人弁理士 中村純之助
Figure 1 is a configuration diagram of a conventional field emission type liquid metal ion gun.
Figures 2 (al to (b)), Figures 3 (a) to (c), and Figures 4 (al to (d)) are the field emission type liquid metal A and aAt ion gun configuration diagrams of the present invention and their respective configuration diagrams. Fig. 5 is an explanatory diagram of the method for manufacturing a needle-shaped emitter, and is a diagram showing the ion beam emission characteristics of the A/= ion gun of the present invention. 1... needle-shaped metal emitter 2... extraction electrode 3... Power supply -4...
Heating support °5...Metal for ion extraction 6...
Heating power source 7... Insulating holder 8... Conductive support part 9... Heating support part 10... Acicular metal emitter part 11... Heating converted into boride or carbide Support part 12...acicular emitter part 13 converted into boride or carbide...base material 14...acicular emitter matrix 15...acicular emitter part 16 with integrated heating part・・・
・Connection part 17...High melting point metal thin wire 18...
・Acicular emitter of converted boride or carbide 19...Base material 20...Rod 21...
・Needle-torture emitter 22...kA Metal reservoir 26...
・Support part 24 of needle-shaped transmitter 24... Heating resistance wire 25... Insulating heat conductor 26... At metal reservoir 27... Conductive column 2
8... Resistance heating plate 29... Emitter support portion Patent applicant Junnosuke Nakamura, patent attorney representing Nippon Telegraph and Telephone Public Corporation

Claims (1)

【特許請求の範囲】 (1)電界放出型液体金属イオン銃において、針状エミ
ッタが導電性硼化物か導電性複合硼化物又は導電性炭化
物のいずれかで構成されていることを特徴とする電界放
出型液体金属アルミニウムイオン銃。 (2)上記導電性硼化物としてTiの硼化物、導電性複
合硼化物としてBNにTiの硼化物を含む複合硼化物、
導電性炭化物としてTiの炭化物を用いたことを特徴と
する特許請求の範囲第1項記載の電界放出型液体金属ア
ルミニウムイオン銃。 (6)電界放出型液体金属イオン銃の針状エミッタを、
高融点金属母線を固気もしくは固液反応によって硼化物
かもしくは炭化物に転化させて作製することを特徴とす
る電界放出型液体金属アルミニウムイオン銃の製造方法
。 (4)電界放出型液体金属イオン銃の針状エミッタを、
導電性硼化物か導電性複合硼化物又は導電性炭化物のい
ずれかからなるエミッタ用母材から放電加工か機械加工
又は超音波加工によってエミッタ母型を切り出す工程と
、該切り出された母型を化学研摩加工又は電解研摩加工
によって先端部を尖鋭にする工程を有して作製すること
を特徴とする電界放出型液体金属アルミニウムイオン銃
の製造方法。
[Scope of Claims] (1) A field emission type liquid metal ion gun, characterized in that the needle-like emitter is composed of a conductive boride, a conductive composite boride, or a conductive carbide. Ejection type liquid metal aluminum ion gun. (2) Ti boride as the conductive boride; a composite boride containing Ti boride in BN as the conductive composite boride;
The field emission type liquid metal aluminum ion gun according to claim 1, characterized in that a carbide of Ti is used as the conductive carbide. (6) The needle-shaped emitter of the field emission type liquid metal ion gun,
A method for manufacturing a field emission type liquid metal aluminum ion gun, characterized in that it is manufactured by converting a high melting point metal bus bar into a boride or carbide by solid-gas or solid-liquid reaction. (4) The needle-shaped emitter of the field emission type liquid metal ion gun,
A process of cutting out an emitter matrix from an emitter base material made of conductive boride, conductive composite boride, or conductive carbide by electrical discharge machining, machining, or ultrasonic machining, and chemically processing the cut-out matrix. 1. A method for manufacturing a field emission type liquid metal aluminum ion gun, comprising the step of making the tip sharp by polishing or electrolytic polishing.
JP14252981A 1981-09-11 1981-09-11 Field emission liquid metal aluminum ion gun and its manufacture Granted JPS5846542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14252981A JPS5846542A (en) 1981-09-11 1981-09-11 Field emission liquid metal aluminum ion gun and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14252981A JPS5846542A (en) 1981-09-11 1981-09-11 Field emission liquid metal aluminum ion gun and its manufacture

Publications (2)

Publication Number Publication Date
JPS5846542A true JPS5846542A (en) 1983-03-18
JPH026184B2 JPH026184B2 (en) 1990-02-07

Family

ID=15317473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14252981A Granted JPS5846542A (en) 1981-09-11 1981-09-11 Field emission liquid metal aluminum ion gun and its manufacture

Country Status (1)

Country Link
JP (1) JPS5846542A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059623A (en) * 1983-09-10 1985-04-06 Anelva Corp Liquid metal ion source
JPS60155647A (en) * 1984-01-24 1985-08-15 Riken Corp Piston ring
JPS61237328A (en) * 1985-04-11 1986-10-22 Denki Kagaku Kogyo Kk Ion source structure by alloy including liquid boron
JPS6383264A (en) * 1986-09-26 1988-04-13 Anelva Corp Liquid metallic ion source
JPH03233826A (en) * 1989-10-25 1991-10-17 Denki Kagaku Kogyo Kk Field emission type ion source
US6527879B2 (en) 1999-06-25 2003-03-04 Hitachi Metals Ltd. Self-lubricating piston ring material for internal combustion engine and piston ring
EP1622184A3 (en) * 2004-07-28 2007-07-18 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Emitter for an ion source and method of producing same
WO2021015039A1 (en) * 2019-07-23 2021-01-28 株式会社Param Electron gun device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132632A (en) * 1981-02-09 1982-08-17 Hitachi Ltd Ion source

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132632A (en) * 1981-02-09 1982-08-17 Hitachi Ltd Ion source

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059623A (en) * 1983-09-10 1985-04-06 Anelva Corp Liquid metal ion source
JPS60155647A (en) * 1984-01-24 1985-08-15 Riken Corp Piston ring
JPS61237328A (en) * 1985-04-11 1986-10-22 Denki Kagaku Kogyo Kk Ion source structure by alloy including liquid boron
JPS6383264A (en) * 1986-09-26 1988-04-13 Anelva Corp Liquid metallic ion source
JPH03233826A (en) * 1989-10-25 1991-10-17 Denki Kagaku Kogyo Kk Field emission type ion source
US6527879B2 (en) 1999-06-25 2003-03-04 Hitachi Metals Ltd. Self-lubricating piston ring material for internal combustion engine and piston ring
EP1622184A3 (en) * 2004-07-28 2007-07-18 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Emitter for an ion source and method of producing same
US7696489B2 (en) 2005-07-27 2010-04-13 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Emitter for an ion source and method of producing same
WO2021015039A1 (en) * 2019-07-23 2021-01-28 株式会社Param Electron gun device
US11295925B2 (en) 2019-07-23 2022-04-05 Param Corporation Electron gun device

Also Published As

Publication number Publication date
JPH026184B2 (en) 1990-02-07

Similar Documents

Publication Publication Date Title
CN1992141B (en) X-ray generating mechanism and method
US4055780A (en) Thermionic emission cathode having a tip of a single crystal of lanthanum hexaboride
US3198932A (en) Arc electrode
US4143292A (en) Field emission cathode of glassy carbon and method of preparation
JP3494583B2 (en) Method for manufacturing electron-emitting device
US5089742A (en) Electron beam source formed with biologically derived tubule materials
CN100405519C (en) Preparation method of field emission element
JPS5846542A (en) Field emission liquid metal aluminum ion gun and its manufacture
JPH0793117B2 (en) Anode of X-ray tube having diffusion barrier layer in focal track region
US3711908A (en) Method for forming small diameter tips on sintered material cathodes
JP4658490B2 (en) Electron source and manufacturing method thereof
CN107342200B (en) A kind of preparation method of rare-earth hexboride compound field emission array
JPH0146976B2 (en)
US4137476A (en) Thermionic cathode
EP2188826B1 (en) X-ray tube with enhanced small spot cathode and methods for manufacture thereof
GB1579249A (en) Thermionic cathodes
US5962961A (en) Thermal field emission electron gun
US3250893A (en) Method for providing a source of heat
JP2000223041A (en) Liquid-metal ion source and manufacture thereof
CN112242277B (en) Field emission neutralizer
US20090086920A1 (en) X-ray Target Manufactured Using Electroforming Process
US4168565A (en) Method for manufacturing thermionic cathode
US5124528A (en) Gas tungsten and plasma arc welding electrode having a carbide emitter end
JPH0752623B2 (en) Liquid boron-containing alloy ion source structure
JP2688261B2 (en) Field emission ion source