JPH03233826A - Field emission type ion source - Google Patents

Field emission type ion source

Info

Publication number
JPH03233826A
JPH03233826A JP1275950A JP27595089A JPH03233826A JP H03233826 A JPH03233826 A JP H03233826A JP 1275950 A JP1275950 A JP 1275950A JP 27595089 A JP27595089 A JP 27595089A JP H03233826 A JPH03233826 A JP H03233826A
Authority
JP
Japan
Prior art keywords
boride
ion source
titanium
needle
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1275950A
Other languages
Japanese (ja)
Other versions
JP2688261B2 (en
Inventor
Masahiro Kikuni
雅宏 紀国
Tetsuya Wada
徹也 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP1275950A priority Critical patent/JP2688261B2/en
Publication of JPH03233826A publication Critical patent/JPH03233826A/en
Application granted granted Critical
Publication of JP2688261B2 publication Critical patent/JP2688261B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To obtain a field emission type ion source having a stabilize long lifetime by using a material mainly composed of boride of titanium as a needle electrode, and using a material mainly composed of bride of chromium as a storage parts material. CONSTITUTION:A material mainly composed of boride of titanium is used as a needle electrode 1, and a material mainly composed of boride of chromium is used as storage parts 2A, 2B. At this stage, a needle electrode 1 of which tip has a needle point is used. As the material mainly composed of boride of titanium, titanium boride and the mixture of titanium boride and other boride and nitride, for example, titanium boride - boron nitride or the like having a titanium boride content more than 80% is used. As the material mainly composed of boride of chromium, chrome boride and the mixture of chromium boride and other boride and nitride, for example, such as the mixture of chromium boride - molybdenum boride or the like having a chromium boride content more than 80% is used. A field emission type ion source having a stable and practical lifetime can be thereby obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属又は合金を加熱して溶融し、高電界を印加
して金属イオンを放出させる、特にイオンビーム露光装
置、イオン注入装置などに用いられる電界放出型イオン
源に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention is applicable to metals or alloys that are heated and melted, and a high electric field is applied to release metal ions, particularly ion beam exposure equipment, ion implantation equipment, etc. This invention relates to a field emission type ion source used.

(従来の技術) 電界放出型イオン源はイオンビームの輝度が高いため、
微細集束イオンビーム装置を用いたマスクレスイオン注
入、イオンビーム露光装置Fなどに応用されている。電
界放出型イオン源はイオン化させる物質を液状で支持し
、電界の作用で該物質のイオンを放出せるために針状電
極と該物質を貯蔵するための貯蔵部から構成されている
(Conventional technology) Because the field emission ion source has a high ion beam brightness,
It is applied to maskless ion implantation using a finely focused ion beam device, ion beam exposure device F, etc. A field emission type ion source supports a substance to be ionized in a liquid state, and is composed of a needle-like electrode and a storage part for storing the substance in order to emit ions of the substance by the action of an electric field.

従来からイオン化させる物質はアルミニウム、ヒ素、ホ
ウ素、炭素、ゲルマニウム、インジウム、リン、ケイ素
、スズなど多くの元素が知られており、これらの元素は
主として金属又は合金にして用いられ、針状電極の材料
はタングステン、レニウムなどの金属単体、及びタング
ステンカーバイド、ホウ化チタン、ホウ化クロムなどが
知られている。アルミニウム、ホウ素、リン又はそれら
を含む合金などの様に反応性が大きい物質の場合はイオ
ン源構造体の材質が問題である。例えば、アルミニウム
単体の場合、針状電極の材料としてTiB、やBN  
TtBzコンポジットが適することが知られている。〔
レボリュージョン・サイエンス・インストラム(Rev
、 Sci、 In5tru+w、)  57巻、第7
号、7月I282頁〜I285頁(1986))しかし
ながら、近年、特にICのアルミニウム配線のマイグレ
ーションを防止するという新しい要望が強く、アルミニ
ウムイオンと同時に銅イオンを同時に注入することが重
要となっている。アルミニウムー銅合金を貯蔵し、針状
電極から放出する場合、従来から知られているTiJ、
 BN  Ti82などを針状電極及び貯蔵部材料とし
て用いると、合金と針状電極との濡れ性が悪いため、合
金の融点よりもかなり高い温度で動作する必要がでてく
る。そのため、合金の蒸発が激しく、隔壁(第1図4A
、4B)、ヒーター(5A、5B)に合金蒸気が凝縮し
、ヒーターの導電性があがり、ヒーターとしての機能が
なくなり、長時間の安定作業ができなかった。
Conventionally, many elements have been known to be ionized, such as aluminum, arsenic, boron, carbon, germanium, indium, phosphorus, silicon, and tin. Known materials include simple metals such as tungsten and rhenium, tungsten carbide, titanium boride, and chromium boride. In the case of highly reactive substances such as aluminum, boron, phosphorus, or alloys containing these, the material of the ion source structure is a problem. For example, in the case of aluminum alone, TiB or BN can be used as the material for the needle electrode.
TtBz composites are known to be suitable. [
Revolution Science Instrument (Rev
, Sci, In5tru+w,) Volume 57, No. 7
(No., July, pp. I282-I285 (1986)) However, in recent years, there has been a strong new desire to prevent migration of aluminum wiring in ICs, and it has become important to implant copper ions at the same time as aluminum ions. . When storing an aluminum-copper alloy and releasing it from a needle electrode, the conventionally known TiJ,
When BN Ti82 or the like is used as the needle electrode and reservoir material, it is necessary to operate at a temperature significantly higher than the melting point of the alloy due to poor wetting of the alloy with the needle electrode. Therefore, the alloy evaporates violently, causing the partition wall (Fig. 1 4A
, 4B), Alloy vapor condensed on the heaters (5A, 5B), the conductivity of the heaters increased, and the function as a heater was lost, making it impossible to work stably for a long time.

(発明が解決しようとする課B) 従来技術では金属又は合金の蒸発が激しく、長時間安定
した金属イオンを出す電界放出型イオン源を得ることが
できなかった。
(Problem B to be Solved by the Invention) In the prior art, metals or alloys evaporate violently, making it impossible to obtain a field emission type ion source that emits metal ions stably for a long period of time.

本発明の目的は安定なイオンビームを再現よく得ること
ができ実用的な寿命を有するアルミニウムー銅合金の電
界放出型イオン源を提供することである。
An object of the present invention is to provide an aluminum-copper alloy field emission type ion source that can obtain a stable ion beam with good reproducibility and has a practical lifetime.

本発明者らはこの目的を達成するために、針状電極と金
属又は合金を貯蔵する貯蔵部の材料について、鋭意検討
した結果、針状電極としてチタンの硼化物を主成分とす
る材料を使用し、貯蔵部材料としてクロムの硼化物を主
成分とする材料を使用することにより、微量のクロム硼
化物が金属又は合金中に微量溶出し、比較的低温でも針
状電極によく濡れるようになるため、動作温度を従来よ
り下げることができることがわかった。そのため金属又
は合金の蒸発によるヒーターの損傷がなくなり、安定し
た長寿命の電界放出型イオン源が得られることを見出し
、本発明を完成するに至った(課題を解決するための手
段) すなわち、本発明は以下を要旨とするものである。
In order to achieve this objective, the present inventors conducted extensive studies on the material of the needle-shaped electrode and the storage part that stores the metal or alloy, and as a result, a material containing titanium boride as the main component was used as the needle-shaped electrode. However, by using a material whose main component is chromium boride as the storage material, a small amount of chromium boride will be eluted into the metal or alloy, making it possible to wet the needle electrode well even at relatively low temperatures. Therefore, it was found that the operating temperature can be lowered than before. Therefore, it was discovered that damage to the heater due to evaporation of the metal or alloy can be eliminated, and a stable and long-life field emission type ion source can be obtained, leading to the completion of the present invention (means for solving the problem). The gist of the invention is as follows.

金属又は合金を液体で支持する針状電極と該合金を貯蔵
する貯蔵部とを有し、電界の作用で前記針状電極の先端
から、金属イオンを放出させ電界放出型イオン源におい
て、前記針状電極がチタンの硼化物を主成分とする材料
であり、前記貯蔵部がクロムの硼化物を主成分とする材
料であることを特徴とする電界放出型イオン源。
In a field emission type ion source, the needle has a needle-shaped electrode that supports a metal or an alloy in liquid and a storage part that stores the alloy, and in which metal ions are emitted from the tip of the needle-shaped electrode by the action of an electric field. 1. A field emission type ion source, wherein the shaped electrode is made of a material containing boride of titanium as a main component, and the storage portion is made of a material containing boride of chromium as a main component.

以下、さらに本発明について詳しく説明する。The present invention will be further explained in detail below.

本願発明において、イオン源構造体は第1図に示すよう
に、少くとも先端が針状であり、イオンビームを放出す
るための電極lと長時間使用するため、合金をためてお
く、貯蔵部2とこれらを加熱するための発熱体5A、5
Bと、貯蔵部の表面に濡れ広がった合金の発熱体5A、
5Bにまで浸透することを防止する働きをする隔壁4A
、4B等から構成されている。
In the present invention, as shown in FIG. 1, the ion source structure has at least a needle-like tip, and has an electrode l for emitting an ion beam and a storage part for storing the alloy for long-term use. 2 and heating elements 5A and 5 for heating these.
B, an alloy heating element 5A spread wet on the surface of the storage part,
Partition wall 4A that functions to prevent penetration into 5B
, 4B, etc.

針状電極lの先端から少し離れたところに中心に穴のあ
る引出し電極7を設け、この引出し電極は接地する。引
出し電極の穴を針状電極の先端から放出されるイオンビ
ーム8が通過する。イオン源には高圧電源9によりプラ
スの電圧が印加される。高圧電源のマイナス例は電流計
10を経て接地する。
A lead-out electrode 7 having a hole in the center is provided a little distance from the tip of the needle-shaped electrode 1, and this lead-out electrode is grounded. The ion beam 8 emitted from the tip of the needle electrode passes through the hole in the extraction electrode. A positive voltage is applied to the ion source by a high voltage power supply 9. A negative example of the high voltage power supply is grounded through the ammeter 10.

本発明において、針状電極とは少くとも先端が針状であ
る電極を云う。又チタンの硼化物を主成分とする材料と
はホウ化チタン(TizB、 TiB、TiBz、Ti
、B、など)及びホウ化チタンと他のホウ化物、窒化物
、カーバイトなどの混合体たとえばホウ化チタン−窒化
ホウ素、ホウ化チタン−窒化アルミ、ホウ化チタン−タ
ングステンカーバイド、ホウ化チタン−ホウ化クロムな
どのものでホウ化合チタンの含有量が80%以上のもの
を言い、その相対密度は90%以上のものが好ましい。
In the present invention, a needle-like electrode refers to an electrode having at least a needle-like tip. Materials whose main component is titanium boride include titanium boride (TizB, TiB, TiBz, Ti
, B, etc.) and mixtures of titanium boride and other borides, nitrides, carbides, etc., such as titanium boride-boron nitride, titanium boride-aluminum nitride, titanium boride-tungsten carbide, titanium boride- The content of titanium boride is 80% or more, such as chromium boride, and the relative density is preferably 90% or more.

又クロムの硼化物を主成分とする材料とはホウ化クロム
(CrJ、 CrzB、CrB 、 CrBzなど)及
びホウ化クロムと他のホウ化物、窒化物、カーバイトな
どの混合体たとえばホウ化クロム−ホウ化モリブデン、
ホウ化クロム−ホウ化タングステン、ホウ化クロム−タ
ングステンカーバイド′、ホウ化クロム−窒化ホウ素な
どの混合体をいい、少くともホウ化クロムの含有量が8
0%以上のものを言い、その相対密度は90%以上が好
ましい。
Materials containing chromium boride as a main component include chromium borides (CrJ, CrzB, CrB, CrBz, etc.) and mixtures of chromium boride and other borides, nitrides, carbides, etc. molybdenum boride,
Refers to a mixture of chromium boride-tungsten boride, chromium boride-tungsten carbide', chromium boride-boron nitride, etc., and the content of chromium boride is at least 8
0% or more, and its relative density is preferably 90% or more.

金属又は合金としては前述したように、アルミニウム、
ヒ素、ホウ素、ゲルマニウム、スズ、銅、アルミニウム
ー銅、パラジウムーヒ素など種々のものが用いられるが
、特にアルミニウムー銅合金に対しては顕著な効果が認
められ、アルミニウムー銅合金のMi戒はアルミニウム
が原子%で66〜95%のものを用いることができる。
As mentioned above, metals or alloys include aluminum,
Various substances are used, such as arsenic, boron, germanium, tin, copper, aluminum-copper, and palladium-arsenic, but a particularly remarkable effect has been observed on aluminum-copper alloys, and the Mi precept for aluminum-copper alloys is can be used in an amount of 66 to 95% in atomic %.

針状電極および貯蔵部の材料は焼結体または単結晶体の
いずれでも使用できる。たとえば100kg / c−
以上の圧力であらかじめ成形した後、1600〜210
0″Cの温度範囲で焼成した焼結体か、100 kg/
cm2以上の加圧下で1600〜2100°Cの温度範
囲でホットプレス成形した成形体、または、フローティ
ングゾーン法で作成した単結晶の先端を針状に加工した
ものであっても良い。
The material of the needle electrode and the reservoir can be either a sintered body or a single crystal body. For example 100kg/c-
After pre-forming with a pressure above, 1600 ~ 210
Sintered body fired in the temperature range of 0″C or 100 kg/
It may be a molded body hot-press-molded at a temperature range of 1600 to 2100° C. under pressure of cm2 or more, or a single crystal formed by a floating zone method whose tip is processed into a needle shape.

針状電極への加工は、上記焼結体または単結晶をワイヤ
カット放電加工機等で切断加工し、先端を機械研磨また
は電解研磨でとがらせる。先端曲率半径は、2μm以下
が好ましく、円錐角は、lO°〜60°の範囲内が好ま
しいが、これに限定されるものではない。
For processing into a needle-like electrode, the sintered body or single crystal is cut using a wire-cut electrical discharge machine or the like, and the tip is sharpened by mechanical polishing or electrolytic polishing. The radius of curvature of the tip is preferably 2 μm or less, and the cone angle is preferably within the range of 10° to 60°, but is not limited thereto.

貯蔵部への加工は、上記焼結体をワイヤカット放電加工
機等で切断加工する。貯蔵部の構造は、該合金を、貯蔵
するとともに、針状電極に安定に、供給できるものであ
ればよいが、針状電極の基部外形に、合わせた内面を有
する基部と、前記合金を、貯蔵する凹部を備えたものが
好ましい。
To process the storage portion, the sintered body is cut using a wire-cut electrical discharge machine or the like. The structure of the storage part may be any structure as long as it can store the alloy and stably supply it to the needle-like electrode. Preferably, it is provided with a recess for storage.

次にこのイオン源構造体に次の方法により、金属又は合
金を貯蔵する。すなわち、たとえばアルミニウムー銅合
金の場合イオン源構造体がセットされた真空装置内にア
ルミニウムー銅合金を入れたルツボをセットし、10−
”Torr以下で約700°Cで加熱して、溶融した合
金中に該イオン源構造体を浸漬し、貯蔵部に合金を溜め
る。
Next, a metal or alloy is stored in this ion source structure by the following method. That is, for example, in the case of an aluminum-copper alloy, a crucible containing the aluminum-copper alloy is set in a vacuum device in which an ion source structure is set, and 10-
The ion source structure is immersed in the molten alloy by heating at about 700° C. below Torr, and the alloy is deposited in a reservoir.

このようにして、準備したイオン源構造体を集束イオン
ビームとして引出し電圧5〜7 kV、動作温度550
〜630°Cで使用する。
In this way, the prepared ion source structure is extracted as a focused ion beam at an extraction voltage of 5 to 7 kV and an operating temperature of 550 kV.
Use at ~630°C.

〈実施例〉 以下、実施例をあげて本発明を具体的に説明する。<Example> Hereinafter, the present invention will be specifically explained with reference to Examples.

(実施例1〜6、比較例1〜5) 表に示す針状電極の材料を加工して長さ5国の棒状にし
、先端を機械研磨により尖らせ、先端の曲率半径が0.
5μmの針状電極1にした。材料の種類は表に示すとお
りである。なお、材料はタングステンの場合には塑性加
工品を用いたが、その他の材料の場合には原料粉をホッ
トプレス法で焼結したものを用いた。ホットプレスの条
件は温度は2050°C1圧力は150 kg/cm”
 、時間は30分であった。
(Examples 1 to 6, Comparative Examples 1 to 5) The material of the needle electrode shown in the table is processed into a rod shape with a length of 5 mm, the tip is sharpened by mechanical polishing, and the radius of curvature of the tip is 0.
The needle-like electrode 1 was 5 μm thick. The types of materials are shown in the table. In the case of tungsten, a plastically worked product was used as the material, but in the case of other materials, raw material powder sintered by a hot press method was used. Hot press conditions are temperature: 2050°C, pressure: 150 kg/cm”
, the time was 30 minutes.

針状電極と同じ材料を長さ3.7mmのスプーン状に加
工して貯蔵部2とした。BNルツボ中に表に示すアルミ
ニウムー銅合金3を入れ、真空装置内でI 0−bTo
rrで800°Cで工0°C加熱して、溶融したところ
に、イオン源の先端を浸漬させ、貯蔵部の中に表に示す
合金を入れた。
The same material as the needle electrode was processed into a spoon shape with a length of 3.7 mm to form the storage part 2. The aluminum-copper alloy 3 shown in the table was placed in a BN crucible, and I0-bTo was heated in a vacuum device.
The tip of the ion source was immersed in the melted material by heating at 800° C. and 0° C., and the alloy shown in the table was placed in the reservoir.

次にこの電界放出型イオン源の発熱体5A、5Bは通電
することによって貯蔵部を加熱し、貯蔵部内のアルくニ
ウム合金を融解させ、針状電極1の先端まで浸み出させ
た。貯蔵部の温度を600°Cに保ち、イオン源本体と
引き出し電極7との間に高圧電a9により引き出し電圧
を印加した。引き出し電圧は、イオンビーム電流が常に
10μAになるように調節した。イオンビーム電流は、
電流計IOにより監視し引き出し電圧は、高圧電源9に
付属の電圧計により測定した。
Next, the heating elements 5A and 5B of this field emission type ion source heated the reservoir by applying electricity, melting the aluminium alloy in the reservoir and causing it to seep out to the tip of the needle electrode 1. The temperature of the storage section was maintained at 600° C., and an extraction voltage was applied between the ion source main body and the extraction electrode 7 by a high-voltage electric current a9. The extraction voltage was adjusted so that the ion beam current was always 10 μA. The ion beam current is
It was monitored with an ammeter IO, and the draw voltage was measured with a voltmeter attached to the high voltage power supply 9.

一方、比較のため、針状電極の材質、貯蔵部の材質を表
の比較例1〜5に示すように変えたものについても、動
作温度以外については上記の実施例と同じ条件で実施し
た。
On the other hand, for comparison, experiments were conducted under the same conditions as in the above-mentioned Examples except for the operating temperature, with the materials of the needle-like electrodes and the storage parts changed as shown in Comparative Examples 1 to 5 in the table.

それらの結果を表に示す。針状電極として、チタンの硼
化物、貯蔵部にクロムの硼化物を用いた場合には、引き
出し電圧が5〜6kVで、安定なイオンビームを350
〜450時間放出させることができた。
The results are shown in the table. When titanium boride is used as the needle-shaped electrode and chromium boride is used as the storage part, the extraction voltage is 5 to 6 kV, and a stable ion beam can be generated at 350 kV.
It was possible to release it for ~450 hours.

又針状電極として、TiBz−BN、 TiBg−WC
,貯蔵部材料としてCrB、−BN、 CrB、−WC
としたものもビームの安定性はよく、300〜350時
間安定にイオンを放出させることができた。
Also, as a needle electrode, TiBz-BN, TiBg-WC
, CrB, -BN, CrB, -WC as storage material
The beam stability was also good, and ions could be stably emitted for 300 to 350 hours.

寿命後のイオン源の状態は表に示すとおり、実施例1〜
6は針状電極、貯蔵部、隔壁とも反応、侵食もなく、良
好であったが比較例1〜5は各々、針状電極又は貯蔵部
又は隔壁との侵食が認められた。
The state of the ion source after the service life is as shown in the table, in Examples 1 to 3.
Comparative Examples 1 to 5 showed no reaction or erosion with the needle electrode, storage portion, or partition wall, but corrosion with the needle electrode, storage portion, or partition wall was observed.

(発明の効果) この発明の電界放出型イオン源は、針状電極と金属又は
合金との濡れ性が良く、また、針状電極が該金属又は合
金により侵食されることもなく、長時間安定に金属イオ
ンを放出させることができ、特にICのアルミ配線にこ
れらのイオンを注入することにより、アルミ配線のマイ
グレーションを防止するのに有効である。
(Effects of the Invention) The field emission ion source of the present invention has good wettability between the needle electrode and the metal or alloy, and the needle electrode is not corroded by the metal or alloy and is stable for a long time. In particular, by implanting these ions into the aluminum wiring of an IC, it is effective to prevent migration of the aluminum wiring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電界放出型イオン源の断面図および付
属の電気回路図である。 符号  l・・・針状電極、2A、2B・・・貯蔵部、
3・・・アルミニウム合金、4A、4B・・・隔壁、5
A、5B・・・発熱体、6A、6B・・・導電体、7・
・・引出し電極、8・・・イオンビーム、9・・・高圧
電源、10・・・電流計
FIG. 1 is a sectional view and an accompanying electrical circuit diagram of a field emission type ion source according to the present invention. Code 1: Needle electrode, 2A, 2B: Storage part,
3... Aluminum alloy, 4A, 4B... Partition wall, 5
A, 5B... heating element, 6A, 6B... conductor, 7.
... Extraction electrode, 8... Ion beam, 9... High voltage power supply, 10... Ammeter

Claims (1)

【特許請求の範囲】[Claims] 金属又は合金を液体で支持する針状電極と該合金を貯蔵
する貯蔵部とを有し、電界の作用で前記針状電極の先端
から、金属イオンを放出させる電界放出型イオン源にお
いて、前記針状電極がチタンの硼化物を主成分とする材
料であり、前記貯蔵部がクロムの硼化物を主成分とする
材料であることを特徴とする電界放出型イオン源。
In a field emission type ion source, which has a needle-like electrode that supports a metal or an alloy with a liquid and a storage section that stores the alloy, metal ions are emitted from the tip of the needle-like electrode by the action of an electric field. 1. A field emission type ion source, wherein the shaped electrode is made of a material containing boride of titanium as a main component, and the storage portion is made of a material containing boride of chromium as a main component.
JP1275950A 1989-10-25 1989-10-25 Field emission ion source Expired - Lifetime JP2688261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1275950A JP2688261B2 (en) 1989-10-25 1989-10-25 Field emission ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1275950A JP2688261B2 (en) 1989-10-25 1989-10-25 Field emission ion source

Publications (2)

Publication Number Publication Date
JPH03233826A true JPH03233826A (en) 1991-10-17
JP2688261B2 JP2688261B2 (en) 1997-12-08

Family

ID=17562687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1275950A Expired - Lifetime JP2688261B2 (en) 1989-10-25 1989-10-25 Field emission ion source

Country Status (1)

Country Link
JP (1) JP2688261B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3479392A4 (en) * 2016-06-30 2020-06-17 Kla-Tencor Corporation High brightness boron-containing electron beam emitters for use in a vacuum environment
WO2021015039A1 (en) * 2019-07-23 2021-01-28 株式会社Param Electron gun device
US11201032B2 (en) 2016-08-08 2021-12-14 Asml Netherlands B.V. Electron emitter and method of fabricating same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846542A (en) * 1981-09-11 1983-03-18 Nippon Telegr & Teleph Corp <Ntt> Field emission liquid metal aluminum ion gun and its manufacture
JPS62140340A (en) * 1985-12-14 1987-06-23 Denki Kagaku Kogyo Kk Field emission type ion source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846542A (en) * 1981-09-11 1983-03-18 Nippon Telegr & Teleph Corp <Ntt> Field emission liquid metal aluminum ion gun and its manufacture
JPS62140340A (en) * 1985-12-14 1987-06-23 Denki Kagaku Kogyo Kk Field emission type ion source

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3479392A4 (en) * 2016-06-30 2020-06-17 Kla-Tencor Corporation High brightness boron-containing electron beam emitters for use in a vacuum environment
US11201032B2 (en) 2016-08-08 2021-12-14 Asml Netherlands B.V. Electron emitter and method of fabricating same
US11688579B2 (en) 2016-08-08 2023-06-27 Asml Netherlands B.V. Electron emitter and method of fabricating same
WO2021015039A1 (en) * 2019-07-23 2021-01-28 株式会社Param Electron gun device
KR20210114535A (en) * 2019-07-23 2021-09-23 가부시키가이샤 파람 electron gun device
US11295925B2 (en) 2019-07-23 2022-04-05 Param Corporation Electron gun device

Also Published As

Publication number Publication date
JP2688261B2 (en) 1997-12-08

Similar Documents

Publication Publication Date Title
US4721878A (en) Charged particle emission source structure
US2754259A (en) Process and apparatus for growing single crystals
Davies et al. The Effect of Electrode Temperature on Vacuum Electrical Breakdown between Plane‐Parallel Copper Electrodes
Williams et al. Field-emitted current necessary for cathode-initiated vacuum breakdown
JPH0685309B2 (en) Liquid metal ion source
US4946706A (en) Method of ion implantation
US4631448A (en) Ion source
JPS5840744A (en) Metal ion source
JPH03233826A (en) Field emission type ion source
JPH026184B2 (en)
JPH02247951A (en) Electric field-discharge type ion source
Ding et al. Field emission from amorphous diamond coated Mo tip emitters by pulsed laser deposition
WO1992012275A1 (en) Device and process for the vaporisation of material
JP2517678B2 (en) Liquid metal ion source
JPH0349175B2 (en)
JPS60177528A (en) Tantalum filament excellent in durability and its manufacture
JPH02234329A (en) Liquid metal ion source
CN115662860A (en) Micro-focus X-ray source cathode structure and preparation method thereof
JP2510719B2 (en) Liquid metal ion source structure
JPS61237328A (en) Ion source structure by alloy including liquid boron
Okuyama et al. Field desorption of sodium acetate studied by combined optical microscopy and mass spectrometry
Cochran et al. Comparison of low-voltage field emission from TaC and tungsten fiber arrays
JPS62133643A (en) Ion generating device
Glascock Thorium Dispenser Cathode for an Electron Gun
RU2075132C1 (en) Source of intense ion beams