JPS6383264A - Liquid metallic ion source - Google Patents

Liquid metallic ion source

Info

Publication number
JPS6383264A
JPS6383264A JP22740786A JP22740786A JPS6383264A JP S6383264 A JPS6383264 A JP S6383264A JP 22740786 A JP22740786 A JP 22740786A JP 22740786 A JP22740786 A JP 22740786A JP S6383264 A JPS6383264 A JP S6383264A
Authority
JP
Japan
Prior art keywords
ion source
anode
needle
metallic
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22740786A
Other languages
Japanese (ja)
Inventor
Kazuo Hirata
和男 平田
Takao Kato
隆男 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP22740786A priority Critical patent/JPS6383264A/en
Publication of JPS6383264A publication Critical patent/JPS6383264A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To prolong the service life of a liquid metallic ion source by manufacturing a needle anode in the liquid metallic ion source used for ion beam etching or the like with a high-m.p. metallic W wire and coating the surface thereof with the film of a B compd. CONSTITUTION:Two pieces of stems 2, 2' made of 'Kovar(R)' fixing an ion source are welded to an insulator 1 made of ceramic with silver solder or the like, the ends of heaters 3, 3' made of a high-m.p. metallic wire such as W, Mo and Ta are spot- welded to these stems 2, 2', and the other ends of the heaters are spot-welded by gas to heaters 4, 4' combined with a supporting late for a reservoir made of same high-m.p. metallic material as the above-mentioned metallic wire. A small hole 6 is pored to the bottom of the reservoir 5, a small hole 7 is pored to the upper part thereof, and a needle anode 8 made of a W wire which is mechanically abraded so as to obtain 1-10mum radius of the tip and 30-60 degree vertical angle and subjected to BN coating is penetrated through these small holes. A liquid metallic ion source which has prolonged service life and forms stable metallic ion ion beams is obtained by impressing 5-10kV voltage between this acicular anode 8 and an ion drawing electrode 11, forming an intensive electric field to the tip of the needle anode 8, and melting liquid metal 10 incorporated in the reservoir 5.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、液体金属イオン源に関し、特にその針状陽極
部材と反応性の強い溶融金属との間の濡れ性を改善し、
安定なイオンビームを長時間発生することの出来るイオ
ン源に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a liquid metal ion source, and in particular improves the wettability between its acicular anode member and highly reactive molten metal,
This invention relates to an ion source that can generate a stable ion beam for a long time.

(従来の技術) 液体金属イオン源は、マスクレスイオン注入、イオンビ
ームエツチング、微少面積の薄膜作成等、種々の微細加
工技術への利用が期待されている。
(Prior Art) Liquid metal ion sources are expected to be used in various microfabrication techniques, such as maskless ion implantation, ion beam etching, and production of thin films with minute areas.

液体金属イオン源は、電解研磨法等によって高融点金属
の先端を半径数μmの針状に成形し、その表面を液体金
属で濡らしてエミッタとし、針状先端に高電界を印加す
ることにより液体金属をイオン化し、イオンビームな引
き出すものである。
A liquid metal ion source is produced by forming the tip of a high-melting point metal into a needle shape with a radius of several μm using an electrolytic polishing method, wetting the surface with liquid metal to form an emitter, and applying a high electric field to the needle tip. It ionizes metal and extracts it as an ion beam.

第2図に従来の液体金属イオン源の概略の断面図を示す
FIG. 2 shows a schematic cross-sectional view of a conventional liquid metal ion source.

セラミックス製の絶縁碍子1に、イオン源を固定する2
本のコバール製ステム2,2′を銀ロウ、金属ガラス等
で溶着し、そのステム2,2′に一端をスポット溶接さ
れた、W、Ta、Mo等の高融点金属細線からなるヒー
ター3,3′の他端には、前記ヒーター同様の高融点金
属材料からなるリザーバ支持板兼ヒーター4,4′がス
ポット溶接されている。
Fixing the ion source to the ceramic insulator 1 2
A heater 3 made of fine wire of high-melting point metal such as W, Ta, Mo, etc., whose stems 2, 2' made of Kovar are welded with silver solder, metallic glass, etc., and one end of which is spot welded to the stems 2, 2'. A reservoir support plate/heater 4, 4' made of the same high-melting point metal material as the heater is spot welded to the other end of the heater 3'.

リザーバ支持板兼ヒーター4,4′はリザーバを巻回し
た上で互いを溶接しである。リザーバ5の底部には細孔
6、上部には細孔7が開けられていて、これら細孔を、
先端の半径を1〜107.z ms頂角を30〜60度
に研磨した針状陽極8が貫通している。針状陽極8の上
部の、細孔7から上に突き出た部分は、高融点金属材料
の固定部材9を使って矢張り溶接でステム2に固定され
ている。
The reservoir support plate/heater 4, 4' is made by winding the reservoir and welding it together. The reservoir 5 has a pore 6 at the bottom and a pore 7 at the top.
The radius of the tip is 1 to 107. A needle-shaped anode 8 polished to have an apex angle of 30 to 60 degrees passes through it. The upper part of the needle anode 8 that protrudes upward from the pore 7 is fixed to the stem 2 by arrow welding using a fixing member 9 made of a high melting point metal material.

図示しないが、ステム2,2′には、加速電源の電圧に
フロートした加熱電源が接続されており、ヒーター3,
3′、リザーバ支持板兼ヒーター4゜4′を加熱し、リ
ザーバ5内の金属10を溶融させている。またイオン引
き出し電極11はイオン引き出し電源に接続され、針状
陽極8とイオン引き出し電極11の間には5〜10kV
の電圧が印。
Although not shown, a heating power source that floats on the voltage of an accelerating power source is connected to the stems 2 and 2'.
3', a reservoir support plate/heater 4°4' is heated to melt the metal 10 in the reservoir 5. Further, the ion extraction electrode 11 is connected to an ion extraction power source, and a voltage of 5 to 10 kV is applied between the needle anode 8 and the ion extraction electrode 11.
The voltage is marked.

加され、針状陽極8の先端部にイオンが電界放出可能な
強電界が形成される。  なお、これらとアース電位の
間には、使用目的に応じて、数kV〜200 k Vの
イオン加速電圧が印加されている。
A strong electric field is formed at the tip of the needle-like anode 8 in which ions can be emitted. Note that an ion accelerating voltage of several kV to 200 kV is applied between these and the earth potential, depending on the purpose of use.

さて、液体金属イオン源に登載される液体金属の種類は
、液体金属イオン源の使用目的により選択されるが、新
しい電子デバイスの作成で重要な働きをするB(ボロン
)や、イオンビームデポジション用に重要なAI(アル
ミニウム)等の液体金属は反応性が強く、エミッタ金属
線材との反応が容易に進行するため、針状陽極先端部の
消耗が著しく液体金属イオン源の寿命が短くなる欠点が
ある。
The type of liquid metal loaded in a liquid metal ion source is selected depending on the purpose of use of the liquid metal ion source, but B (boron), which plays an important role in the creation of new electronic devices, and ion beam deposition Liquid metals such as AI (aluminum), which are important for applications, are highly reactive and easily react with the emitter metal wire, so the tip of the needle anode is worn out and the lifespan of the liquid metal ion source is shortened. There is.

先に本願の発明者は、特願昭60−217366号で、
これらの溶融金属と反応せず、且つ濡れ性も良いエミッ
タ金属線材としてボロンナイトライドを提案した。しか
しこの材料は、針状形状を得るには機械加工を必要とす
るため、針状陽極の径が太くなり最低でも0.8mmを
要する。径の太いことはりザーバ部に収容できる溶融金
属の量を制限し、その分だけ液体金属イオン源の寿命を
短くする。リザーバ部を大きくして溶融金属の登載量を
増すのはイオン源を大型化して実用的でない。
Previously, the inventor of this application, in Japanese Patent Application No. 60-217366,
We proposed boron nitride as an emitter metal wire that does not react with these molten metals and has good wettability. However, since this material requires machining to obtain a needle-like shape, the diameter of the needle-like anode becomes large and requires at least 0.8 mm. The large diameter limits the amount of molten metal that can be accommodated in the reservoir section, thereby shortening the life of the liquid metal ion source. Increasing the amount of molten metal loaded by enlarging the reservoir portion increases the size of the ion source and is not practical.

更にまた、ボロンナイトライドを使用する場合は、針状
陽極なステムに固定するとき、スポット溶接が不可能で
、ネジ止めなどの複雑な構造が必要となる欠点もある。
Furthermore, when boron nitride is used, spot welding is not possible when fixing it to a needle-like anode stem, and a complicated structure such as screwing is required.

(発明の目的) 本発明は、上記の問題を解決し、反応性の強い液体金属
あるいは共晶合金を登載した液体金属イオン源の長寿命
化を図ることを目的とする。
(Objective of the Invention) An object of the present invention is to solve the above-mentioned problems and to extend the life of a liquid metal ion source loaded with a highly reactive liquid metal or eutectic alloy.

(問題を解決するための手段) 本発明は、イオン化すべき金属を溶融させ保持するリザ
ーバ部と;該リザーバ部から溶融金属が供給される針状
先端部を持つ針状陽極と;該針状先端部に強電界を形成
するための手段と:を備えた液体金属イオン源において
、 該針状陽極部材にBの化合物の皮膜を形成させた液体金
属イオン源によって前記目的を達成したものである。
(Means for Solving the Problems) The present invention comprises: a reservoir portion that melts and holds a metal to be ionized; a needle-like anode having a needle-like tip portion to which molten metal is supplied from the reservoir portion; The above object is achieved by a liquid metal ion source comprising: means for forming a strong electric field at the tip; and a liquid metal ion source in which a film of compound B is formed on the needle-shaped anode member .

(実施例) 以下、第1図a、  bを実施例として本発明を詳説す
る。
(Example) Hereinafter, the present invention will be explained in detail using FIGS. 1a and 1b as an example.

針状陽極材料としてはW(タングステン)を用いる。先
ず直径0.2mmのWの線材80を硝酸。
W (tungsten) is used as the needle-shaped anode material. First, a W wire rod 80 with a diameter of 0.2 mm was soaked in nitric acid.

アセトン、アルコール等で洗浄し、KOH水溶液を用い
て先端半径1μm乃至1071m、先端角30°〜60
°の針状に加工する。次に、線材80の下部81に、市
販の液状のBのコーティング材料(商品名「ボロンコー
ティング」;電気化学工業■製)を、スプレー法、浸漬
法または刷毛塗りにより塗布し、180℃〜900℃の
温度で約15分間焼付けを行い、その後洗浄する。得ら
れるBN塗膜の厚さは約0.05mmである。
Wash with acetone, alcohol, etc., and use KOH aqueous solution to prepare a tip radius of 1 μm to 1071 m and a tip angle of 30° to 60°.
Process into a needle shape. Next, a commercially available liquid coating material B (trade name "Boron Coating"; manufactured by Denki Kagaku Kogyo ■) is applied to the lower part 81 of the wire 80 by spraying, dipping, or brushing, and Baking is carried out for about 15 minutes at a temperature of °C and then washed. The thickness of the resulting BN coating is approximately 0.05 mm.

このBNコーティングを施した針状陽極8の拡大図が第
1図a、それを用いて構成された液体金属イオン源の概
略断面図が第1図すである。
FIG. 1a is an enlarged view of the BN-coated needle-shaped anode 8, and FIG. 1 is a schematic cross-sectional view of a liquid metal ion source constructed using the same.

構成は殆ど従来の装置と変わらず、セラミックス製の絶
縁碍子工に、イオン源を固定する2本のコバール製ステ
ム2,2゛を銀ロウ、金属ガラス等で溶着し、そのステ
ム2,2′に一端をスポット溶接された、W、Ta、M
o等の高融点金属細線からなるヒーター3,3′の他端
には、前記ヒーター同様の高融点金属材料からなるリザ
ーバ支持板兼ヒーター4,4′がスポット溶接されてい
リザーバ支持板兼ヒーター4,4′はリザーバを巻回し
た上で互いを溶接しである。リザーバ5の底部には細孔
6、上部には細孔7が開けられていて、これら細孔を、
先端の半径を1〜10μm、頂角を30〜.60度に機
械研磨しBNコーティングを施された針状陽極8が貫通
している。
The configuration is almost the same as the conventional device, and the two Kovar stems 2, 2' that fix the ion source are welded to a ceramic insulator using silver solder, metallic glass, etc., and the stems 2, 2' W, Ta, M with one end spot welded to
Reservoir support plates/heaters 4, 4' made of a high melting point metal material similar to the heaters are spot welded to the other ends of the heaters 3, 3' made of high melting point metal thin wires such as O. , 4' are wound around the reservoir and welded together. The reservoir 5 has a pore 6 at the bottom and a pore 7 at the top.
The radius of the tip is 1-10 μm, and the apex angle is 30-. A needle-like anode 8 mechanically polished at 60 degrees and coated with BN passes through it.

針状陽極8の上部の、細孔7から上に突き出た部分は、
BNコーティングされていないので、そこを利用して高
融点金属材料の固定部材9とスポット溶接でステム2に
固定されている。
The upper part of the needle-shaped anode 8 that protrudes upward from the pore 7 is
Since it is not coated with BN, it is fixed to the stem 2 by spot welding to a fixing member 9 made of a high melting point metal material.

図示しないが、ステム2,2′には、加速電源の電圧に
フロートした加熱電源が接続されており、ヒーター3,
3′、リザーバ支持板兼ヒーター4゜4′を加熱し、リ
ザーバ5内の金属10を溶融させている。またイオン引
き出し電極11はイオン引き出し電源に接続され、針状
陽極8とイオン引き出し電極110間には5〜10kV
の電圧が印加され、針状陽極8の先端部にイオンが電界
放出可能な強電界が形成される。  なお、これらとア
ース電位の間には、使用目的に応じて、数kV〜200
kVのイオン加速電圧が印加されている。
Although not shown, a heating power source that floats on the voltage of the accelerating power source is connected to the stems 2 and 2'.
3', a reservoir support plate/heater 4°4' is heated to melt the metal 10 in the reservoir 5. The ion extraction electrode 11 is connected to an ion extraction power source, and a voltage of 5 to 10 kV is applied between the needle anode 8 and the ion extraction electrode 110.
A voltage is applied, and a strong electric field is formed at the tip of the needle-like anode 8 in which ions can be field-emitted. Note that the distance between these and the earth potential is from several kV to 200 kV depending on the purpose of use.
An ion acceleration voltage of kV is applied.

上記の構成で、溶融金属9として反応性の最も高いAI
を用い、リザーバ5にはAIに耐食性のあるセラミック
スを用いた。
With the above configuration, AI with the highest reactivity as the molten metal 9
was used, and the reservoir 5 was made of ceramics that were corrosion resistant to AI.

この液体金属イオン源の動作を説明すると、ステム2,
2′を通してヒーター3,3′に電流を流してリザーバ
5を加熱し、溶融金属9をその融点以上に加熱して液状
とする。この状態でイオン引出し電極11に5〜10k
Vの電圧を印加すると、その電界で引っ張られる力と、
液体金属がその表面張力で引き戻す力とがある臨界値で
つり合って、針状陽極8の先端にテーラ−コーンと呼ば
れる頂角98.6°の円錐を生ずる。このとき先端部の
電界は、数V/入にも達し、電界蒸発によってイオン化
が起こり、イオンが引き出される。
To explain the operation of this liquid metal ion source, the stem 2,
Electric current is passed through heaters 3 and 3' through heaters 3 and 3' to heat reservoir 5 and heat molten metal 9 above its melting point to liquefy it. In this state, apply 5 to 10 k to the ion extraction electrode 11.
When a voltage of V is applied, the pulling force due to the electric field and
The surface tension of the liquid metal balances the pullback force at a certain critical value, creating a cone with an apex angle of 98.6°, called a Taylor cone, at the tip of the needle-shaped anode 8. At this time, the electric field at the tip reaches several V/in, ionization occurs due to field evaporation, and ions are extracted.

イオン引出しにより失われた液体金属は静電気力により
、リザーバの下穴6から引き出されて、よく濡れた陽極
表面を移動して針状陽極8の先端部へ供給される。かく
して連続的にイオンビームが得られる。
The liquid metal lost due to ion extraction is drawn out from the pilot hole 6 of the reservoir by electrostatic force, moves on the well-wet anode surface, and is supplied to the tip of the needle-shaped anode 8. In this way, a continuous ion beam can be obtained.

第3図は単収束磁場型マススペクトロメータを用いて測
定した本発明のAI液体金属イオン源の質量スペクトル
の一例であるが、陽極材料やリザーバ材料の溶出による
不純物のピークは観測されず、従って、AIはBNコー
ティングを越えて陽極材料とは反応していない。またイ
オンを安定に針状陽極先端部に供給する濡れについても
BNコーティングが効いて非常によく濡れており、液体
金属イオン源のエミッタ材料として最適であることが確
認された。
Figure 3 is an example of the mass spectrum of the AI liquid metal ion source of the present invention measured using a single focusing magnetic field type mass spectrometer, but no impurity peaks due to elution of the anode material or reservoir material were observed. , AI has not reacted with the anode material beyond the BN coating. Furthermore, the BN coating was effective in stably supplying ions to the tip of the needle-like anode, resulting in very good wetting, and it was confirmed that it is optimal as an emitter material for liquid metal ion sources.

実験によって、30μA(一定)の電流で100時間以
上の寿命が確認されている。
Experiments have confirmed that it has a lifespan of over 100 hours with a current of 30 μA (constant).

また、先述の特許願の発明のボロンナイトライドのエミ
ッタと較べて、構造が簡単で容易に製作出来、登載でき
るAIの量も多くて長寿命の秀れた液体金属イオン源で
あることも確認された。
Furthermore, compared to the boron nitride emitter of the patented invention mentioned above, it has been confirmed that it is a liquid metal ion source that has a simple structure, can be manufactured easily, can be loaded with a large amount of AI, and has a long life. It was done.

なおこの実施例ではAIを用いているが、使用出来る液
体金属材料はAIに限定されるものではなく、BNコー
ティングした針状陽極をよく濡ら一〇− し且つそれと反応し難い材料であればすべて適用出来る
。例えば、反応性の強いBの共晶合金が効果的に使用出
来る。
Although AI is used in this example, the liquid metal material that can be used is not limited to AI, but any material that can wet the BN-coated needle anode well and does not easily react with it can be used. All can be applied. For example, a highly reactive eutectic alloy of B can be effectively used.

更にまた、コーティング材料もBNに限定されない。他
のBの化合物によってコーティングされた針状陽極でも
、上述同様の効果を表すからである。
Furthermore, the coating material is not limited to BN either. This is because needle-like anodes coated with other compounds of B exhibit the same effects as described above.

(発明の効果) 本発明のBNコーティングした針状陽極を用いる液体金
属イオン源は、反応性の強い金属や合金を含む液体金属
のイオン源として、小型簡単で容積効率がよく、長寿命
で、安定なイオンビームな発生する効果がある。
(Effects of the Invention) The liquid metal ion source using the BN-coated acicular anode of the present invention can be used as an ion source for liquid metals containing highly reactive metals and alloys. It has the effect of generating a stable ion beam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは、本発明の液体金属イオン源の概略断面図。 第1図すは、その針状陽極の拡大図。 第2図は、従来の液体金属イオン源の概略断面図。 第3図は、本発明のAI液体金属イオン源の質量スペク
トルの1例の図。 1・・・・・・絶縁碍子、2,2′・・・・・・ステム
、3.3′・・・・・・ヒーター、 4.4′・・・・・・リザーバ支持板兼ヒーター、5・
・・・;・リザーバ、6,7・・・・・・細了し、8・
・・・・・針状陽極、10・・・・・・溶融金属、11
・・・・・・陰極、
FIG. 1a is a schematic cross-sectional view of a liquid metal ion source of the present invention. Figure 1 is an enlarged view of the needle-shaped anode. FIG. 2 is a schematic cross-sectional view of a conventional liquid metal ion source. FIG. 3 is an example of a mass spectrum of the AI liquid metal ion source of the present invention. 1... Insulator, 2, 2'... Stem, 3.3'... Heater, 4.4'... Reservoir support plate and heater, 5.
・・・;・Reservoir, 6, 7... Details, 8・
...acicular anode, 10...molten metal, 11
······cathode,

Claims (2)

【特許請求の範囲】[Claims] (1)イオン化すべき金属を溶融させ保持するリザーバ
部と;該リザーバ部から溶融金属が供給される針状先端
部を持つ針状陽極と;該針状先端部に強電界を形成する
ための手段と;を備えた液体金属イオン源において、 該針状陽極部材にB(ほう素)の化合物の皮膜を形成さ
せたことを特徴とする液体金属イオン源。
(1) A reservoir section for melting and holding the metal to be ionized; A needle-like anode having a needle-like tip to which the molten metal is supplied from the reservoir section; A needle-like anode for forming a strong electric field at the needle-like tip; A liquid metal ion source comprising means and; characterized in that a film of a B (boron) compound is formed on the acicular anode member.
(2)Bの化合物がBNである特許請求の範囲第1項記
載の液体金属イオン源。
(2) The liquid metal ion source according to claim 1, wherein the compound B is BN.
JP22740786A 1986-09-26 1986-09-26 Liquid metallic ion source Pending JPS6383264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22740786A JPS6383264A (en) 1986-09-26 1986-09-26 Liquid metallic ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22740786A JPS6383264A (en) 1986-09-26 1986-09-26 Liquid metallic ion source

Publications (1)

Publication Number Publication Date
JPS6383264A true JPS6383264A (en) 1988-04-13

Family

ID=16860349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22740786A Pending JPS6383264A (en) 1986-09-26 1986-09-26 Liquid metallic ion source

Country Status (1)

Country Link
JP (1) JPS6383264A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846542A (en) * 1981-09-11 1983-03-18 Nippon Telegr & Teleph Corp <Ntt> Field emission liquid metal aluminum ion gun and its manufacture
JPS61237328A (en) * 1985-04-11 1986-10-22 Denki Kagaku Kogyo Kk Ion source structure by alloy including liquid boron

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846542A (en) * 1981-09-11 1983-03-18 Nippon Telegr & Teleph Corp <Ntt> Field emission liquid metal aluminum ion gun and its manufacture
JPS61237328A (en) * 1985-04-11 1986-10-22 Denki Kagaku Kogyo Kk Ion source structure by alloy including liquid boron

Similar Documents

Publication Publication Date Title
EP1622184B1 (en) Emitter for an ion source and method of producing same
US2754259A (en) Process and apparatus for growing single crystals
US4318029A (en) Liquid metal ion source
EP0706199B1 (en) Novel high brightness point ion sources using liquid ionic compounds
JPS6383264A (en) Liquid metallic ion source
JPH0415574B2 (en)
US4629931A (en) Liquid metal ion source
JPS60115122A (en) Liquid metal ion source
JP3048907B2 (en) High intensity point ion source
JPH026184B2 (en)
JPS5963651A (en) Ionizing device for material
JPS62234834A (en) Liquid-metal ion source
JPS58137943A (en) Ion source
JPS593815B2 (en) ion source
US5006715A (en) Ion evaporation source for tin
JP2011091001A (en) Method for manufacturing charged particle beam source, charged particle beam source and charged particle beam device
JPS63224132A (en) Liquid metal ion source
JPS58137940A (en) Ion source
JPS6329432A (en) Liquid-metal ion source
JPS62290042A (en) Liquid metal ion source
JPS6134833A (en) Liquid metal ion source
JPS6329926B2 (en)
JPS6077339A (en) Liquid metal ion source
JPH0744011B2 (en) Liquid metal ion source
Egorov et al. Experimental Equipment and Technique