JPS62140340A - Field emission type ion source - Google Patents

Field emission type ion source

Info

Publication number
JPS62140340A
JPS62140340A JP28176785A JP28176785A JPS62140340A JP S62140340 A JPS62140340 A JP S62140340A JP 28176785 A JP28176785 A JP 28176785A JP 28176785 A JP28176785 A JP 28176785A JP S62140340 A JPS62140340 A JP S62140340A
Authority
JP
Japan
Prior art keywords
substance
needle
electrode
ion source
ionized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28176785A
Other languages
Japanese (ja)
Inventor
Akio Mutsukawa
昭雄 六川
Naoyuki Okamoto
直征 岡元
Hirotoshi Hagiwara
萩原 宏俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP28176785A priority Critical patent/JPS62140340A/en
Priority to DE8686107442T priority patent/DE3677062D1/en
Priority to EP86107442A priority patent/EP0204297B1/en
Priority to US06/870,530 priority patent/US4721878A/en
Publication of JPS62140340A publication Critical patent/JPS62140340A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to emit a stable ion beam by joinning the storage part of material to be ionized and a needle-shaped electrode using a material of specific character. CONSTITUTION:A storage room 2 for storing a material to be ionized 1 is fixed with a needle-shaped electrode 3 at a joint part 6 and a base 5 of the electrode 3 is held between heating elements 7a and 7b through partition walls 9a and 9b. A terminal used for the joint part 6 is the material having poor wettability with a material 1. It is obtained, for example, by kneading an aqueous mixture of some amount of powder of inorganic compound with relative high melting point such as Mo, the metal powder with relative low melting point such as Ni, and a colloidal carbon and then sintering it. By this means, the storage part 2 and the electrode 3 are fixed with each other, besides a stable ion beam can be obtained as the material 1 is not spilled out and crawled to the heating elements 7a, 7b.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融されたイオン化すべき物質からイオンビ
ームを発生させることの出来る電界放射型イオン源に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a field emission type ion source capable of generating an ion beam from a melted substance to be ionized.

〔従来技術とその問題点〕[Prior art and its problems]

従来から電界放射型イオン源の構造についてはいろいろ
提案されている。例えば、イオン化すべき物質の貯蔵部
を発熱性支持部材で把持したもの(特開昭58−658
29号公報)、板状発熱性部材の中央に電極を貫通させ
、貫通部付近に該物質を付着させたもの(特開昭59−
101750号公報)などがある。
Various proposals have been made regarding the structure of field emission type ion sources. For example, a storage part for a substance to be ionized is held by a heat-generating support member (Japanese Patent Laid-Open No. 58-658
(Japanese Patent Application Laid-Open No. 1983-29), in which an electrode is passed through the center of a plate-shaped heat-generating member, and the substance is attached near the penetration part (Japanese Patent Laid-Open No. 59-
101750).

しかしながら、これらの方法は、発熱性部材がイオン化
すべき物質と濡れ性の悪い物質であったとしても、通電
してイオンを放射させていると、該物質の貯蔵部又は針
状電極よシ該物質がはみ出してきて、発熱性部材の表面
が該物質により濡れて、該部材の電気抵抗が低くなり、
加熱が出来なくなるのでイオンビームの放射量に悪影響
を与えるという欠点がある。
However, in these methods, even if the exothermic member is a substance that has poor wettability with the substance to be ionized, when electricity is applied to emit ions, the material will not be absorbed by the storage part of the substance or the needle electrode. The substance protrudes, the surface of the heat-generating member becomes wet with the substance, and the electrical resistance of the member decreases.
This has the disadvantage that heating is no longer possible, which adversely affects the radiation amount of the ion beam.

また、針状電極の材質についてはタングステン(W)が
一般的に使われておシ、そのほか、セラミックスやカー
ボン(%公昭59−16385号公報)、周期律表4.
5族で第4から6周期の元素の炭化物、ホウ化物、窒化
物(特開昭57−132632号公報)が反応性の強い
イオン化すべき物質にたえる材質として知られている。
In addition, tungsten (W) is generally used as the material for the needle-shaped electrode, and other materials include ceramics, carbon (% Publication No. 59-16385), and materials listed in Periodic Table 4.
Carbides, borides, and nitrides of elements in group 5 and periods 4 to 6 (Japanese Unexamined Patent Publication No. 132632/1982) are known as materials suitable for highly reactive substances to be ionized.

しかしながら、これらの材質は融点が高く、脆いのでス
ポット溶接のような従来知られている簡便々方法で貯蔵
部およびヒータ一部との接合が困難であった。壕だ、特
願昭57−132662号公報に例示されている様に、
針状電極をカーボンヒーターで固定した構造では、実質
的な貯蔵部が存在しないので、イオン化すべき物質の蒸
発損失が多いので、イオン源としての寿命が短かい。
However, these materials have high melting points and are brittle, making it difficult to join them to the storage section and a portion of the heater using conventionally known simple methods such as spot welding. It's a trench, as exemplified in Japanese Patent Application No. 132662/1983.
In a structure in which a needle electrode is fixed with a carbon heater, there is no substantial storage part, so there is a lot of evaporation loss of the substance to be ionized, so the life as an ion source is short.

本発明はこのような欠点のないイオンビームの安定々電
界放射型イオン源を提供することを目的とする。
An object of the present invention is to provide a field emission type ion source that stably produces an ion beam without such drawbacks.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明者らは、安定なイオンビームを得るだめに電界放
射型イオン源の構造についているいろ研究を行なった結
果、イオン化すべき物質の貯蔵部と針状電極を該物質と
濡れ性の悪い材料で接合し、該針状電極の基部を発熱体
を介して、導電性部材に」:I)把持されることにより
、前記のような欠点のない安定で長寿命なイオンビーム
が得られることをみいだした。
In order to obtain a stable ion beam, the present inventors conducted various studies on the structure of a field emission type ion source. As a result, the inventors discovered that the storage part of the substance to be ionized and the needle-shaped electrode were made of a material with poor wettability with the substance. By connecting the base of the needle-like electrode to a conductive member through a heating element: I) By holding the base of the needle-shaped electrode with a conductive member, a stable and long-life ion beam without the above-mentioned drawbacks can be obtained. I found it.

すなわち、本発明はイオン化すべき物質を加熱融解して
針状電極の先端に導き、電界を介して該物質のイオンビ
ームを得る電界放射型イオン源において、該物質の貯蔵
部と該針状電極との接合部が該物質と演れ性の悪い物質
からなり、該針状電極の基部を発熱体を介して導電性支
持部材により把持したことを特徴とする電界放射型イオ
ン源である。
That is, the present invention provides a field emission type ion source in which a substance to be ionized is heated and melted and guided to the tip of a needle-shaped electrode, and an ion beam of the substance is obtained through an electric field. The field emission type ion source is characterized in that the joint portion with the needle electrode is made of a material having poor playability with the material, and the base of the needle electrode is held by a conductive support member via a heating element.

以下、本発明について図面にしたがって説明する。Hereinafter, the present invention will be explained according to the drawings.

第1図は、本発明の電界放射型イオン源の断面図、第2
図は、本発明の電界放射型イオン源の主要部斜視図であ
る。
FIG. 1 is a cross-sectional view of the field emission type ion source of the present invention, and FIG.
The figure is a perspective view of the main parts of the field emission type ion source of the present invention.

イオン化すべき物質1の貯蔵部2は、円筒形丑たは角形
の容器であってその底部を針状電極が貫通している。貯
蔵部はタンタル(Ta )のような耐熱性金属板を折シ
曲げ加工して製作するか、まタハチタン(T])、ジル
コニウム(Zr ) 、ニオブ(Nb )、タンタル(
Ta、 )、クロム(Cr )、タングステン(W)、
モリブデン(MO)等のホウ化物、炭化物、窒化物など
(たとえば、WO2TaC、CrB2 、  TiNな
ど)の焼結体を超音波加工、放電加工等により加工する
The storage section 2 for the substance 1 to be ionized is a cylindrical or square container, the bottom of which is penetrated by a needle-shaped electrode. The storage section is made by bending a heat-resistant metal plate such as tantalum (Ta), or made of metal such as Matahachitan (T), zirconium (Zr), niobium (Nb), or tantalum (T).
Ta, ), chromium (Cr), tungsten (W),
A sintered body of a boride, carbide, nitride, etc. (for example, WO2TaC, CrB2, TiN, etc.) such as molybdenum (MO) is processed by ultrasonic machining, electrical discharge machining, or the like.

針状電極と貯蔵部との接合部6は、前記した溶接性の悪
い針状電極と貯蔵部を固定する目的のほかに、貯蔵部と
針状電極との隙間からイオン化すべき物質がはみ出るこ
とを防止する目的があシ、接合部の材料は、イオン化す
べき物質と濡れ性が悪いものなければならない。このよ
うな材料についての検討を行なった結果、MO,Cr、
  Zr、  ’ri。
The joint 6 between the needle electrode and the storage section is used not only to fix the needle electrode and the storage section, which have poor weldability, but also to prevent the substance to be ionized from protruding from the gap between the storage section and the needle electrode. To prevent this, the material of the joint must have poor wettability with the substance to be ionized. As a result of studying these materials, we found that MO, Cr,
Zr, 'ri.

Ta、W等のホウ化物、炭化物、窒化物などの比較的高
融点な無機化合物の粉末:Aと、Ni、Fe。
Powders of inorganic compounds with relatively high melting points such as borides, carbides, and nitrides such as Ta and W: A, and Ni and Fe.

Co、Pd等の比較的低融点な金属粉末:B、さらにコ
ロイド状カーボン:c(日立粉末冶金社製商品名「ヒタ
ゾル」)を重量比でAが5o〜96%、Bが38〜5%
、Cが2〜45%の割合で配合し、さらに少量の水を加
えて混練した結合剤を接合部に塗布し、約150000
で数分間加熱することにより焼結する。
Comparatively low melting point metal powder such as Co and Pd: B, and colloidal carbon: C (trade name "Hitasol" manufactured by Hitachi Powder Metallurgy Co., Ltd.) in a weight ratio of 50 to 96% A and 38 to 5% B.
, C at a ratio of 2 to 45%, and a small amount of water added and kneaded is applied to the joint, and about 150,000
Sinter by heating for several minutes.

前記配合において、粉末Aは接合部の耐熱性を付与させ
る効果かあ、!>、51]%未満では、この電界放射型
イオン源を加熱使用するときに接合部が軟化変形する。
In the above formulation, powder A has the effect of imparting heat resistance to the joint! >, 51]%, the joint portion will be softened and deformed when the field emission type ion source is heated and used.

9ろチをこえると、焼結温度を高くしないと強固な接合
が出来ない。粉末Bが68係をこえると前述したように
電界放射型イオン源を加熱使用するときに接合部が軟化
変形し、5チ未満では焼結しない。コロイド状カーボン
:Cは前記AおよびB成分と混合することにょシ接合部
に塗布するのに適した流動性を有するペーストをつくる
ことができる。さらに、このCを含んだものを焼結する
ことにより接合部をイオン化すべき物質と濡れないよう
にする効果もある。すなわちCは2チ以上、好丑しくは
10%以上にすると、ペーストの流動性を改善でき、乾
燥時のヒビ割れ防止効果がある。一方、45%をこえる
と焼結が大変困難となり、接合部の強度が弱くなシ、使
用中に剥離を起こしやすくなる。
If it exceeds 9 degrees, a strong bond cannot be formed unless the sintering temperature is increased. If powder B exceeds 68 mm, the joint portion will be softened and deformed when the field emission type ion source is heated, as described above, and if it is less than 5 mm, sintering will not occur. Colloidal carbon: C can be mixed with components A and B to form a paste with fluidity suitable for application to joints. Furthermore, by sintering a material containing this C, there is an effect of preventing the joint portion from getting wet with the substance to be ionized. That is, when the C content is 2% or more, preferably 10% or more, the fluidity of the paste can be improved and cracking can be prevented during drying. On the other hand, if it exceeds 45%, sintering will be very difficult, the strength of the joint will be weak, and peeling will easily occur during use.

針状電極の基部5は、発熱体7a、7bを介してそれぞ
れ導電性支持部材8a、8bで把持される。針状電極の
基部5と発熱体との間に、溶融したイオン化すべき物質
と濡れにくい物質(例えば、グラツシーカーボン、熱分
解グラファイト、炭素シート)からなる隔壁9a、、9
bを設けると該物質の発熱体へのはみ出しをよシ完全に
防止することが出来る。
The base 5 of the needle electrode is held by conductive support members 8a and 8b, respectively, via heating elements 7a and 7b. Between the base 5 of the needle electrode and the heating element, there are partition walls 9a, 9 made of a molten substance to be ionized and a substance that is difficult to wet (for example, glassy carbon, pyrolytic graphite, carbon sheet).
By providing b, it is possible to completely prevent the substance from protruding into the heating element.

発熱体は、熱分解グラファイトを立方体に加工し/こも
のが適している。導電性支持部材は、タンタルなどの金
属が用いられる。
A suitable heating element is a cube made of pyrolytic graphite. The conductive support member is made of metal such as tantalum.

〔実施例〕〔Example〕

次に本発明による電界放射型イオン源の実施例について
述べる。
Next, an example of a field emission type ion source according to the present invention will be described.

実施例1 断面が0.75 X O−75mmの正方形で長さ5−
Dimの角柱のWC焼結体(相対密度99チ)を機械研
磨で先端の曲率半径を3μmの針状に加工し、針状電極
としだ。
Example 1 A square with a cross section of 0.75 x O-75mm and a length of 5-
A prismatic WC sintered body (relative density 99 cm) of Dim was mechanically polished into a needle shape with a radius of curvature of 3 μm at the tip and used as a needle electrode.

厚さ0−1mmのTa板を1辺が2 mrnの立方体の
カップ状に加工し、その底面に1辺が0.8imの正方
形の穴を開けたものを貯蔵部としだ。貯蔵部に針立粉末
冶金社製商品名「ヒタデル」)を60:30:10重量
係の割合で混合し必要に応じて水をくわえ、ペースト状
にした結合剤を塗布し、16000Cで2分間加熱し焼
結させた。丑だ、熱分解グラファイトを1辺が0.75
mmの立方体に加工し発熱体とした。隔壁として、厚さ
0−1mmの熱分解グラファイト板を用いた。導電性支
持部材は、Taで作製した。貯蔵部にイオン化すべき物
質として、Ni40Pd40B20 (原子比)の合金
をいれ、7 X 10−7torrの真空中で920°
Cに加熱して、引き出し電極10に8に■の電圧をかけ
てイオンビームの引き出しを行なったところ、全電流量
50μAのイオンビーム11がイ(Lられ’1 300
時間にわたシ安定に作動した。全電流量の変動率は、0
.5%/hour以下であった。使用後、イオン源を分
解して観察したが、接合部6、隔壁9a、9bおよび発
熱体7a、7bには、合金の付着は認められなかった。
A Ta plate with a thickness of 0 to 1 mm was processed into a cubic cup shape with a side of 2 mrn, and a square hole with a side of 0.8 mm was bored in the bottom to serve as a storage section. Mix ``Hitadel'' (trade name, manufactured by Haritate Powder Metallurgy Co., Ltd.) in the storage area in a ratio of 60:30:10 by weight, add water if necessary, apply a paste-like binder, and heat at 16,000C for 2 minutes. It was heated and sintered. Ushi, one side of pyrolytic graphite is 0.75
It was processed into a cube of mm and used as a heating element. A pyrolytic graphite plate with a thickness of 0-1 mm was used as a partition wall. The conductive support member was made of Ta. An alloy of Ni40Pd40B20 (atomic ratio) was placed as the substance to be ionized in the reservoir, and the mixture was heated at 920° in a vacuum of 7 x 10-7 torr.
When the ion beam was extracted by heating it to C and applying a voltage of 8 to the extraction electrode 10, the ion beam 11 with a total current of 50 μA was generated.
It operated stably over time. The fluctuation rate of the total current amount is 0
.. It was 5%/hour or less. After use, the ion source was disassembled and observed, but no alloy was observed on the joints 6, partition walls 9a, 9b, and heating elements 7a, 7b.

実施例2 CrB2の焼結体からフローティングゾーン法により単
結晶を製造し、その単結晶を四角柱に加工した後、その
先端を電解研磨により曲率半径1.0μmに尖らせたも
のを針状電極とした。
Example 2 A single crystal was manufactured from a sintered body of CrB2 by the floating zone method, the single crystal was processed into a square prism, and the tip was sharpened to a radius of curvature of 1.0 μm by electropolishing to form a needle-shaped electrode. And so.

WCの焼結体(相対密度99%)を直径5mvt。A sintered body of WC (relative density 99%) with a diameter of 5 mvt.

高さ2.5朋の円柱に加工し、その円柱に超音波加工機
で、直径2.0mm、深さ2.0mmの窪みを開け、窪
みの中心に直径0.7mmの穴を貫通させたものを貯蔵
部とした。
It was processed into a cylinder with a height of 2.5mm, a depression with a diameter of 2.0mm and a depth of 2.0mm was made in the cylinder using an ultrasonic processing machine, and a hole with a diameter of 0.7mm was passed through the center of the depression. The object was used as a storage unit.

貯蔵部に針状電極を挿入し、貯蔵部底部の穴と針状電極
の隙間にW2B5粉、C○粉、およびコロイド状カーボ
ン(実施例1と同じもの)を60:20=20@の重量
%の割合で混合してペースト状の接合剤を塗布し、15
50°Cで6分間加熱し、焼結させた。発熱体は、実施
例1と同じものを使用した。貯蔵部のイオン化すべき物
質としてAu 60S i 26Be 14合金(原子
比)をいれ1.OX 10−7torrの真空中で60
0°Cに加熱して、引き出し電圧6 K、Vでイオンビ
ームの引き出しを行なったμ ところ、全電流量10璽Aの安定々イオンビームが約4
00時間にわたシ得られた。
Insert the needle-like electrode into the reservoir, and add W2B5 powder, C○ powder, and colloidal carbon (same as in Example 1) to the gap between the hole at the bottom of the reservoir and the needle-like electrode at a weight of 60:20=20@ Apply a paste-like bonding agent by mixing at a ratio of 15%.
It was heated at 50°C for 6 minutes to sinter. The same heating element as in Example 1 was used. 1. Insert Au 60S i 26Be 14 alloy (atomic ratio) as the substance to be ionized in the storage section. 60 in a vacuum of OX 10-7 torr
After heating to 0°C, the ion beam was extracted with an extraction voltage of 6 K and V. However, the ion beam was stably produced at a total current of 10 A.
Obtained over 00 hours.

使用後、イオン源を分解して観察すると、貯蔵部は、合
金により濡れやすい材料であるため、貯蔵部の外側に合
金が付着していた。しかし、発熱体への合金のはい出し
は見られなかった。
After use, when the ion source was disassembled and observed, it was found that the alloy was attached to the outside of the reservoir, since the reservoir is made of a material that is easily wetted by the alloy. However, no leakage of the alloy into the heating element was observed.

〔発明の効果〕〔Effect of the invention〕

本発明の電界放射型イオン源は、使用中にイオン化すべ
き物質が発熱体へはい出すことがないだめ安定なイオン
ビームが得られる。
The field emission type ion source of the present invention can provide a stable ion beam since the substance to be ionized does not leak into the heating element during use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の電界放射型イオン源の断面図であシ
、第2図は、本発明の電界放射型イオン源の主要部斜視
図である。 1・・・イオン化すべき物質 2・・・貯蔵部 3・・・針状電極 4・・・針状電極の先端 5・・・針状電極の基部 6・・・接合部 7a、7b・・・発熱体 8a、8b・・・導電性支持部材 9a、9b・・・隔壁 10・・・引き出し電極 11・・・イオンビーム 特許出願人 電気化学工業株式会社 第1図 3−m−針仄鬼椅
FIG. 1 is a sectional view of a field emission type ion source of the present invention, and FIG. 2 is a perspective view of the main parts of the field emission type ion source of the present invention. 1...Substance to be ionized 2...Storage part 3...Acicular electrode 4...Tip 5 of the needle electrode 5...Base of the needle electrode 6...Joint parts 7a, 7b...・Heating elements 8a, 8b... Conductive support members 9a, 9b... Partition wall 10... Extracting electrode 11... Ion beam patent applicant Denki Kagaku Kogyo Co., Ltd. Figure 1 3-m-Harikokugi chair

Claims (1)

【特許請求の範囲】[Claims] イオン化すべき物質を加熱融解して針状電極の先端に導
き、電界を介して該物質のイオンビームを得る電界放射
型イオン源において、該物質の貯蔵部と該針状電極との
接合部が該物質と濡れ性の悪い物質からなり、該針状電
極の基部を発熱体を介して導電性支持部材により把持し
たことを特徴とする電界放射型イオン源。
In a field emission type ion source that heats and melts a substance to be ionized and guides it to the tip of a needle-shaped electrode to obtain an ion beam of the substance through an electric field, the joint between the storage part of the substance and the needle-shaped electrode is 1. A field emission type ion source comprising a substance having poor wettability with the above substance, and characterized in that the base of the needle electrode is held by a conductive support member via a heating element.
JP28176785A 1985-06-04 1985-12-14 Field emission type ion source Pending JPS62140340A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP28176785A JPS62140340A (en) 1985-12-14 1985-12-14 Field emission type ion source
DE8686107442T DE3677062D1 (en) 1985-06-04 1986-06-02 SOURCE OF CHARGED PARTICLES.
EP86107442A EP0204297B1 (en) 1985-06-04 1986-06-02 Charged particle emission source structure
US06/870,530 US4721878A (en) 1985-06-04 1986-06-04 Charged particle emission source structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28176785A JPS62140340A (en) 1985-12-14 1985-12-14 Field emission type ion source

Publications (1)

Publication Number Publication Date
JPS62140340A true JPS62140340A (en) 1987-06-23

Family

ID=17643684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28176785A Pending JPS62140340A (en) 1985-06-04 1985-12-14 Field emission type ion source

Country Status (1)

Country Link
JP (1) JPS62140340A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233826A (en) * 1989-10-25 1991-10-17 Denki Kagaku Kogyo Kk Field emission type ion source
WO2021015039A1 (en) * 2019-07-23 2021-01-28 株式会社Param Electron gun device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838905A (en) * 1981-09-02 1983-03-07 Toppan Printing Co Ltd Color separating filter for solid-state image pickup element
JPS60249234A (en) * 1984-05-25 1985-12-09 Hitachi Ltd Liquid ion source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838905A (en) * 1981-09-02 1983-03-07 Toppan Printing Co Ltd Color separating filter for solid-state image pickup element
JPS60249234A (en) * 1984-05-25 1985-12-09 Hitachi Ltd Liquid ion source

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233826A (en) * 1989-10-25 1991-10-17 Denki Kagaku Kogyo Kk Field emission type ion source
WO2021015039A1 (en) * 2019-07-23 2021-01-28 株式会社Param Electron gun device
KR20210114535A (en) * 2019-07-23 2021-09-23 가부시키가이샤 파람 electron gun device
US11295925B2 (en) 2019-07-23 2022-04-05 Param Corporation Electron gun device

Similar Documents

Publication Publication Date Title
EP0204297B1 (en) Charged particle emission source structure
US4784160A (en) Implantable device having plasma sprayed ceramic porous surface
EP3597060A2 (en) Cartridge and atomizer having same
US4784159A (en) Process for making an implantable device having plasma sprayed metallic porous surface
JPS5840744A (en) Metal ion source
GB2099625A (en) Thermionic emission cathode
JPS62140340A (en) Field emission type ion source
US2158845A (en) Cementing process
JPH026184B2 (en)
JPS59167947A (en) Electrode for flash discharge tube and its manufacturing method
JP2688261B2 (en) Field emission ion source
JP5047062B2 (en) Thermionic emission cathode
JPS5830055A (en) Source for ion beam
JP2696395B2 (en) Electrode manufacturing method
JP2510719B2 (en) Liquid metal ion source structure
JPS6062034A (en) Hot-cathode frame body
JPS61279042A (en) Liquid metallic ion source composition
JP2517678B2 (en) Liquid metal ion source
JPH0744010B2 (en) Ion source
WO1981000226A1 (en) Method for assembling the parts making up an x-ray anode,in particular a rotating anode
JPH02247951A (en) Electric field-discharge type ion source
JPH01272758A (en) Hot cathode
JPS5840743A (en) Metal ion source
JPH01154424A (en) Thermionic emission cathode
JPS6334830A (en) Manufacture of impregnated cathode