JP2517678B2 - Liquid metal ion source - Google Patents

Liquid metal ion source

Info

Publication number
JP2517678B2
JP2517678B2 JP1243514A JP24351489A JP2517678B2 JP 2517678 B2 JP2517678 B2 JP 2517678B2 JP 1243514 A JP1243514 A JP 1243514A JP 24351489 A JP24351489 A JP 24351489A JP 2517678 B2 JP2517678 B2 JP 2517678B2
Authority
JP
Japan
Prior art keywords
ion source
needle
alloy
liquid metal
metal ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1243514A
Other languages
Japanese (ja)
Other versions
JPH03108237A (en
Inventor
昭雄 六川
徹也 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP1243514A priority Critical patent/JP2517678B2/en
Publication of JPH03108237A publication Critical patent/JPH03108237A/en
Application granted granted Critical
Publication of JP2517678B2 publication Critical patent/JP2517678B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、パラジウムおよびヒ素を主成分とする合金
を加熱して溶融し、高電界を印加して高輝度の少くとも
ヒ素イオンのビームを放射させる液体金属イオン源に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention heats and melts an alloy containing palladium and arsenic as main components, and applies a high electric field to generate a beam of at least arsenic ions with high brightness. It relates to a source of liquid metal ions to be emitted.

(従来の技術) 液体金属イオン源を用いた集束イオンビーム技術は、
直径0.1μm程度の非常に細いイオンビームを得ること
が可能であることから、フォトマスクの修正、マスクレ
スイオン注入、イオンビーム露光等の半導体分野での応
用がなされつつある。
(Prior Art) Focused ion beam technology using a liquid metal ion source is
Since it is possible to obtain an extremely thin ion beam having a diameter of about 0.1 μm, it is being applied to semiconductor fields such as photomask correction, maskless ion implantation, and ion beam exposure.

シリコン半導体のマスクレスイオン注入に関し、P型
ドーパントとしてホウ素、n型ドーパントとして、リ
ン、ヒ素のイオン種が必要である。特にヒ素は、1気圧
下、615℃で昇華し、きわめて高い蒸気圧を有するた
め、ヒ素単体を液体金属イオン源のイオン化物質として
用いることは困難である。
Regarding maskless ion implantation of a silicon semiconductor, ionic species of boron as a P-type dopant and phosphorus or arsenic as an n-type dopant are required. In particular, arsenic sublimes at 615 ° C. under 1 atm and has an extremely high vapor pressure, so it is difficult to use arsenic simple substance as an ionized substance of a liquid metal ion source.

そこで、他の金属とヒ素を合金の形にして、ヒ素の蒸
気圧を下げる工夫がなされ、その一例としてSn−Pb−A
s、Pd−As、Pd−As−Cu等の合金が提案されている。し
かしながら、いずれの合金においても蒸気圧を十分に下
げることができずしかも針状電極と反応するため、その
イオン源の寿命は10数時間でしかなかった。
Therefore, other metals and arsenic were alloyed to reduce the vapor pressure of arsenic. One example was Sn-Pb-A.
Alloys such as s, Pd-As, and Pd-As-Cu have been proposed. However, in any of the alloys, the vapor pressure could not be lowered sufficiently and it reacted with the needle electrode, so that the life of the ion source was only ten and several hours.

そこで最近に至り、Pd2As合金と針状電極にタングス
テンを用いた液体金属イオン源が開発され、その寿命は
150時間であったという報告がなされている〔ジャーナ
ル.オブ.ヴァキューム.サイエンス.テクノロジー
(Journal of Vacuum Science Technology)B5巻、No.
1、197〜202頁(1987)〕。しかしながらこの液体金属
イオン源は改良されてはいるが、合金と針状電極である
タングステンが反応して目的のヒ素イオンを長時間、安
定に発生させることはできなかった。特にPd2As合金に
液体金属イオン源を浸漬させ合金を貯蔵する際の浸漬温
度を高くするとその反応は著しく、工業的に利用しにく
いという問題があった。
Therefore, recently, a liquid metal ion source using Pd 2 As alloy and tungsten for the needle electrode was developed, and its life is
It has been reported that it was 150 hours [Journal. of. Vacuum. Science. Technology (Journal of Vacuum Science Technology) Volume B5, No.
1, pp. 197-202 (1987)]. However, although this liquid metal ion source has been improved, it was not possible to stably generate the target arsenic ion for a long time due to the reaction between the alloy and tungsten as the needle electrode. In particular, when the liquid metal ion source is immersed in the Pd 2 As alloy and the immersion temperature is increased when the alloy is stored, the reaction is remarkable and there is a problem that it is difficult to industrially utilize.

(発明が解決しようとする課題) 従来技術では合金と針状電極との反応が少く、長時間
安定したヒ素イオンビームを出す液体金属イオン源を得
ることができなかった。
(Problems to be Solved by the Invention) In the prior art, it was not possible to obtain a liquid metal ion source that emits a stable arsenic ion beam for a long time due to a small reaction between the alloy and the needle electrode.

本発明の目的は安定なイオンビームを再現よく得るこ
とができ、かつ実用的な寿命を有するパラジウム−ヒ素
合金の液体金属イオン源を提供することにある。
An object of the present invention is to provide a liquid metal ion source of palladium-arsenic alloy which can obtain a stable ion beam with good reproducibility and has a practical life.

本発明者等らはこの目的を達成するためにパラジウム
−ヒ素合金ときわめて反応しにくい針状電極の材質につ
いて鋭意検討した結果、ホウ化タングステン、ホウ化モ
リブデン、ホウ化クロム、それらの化合物、およびホウ
化タングステン、ホウ化モリブデン、ホウ化クロムの混
晶又は混合体が最も適していることを見出し、本発明を
完成するに至った。
In order to achieve this object, the present inventors diligently studied the material of the needle-shaped electrode that is extremely difficult to react with the palladium-arsenic alloy, as a result, tungsten boride, molybdenum boride, chromium boride, their compounds, and The inventors have found that a mixed crystal or mixture of tungsten boride, molybdenum boride and chromium boride is most suitable, and completed the present invention.

(課題を解決するための手段) すなわち、本発明は以下を要旨とするものである。(Means for Solving the Problem) That is, the present invention is summarized as follows.

針状電極の表面にパラジウムおよびヒ素を主成分とす
る合金を液体で支持し、電界の作用で前記針状電極の先
端から少くともヒ素イオンを放射させる液体金属イオン
源において、前記針状電極がVI A族のホウ化物からなる
ことを特徴とする液体金属イオン源。
A liquid metal ion source that supports an alloy containing palladium and arsenic as a main component on the surface of a needle electrode with a liquid, and emits at least arsenic ions from the tip of the needle electrode by the action of an electric field, wherein the needle electrode is A liquid metal ion source characterized by comprising a VI A group boride.

以下、さらに本発明について詳しく説明する。 Hereinafter, the present invention will be described in more detail.

本発明においてVI A族元素のホウ化物とはホウ化タン
グステン(WB、W2B、W2B5など)、ホウ化モリブデン(M
oB2、Mo3B2、MoBなど)、ホウ化クロム(Cr3B2、CrB、C
r4Bなど)、それらの化合物、およびホウ化タングステ
ン、ホウ化モリブデン、ホウ化クロムの混晶又は混合体
などをいう。
In the present invention, the boride of Group VI A element means tungsten boride (WB, W 2 B, W 2 B 5, etc.), molybdenum boride (M
oB 2 , Mo 3 B 2 , MoB, etc., Chromium boride (Cr 3 B 2 , CrB, C
r 4 B), their compounds, and a mixed crystal or mixture of tungsten boride, molybdenum boride, and chromium boride.

又針状電極とは少くとも先端が針状である電極をい
う。
Further, the needle-like electrode means an electrode having a needle-like tip at least.

第1図中1の針状電極はVI A族元素のホウ化物の単結
晶又は焼結体を針状に加工したもの、あるいはタングス
テン、タンタル、モリブデンなどの高融点金属を針状に
加工し、その表面に前記したVI A族元素のホウ化物を被
覆したものでもよい。
The needle electrode 1 in FIG. 1 is a single crystal or sintered body of VIA group element boride processed into a needle shape, or a high melting point metal such as tungsten, tantalum, or molybdenum processed into a needle shape, The surface thereof may be coated with a boride of Group VI A element described above.

次にこれら針状電極の製造方法を説明する。たとえ
ば、ホウ化タングステンの場合、ホウ化タングステンの
粉末に、必要に応じてバインダーとして少量の鉄、ニッ
ケル、コバルトなどの金属粉末を加え、ホットプレス成
型機により圧力100kg/cm2以上、温度1600〜2100℃で焼
結成型する。なおバインダーを多く添加しすぎると、焼
結体を針状電極として使用するときに、パラジウム、ヒ
素合金による粒界腐食の問題が生ずるので、バインダー
の使用量は、必要最小限にとどめるのが望ましい。
Next, a method for manufacturing these needle-shaped electrodes will be described. For example, in the case of tungsten boride, a small amount of metal powder such as iron, nickel, or cobalt as a binder is added to the powder of tungsten boride, if necessary, pressure 100 kg / cm 2 or more by a hot press molding machine, temperature 1600 ~ Sinter molding at 2100 ℃. If too much binder is added, the problem of intergranular corrosion due to palladium and arsenic alloy occurs when the sintered body is used as a needle-shaped electrode, so it is desirable to keep the amount of binder used to the minimum necessary. .

ホウ化タングステンの単結晶または焼結体から針状電
極に加工するにはまず必要に応じて、放電加工法により
針状に加工したのち、機械研磨又は電解研磨により先端
を尖らせ、先端の曲率半径を1〜2μm以下にする。
To process a needle-shaped electrode from a tungsten boride single crystal or sintered body, if necessary, first process it into a needle shape by electrical discharge machining, then sharpen the tip by mechanical polishing or electrolytic polishing to make the curvature of the tip. The radius is set to 1 to 2 μm or less.

ホウ化タングステンで被覆された針状電極を製造する
には、あらかじめ先端の曲率半径を1〜2μm以下に研
磨した高融点金属の表面に、ホウ化タングステンをCVD
法、プラズマ溶射法等で被覆すればよい。ホウ化モリブ
デン、ホウ化クロム、ホウ化タングステン、それらの化
合物およびそれらの混晶又は混合体の場合も同様の方法
で製造できる。
To manufacture a needle electrode coated with tungsten boride, tungsten boride is CVD-coated on the surface of a refractory metal whose tip has a radius of curvature of 1 to 2 μm or less.
Method, plasma spraying method, or the like. In the case of molybdenum boride, chromium boride, tungsten boride, their compounds and their mixed crystals or mixtures, they can be produced by the same method.

パラジウムおよびヒ素を主成分とする合金は、たとえ
ばPd−As元素の場合、Pd/As(原子比)が5〜1位のも
のが使用され、次のような方法でつくられる。パラジウ
ム、ヒ素の粉末を原子比で2:1となるように均一に混
ぜ、石英アンプル内に入れた後、不活性ガスであるアル
ゴン等で十分置換して、還元雰囲気の電気炉内で850℃
以上の温度で加熱、溶解し製作する。できあがった合金
はパラジウムとヒ素の原子比が75:25であった。
As the alloy containing palladium and arsenic as the main components, for example, in the case of the Pd-As element, one having a Pd / As (atomic ratio) of 5 to 1 is used, and it is produced by the following method. Palladium and arsenic powders are mixed evenly in an atomic ratio of 2: 1, put in a quartz ampoule, and then sufficiently replaced with argon, which is an inert gas, and then 850 ° C in an electric furnace in a reducing atmosphere.
It is manufactured by heating and melting at the above temperature. The resulting alloy had an atomic ratio of palladium to arsenic of 75:25.

パラジウムおよびヒ素を主成分とする合金は、針状電
極の表面を覆う程度の量で足りるが、長時間使用するた
めには、該合金を貯蔵するリザーバ(第1図2A、2B)を
針状電極に併設することが好ましい。リザーバは、Ta、
W、Moなどの高融点金属、TiC、ZrC、TaC、WCなどの炭
化物、TiB2、ZrB2、TaB2、CrB2、W2B5などのホウ化物、
TiN、TaNなどの窒化物の形成体が用いられている。これ
らの材料の中でも、ホウ化タングステン、ホウ化クロム
は、前記のパラジウム−ヒ素合金に対する耐食性にすぐ
れ好ましい。
An alloy containing palladium and arsenic as the main component is sufficient to cover the surface of the needle-shaped electrode, but for long-term use, the reservoir (the 2A and 2B in FIG. 1) for storing the alloy is needle-shaped. It is preferable that the electrodes are provided side by side. The reservoir is Ta,
Refractory metals such as W and Mo, carbides such as TiC, ZrC, TaC and WC, borides such as TiB 2 , ZrB 2 , TaB 2 , CrB 2 and W 2 B 5 ,
Nitride formers such as TiN and TaN are used. Among these materials, tungsten boride and chromium boride are preferable because they have excellent corrosion resistance to the above-described palladium-arsenic alloy.

リザーバの構造は、前記合金を液体で貯蔵するととも
に、針状電極に安定に供給できるものであればよいが、
針状電極の基部外形に合わせた内面を有する基部と前記
合金を貯蔵する凹部を備えたものが好ましい。
The structure of the reservoir may be such that the alloy can be stored in a liquid and can be stably supplied to the needle electrode.
It is preferable that the needle-shaped electrode is provided with a base having an inner surface conforming to the outer shape of the base and a recess for storing the alloy.

前記合金を液体に保つために、ヒーター(第1図4A、
4B)を併設することが好ましい。ヒーターはグラッシー
カーボン又は熱分解カーボン等のカーボンブロックを針
状電極に圧接して、カーボンブロックに通電する構造に
するとよい。とくにリザーバをホウ化タングステン又は
ホウ化モリブデン、ホウ化クロムなどの導電性の高い材
料で製作し、針状電極、リザーバ、およびヒーターをこ
の順序で圧接すると、ヒーターへの通電が容易でかつ安
定した構造の液体金属イオン源になる。なおこの場合に
リザーバとヒーターの間にカーボン板など液体金属との
漏れ性が悪く、かつ導電性の材料からなる隔壁を設ける
と液体金属のヒーターへの浸透が防止できる。
A heater (Fig. 1A, 4A,
4B) is preferable. The heater may have a structure in which a carbon block such as glassy carbon or pyrolytic carbon is pressed against the needle electrode to energize the carbon block. In particular, if the reservoir is made of a highly conductive material such as tungsten boride or molybdenum boride or chromium boride, and the needle electrode, the reservoir, and the heater are pressed in this order, it is easy and stable to energize the heater. It becomes the source of liquid metal ions in the structure. In this case, if a partition wall made of a conductive material having a poor leak property with respect to a liquid metal such as a carbon plate is provided between the reservoir and the heater, the liquid metal can be prevented from penetrating into the heater.

リザーバ内に合金を貯める方法としては、従来よりハ
ケ塗り等の方法も行われているが、最近十分に合金を充
填させる実用的な方法として、窒化ホウ素等のルツボ内
で合金の融点より150〜300℃以上高い温度で溶かした合
金中に針状電極およびリザーバを浸す方法がとられてい
る。
As a method of storing the alloy in the reservoir, a method such as brush coating has been conventionally performed, but recently, as a practical method of sufficiently filling the alloy, the melting point of the alloy in the crucible such as boron nitride is 150 to 150 A method of immersing the needle electrode and the reservoir in an alloy melted at a temperature higher than 300 ° C. has been adopted.

<実施例> 以下、実施例をあげて本発明を具体的に説明する。<Examples> Hereinafter, the present invention will be specifically described with reference to Examples.

(実施例1〜5、比較例6〜10) 針状電極の材質として表の実施例の1〜5に示すホウ
化物を使用した。この針状電極は次のようにして製作し
た。表に示す各々の材質の粉末を温度2000℃、圧力200k
g/cm2の真空中で30分間ホットプレスにより加圧焼結し
て、成型体を製作した。いずれの成型体も相対密度は95
%以上であった。これら成型体をワイヤカット放電加工
機により、0.5×0.5×5mmの棒状に切断した。その先端
を機械研磨して先端が円錐形の針状電極にした。この円
錐の円錐角は30度とし、円錐先端の曲率半径は2μmに
した。
(Examples 1 to 5, Comparative Examples 6 to 10) As the material of the needle-shaped electrode, the boride shown in Examples 1 to 5 of the table was used. This needle electrode was manufactured as follows. Powder of each material shown in the table at a temperature of 2000 ° C and a pressure of 200k
A compact was manufactured by pressure sintering with a hot press for 30 minutes in a vacuum of g / cm 2 . The relative density of all molded products is 95
% Or more. These molded bodies were cut into rods of 0.5 × 0.5 × 5 mm by a wire cut electric discharge machine. The tip was mechanically polished to form a conical needle electrode. The cone angle of this cone was 30 degrees, and the radius of curvature of the tip of the cone was 2 μm.

次に前記針状電極と同じ材質の成型体をワイヤカット
放電加工法によって加工して先端が湾曲したスプーン状
のリザーバを製作した。
Next, a molded body made of the same material as the needle-shaped electrode was processed by a wire cut electric discharge machining method to manufacture a spoon-shaped reservoir having a curved tip.

第1図は液体金属イオン源の構造を示すものである
が、針状電極1の両側にリザーバ2A、2B、グラッシーカ
ーボン製の陽極3A、3B、熱分解カーボン製のヒーター4
A、4Bおよびステンレス製の電極5A、5Bを配置し、ボル
ト6、絶縁座金7A、7Bおよびナット8A、8Bにより締め付
けて、これらの部品を固定した。なお電極5A、5Bは金属
板9A、9Bを経て、端子10A、10Bに接続し、端子は端子に
固定して製作した。
FIG. 1 shows the structure of the liquid metal ion source. Reservoirs 2A and 2B, anodes 3A and 3B made of glassy carbon, and a heater 4 made of pyrolytic carbon are provided on both sides of the needle electrode 1.
A, 4B and electrodes 5A, 5B made of stainless steel were arranged and tightened with bolts 6, insulating washers 7A, 7B and nuts 8A, 8B to fix these parts. The electrodes 5A and 5B were connected to the terminals 10A and 10B via the metal plates 9A and 9B, and the terminals were fixed to the terminals.

該液体金属イオン源を真空装置内に取付け真空度2.0
×10-6torrにした。この真空装置内には、あらかじめパ
ラジウムヒ素合金(Pd75As25融点750℃)を満たした窒
化ホウ素製のルツボを入れておき、ルツボを加熱して90
0℃に保ち該合金を溶解させておいた。液体金属イオン
源のヒーターに通電して、針状電極を加熱しながら、針
状電極およびリザーバをルツボ中の溶融合金に浸すこと
によって針状電極とリザーバ間に合金を溜めた。
The liquid metal ion source is installed in a vacuum device and the degree of vacuum is 2.0.
It was set to × 10 -6 torr. A crucible made of boron nitride, which was previously filled with a palladium arsenic alloy (Pd 75 As 25 melting point 750 ° C), was placed in this vacuum device, and the crucible was heated to 90 ° C.
The alloy was kept melted at 0 ° C. While energizing the heater of the liquid metal ion source to heat the needle electrode, the needle electrode and the reservoir were immersed in the molten alloy in the crucible to collect the alloy between the needle electrode and the reservoir.

比較のため、針状電極の材質、針状電極とリザーバ間
の合金の溜め方を変えたものについて実施した。表の比
較例6〜10に示す材質(W、TiB2、ZrB2、WC)について
も上記と全く同じ方法で液体金属イオン源を製作し、同
様の方法で針状電極とリザーバ間に合金を溜めた。
For comparison, it was carried out by changing the material of the needle-shaped electrode and the method of storing the alloy between the needle-shaped electrode and the reservoir. For the materials (W, TiB 2 , ZrB 2 , WC) shown in Comparative Examples 6 to 10 in the table, a liquid metal ion source was manufactured by the same method as above, and an alloy was formed between the needle electrode and the reservoir by the same method. I collected it.

このようにして作製された液体金属イオン源を別の真
空装置に取り付けた。比較例10は針状電極とリザーバ間
の合金の溜め方を変えた方法を採用した。すなわち、リ
ザーバ内にPd75As25の粉末(粒径10〜50μm)をメタノ
ールと混ぜて、しめりけを持たせ、小さなハケでリザー
バ内に塗り込む。その後、すばやく、振動を与えないよ
うに該イオン源を真空装置内に取付け2×10-6torrまで
真空引きした。該イオン源のヒーターに通電して、針状
電極およびリザーバを加熱して該合金の融点温度より50
℃高い800℃に保ち、溶かした。その後、その温度を保
持し、針状電極の先端まで合金を濡れ拡がらせた。
The liquid metal ion source thus produced was attached to another vacuum device. Comparative Example 10 adopted a method in which the method of collecting the alloy between the needle electrode and the reservoir was changed. That is, powder of Pd 75 As 25 (particle size 10 to 50 μm) is mixed with methanol in the reservoir so as to have a squeeze, and a small brush is applied into the reservoir. Then, the ion source was quickly installed in a vacuum device so as not to give vibration, and a vacuum was drawn up to 2 × 10 −6 torr. The heater of the ion source is energized to heat the needle-shaped electrode and the reservoir so that the melting point of the alloy is 50
It was kept at 800 ℃, which was higher by ℃, and melted. Then, the temperature was maintained and the alloy was wet and spread to the tip of the needle electrode.

このように液体金属イオン源が調整取付けられた真空
装置内を圧力8×10-7torrの真空度にした。液体金属イ
オン源のヒーターに通電し、その電流の調節により針状
電極先端の温度を輝度温度800〜820℃にした。なお輝度
温度は光高温計で測定した。針状電極先端より1.5mm離
れたところに穴あき金属円板からなる引出し電極を設け
引出し電極に印加する電圧の調整により電流10μAのイ
オンビームを放出させた。定電流モードでイオンビーム
の放出を続け引出し電圧の変動を測定し下記の式でイオ
ンビーム変動率を求めた。
The inside of the vacuum apparatus to which the liquid metal ion source was adjusted and attached was set to a vacuum degree of 8 × 10 −7 torr. The heater of the liquid metal ion source was energized, and the temperature of the tip of the needle electrode was adjusted to a brightness temperature of 800 to 820 ° C by adjusting the current. The brightness temperature was measured with an optical pyrometer. An extraction electrode made of a perforated metal disk was provided at a distance of 1.5 mm from the tip of the needle electrode, and an ion beam with a current of 10 μA was emitted by adjusting the voltage applied to the extraction electrode. The ion beam emission was continued in the constant current mode, the fluctuation of the extraction voltage was measured, and the ion beam fluctuation rate was obtained by the following formula.

Emax:10分間の引出し電圧の最大値 Emin: 〃 最小値 それらの結果を表に示す。針状電極、およびリザーバ
にWB、W2B5、MoB2、CrB2、WB+MoB2+CrB2(40、30、3
0;重量%)を用いた液体金属イオン源の場合には、イオ
ンビームの変動率が1%以下と良好であった。寿命とな
ったイオン源を真空槽からとり出し観察した結果、W
2B5、MoB2、CrB2を用いたイオン源は、針状電極および
リザーバが合金と反応している様子はなかった。WBの場
合、先端の曲率半径3μmと含浸前に比べ大きくなって
おり、わずかの反応が認められた。だが実用上問題とな
らなかった。
E max : Maximum value of extraction voltage for 10 minutes E min : 〃 Minimum value The results are shown in the table. WB, W 2 B 5 , MoB 2 , CrB 2 , WB + MoB 2 + CrB 2 (40, 30, 3 for the needle electrode and reservoir
In the case of the liquid metal ion source using 0% by weight), the fluctuation rate of the ion beam was as good as 1% or less. As a result of observing the ion source which has reached the end of life by removing it from the vacuum chamber, W
In the ion source using 2 B 5 , MoB 2 , and CrB 2 , the needle electrode and the reservoir did not appear to react with the alloy. In the case of WB, the radius of curvature of the tip was 3 μm, which was larger than that before impregnation, and a slight reaction was observed. However, it did not pose a problem in practice.

一方、針状電極およびリザーバにW、TiB2、ZrB2、WC
を用いた液体金属イオン源の場合には、表に示す通りリ
ザーバ内に合金を含浸した時に針状電極と合金が反応し
たり、濡れなかったりでイオンビームを放射させること
ができなかった。
On the other hand, W, TiB 2 , ZrB 2 and WC are used for the needle electrode and reservoir.
In the case of the liquid metal ion source using, the ion beam could not be emitted because the needle electrode and the alloy reacted when the reservoir was impregnated with the alloy or did not wet as shown in the table.

比較例10の含浸方法では、合金が1回の塗布で十分に
リザーバ内に充てんされず寿命が50時間と短かった。
又、針状電極と合金の濡れが不十分でビームの安定性は
悪かった。
In the impregnation method of Comparative Example 10, the alloy was not fully filled in the reservoir in one application, and the life was short, 50 hours.
Also, the stability of the beam was poor because the wetting of the needle electrode and the alloy was insufficient.

(発明の効果) 本発明の液体金属イオン源はパラジウム−ヒ素合金に
よる針状電極の浸食がなく、濡れ性が良好であり、ビー
ムの変動率が小さく、長時間、安定してヒ素イオンビー
ムを放射させることができ、安定して使用できる。
(Effects of the Invention) The liquid metal ion source of the present invention does not erode the needle-shaped electrode by the palladium-arsenic alloy, has good wettability, has a small beam fluctuation rate, and can stably emit an arsenic ion beam for a long time. It can be emitted and can be used stably.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の液体金属イオン源の正面図である。 1……針状電極、2A、2B……リザーバ、 3A、3B……隔壁、4A、4B……ヒーター、 5A、5B……電極、6……ボルト、 7A、7B……絶縁座金、8A、8B……ナット、 9A、9B……金属板、10A、10B……端子、 11……碍子。 FIG. 1 is a front view of a liquid metal ion source of the present invention. 1 ... Needle electrode, 2A, 2B ... Reservoir, 3A, 3B ... Septa, 4A, 4B ... Heater, 5A, 5B ... Electrode, 6 ... Bolt, 7A, 7B ... Insulation washer, 8A, 8B: Nut, 9A, 9B ... Metal plate, 10A, 10B ... Terminal, 11 ... Insulator.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】針状電極の表面にパラジウムおよびヒ素を
主成分とする合金を液体で支持し、電界の作用で前記針
状電極の先端から少くともヒ素イオンを放射させる液体
金属イオン源において、前記針状電極がVI A族元素のホ
ウ化物からなることを特徴とする液体金属イオン源。
1. A liquid metal ion source in which an alloy containing palladium and arsenic as main components is supported on a surface of a needle electrode by a liquid, and arsenic ions are emitted from the tip of the needle electrode by the action of an electric field. A liquid metal ion source, wherein the needle-shaped electrode is made of a boride of Group VI A element.
JP1243514A 1989-09-21 1989-09-21 Liquid metal ion source Expired - Lifetime JP2517678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1243514A JP2517678B2 (en) 1989-09-21 1989-09-21 Liquid metal ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1243514A JP2517678B2 (en) 1989-09-21 1989-09-21 Liquid metal ion source

Publications (2)

Publication Number Publication Date
JPH03108237A JPH03108237A (en) 1991-05-08
JP2517678B2 true JP2517678B2 (en) 1996-07-24

Family

ID=17105041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1243514A Expired - Lifetime JP2517678B2 (en) 1989-09-21 1989-09-21 Liquid metal ion source

Country Status (1)

Country Link
JP (1) JP2517678B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6815690B2 (en) * 2002-07-23 2004-11-09 Guardian Industries Corp. Ion beam source with coated electrode(s)
CN115747820A (en) * 2022-10-11 2023-03-07 东北电力大学 Preparation method and application of porous tungsten boride catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752623B2 (en) * 1985-04-11 1995-06-05 電気化学工業株式会社 Liquid boron-containing alloy ion source structure
JPS6329432A (en) * 1986-07-21 1988-02-08 Anelva Corp Liquid-metal ion source

Also Published As

Publication number Publication date
JPH03108237A (en) 1991-05-08

Similar Documents

Publication Publication Date Title
US4721878A (en) Charged particle emission source structure
CA1213852A (en) Method of and apparatus for the coating of a substrate with material electrically transformed into a vapor phase
US2754259A (en) Process and apparatus for growing single crystals
WO1987003739A1 (en) Liquid metal ion source
US5170422A (en) Electron emitter for an x-ray tube
US6239440B1 (en) Arc chamber for an ion implantation system
US4946706A (en) Method of ion implantation
JP2517678B2 (en) Liquid metal ion source
US5914494A (en) Arc chamber for an ion implantation system
US3356912A (en) Porous electrode
JP2510719B2 (en) Liquid metal ion source structure
JPH026184B2 (en)
US3171017A (en) Evaporation of metal or metalloids
JPH02250238A (en) Liquid metal ion source
JPH03233826A (en) Field emission type ion source
JPH0752623B2 (en) Liquid boron-containing alloy ion source structure
JPH02247951A (en) Electric field-discharge type ion source
JPH0676730A (en) Thermonic emission cathode
JPH02234329A (en) Liquid metal ion source
JP3580101B2 (en) Method and apparatus for producing negative electrode material for lithium ion battery
JPH10310841A (en) Ceramic coating material, its production and high temperature member using the same material
US6509570B1 (en) Gallium ion source
CN115125476B (en) Preparation method for in-situ generation of titanium nitride wear-resistant corrosion-resistant layer on surface of titanium alloy
JPH0630214B2 (en) Impregnated cathode and manufacturing method thereof
Hirsch et al. Thermionic emission of positive ions from alkali tantalates