JPS60171737A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60171737A
JPS60171737A JP2707584A JP2707584A JPS60171737A JP S60171737 A JPS60171737 A JP S60171737A JP 2707584 A JP2707584 A JP 2707584A JP 2707584 A JP2707584 A JP 2707584A JP S60171737 A JPS60171737 A JP S60171737A
Authority
JP
Japan
Prior art keywords
film
etching
grooves
silicon
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2707584A
Other languages
Japanese (ja)
Inventor
Kazuo Nojiri
野尻 一男
Katsuhiko Ito
勝彦 伊藤
Atsuyoshi Koike
淳義 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2707584A priority Critical patent/JPS60171737A/en
Publication of JPS60171737A publication Critical patent/JPS60171737A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Abstract

PURPOSE:To contrive to flatten the surface of a semiconductor device by a method wherein the inside walls of grooves are formed by etching to have completely vertical surfaces in a substrate, and generation of V-shaped recess parts on the top surfaces of silicon to be epitaxially grown selectively and SiO2 layers to be obtained by oxidizing the silicon thereof is checked according to the above-mentioned process. CONSTITUTION:Dry etching is performed according to the RIE method using a first Si3N4 film 13 as a mask to form grooves 14 as shown in the figure B. Then after the inside surfaces of the grooves 14 are oxidizing to form SiO2 films 16 as shown in the figure C, an Si3N4 film is deposited according to the CVD method again to form a second Si3N4 film 17 on the whole surface. Moreover, an SiO2 film 18 is formed on the whole surface according to the CVD method as shown in the figure D in succession thereto. When the SiO2 film thereof is etched again according to the RIE method, the SiO2 films 18, the second Si3N4 films 17 and the SiO films 16 on the bases of the grooves 14 are etched to be removed wholly as shown in the figure E, and silicon is exposed at the bases in the grooves 14. At this time, when the etching condition is so as to make SiO2 and Si3N4 to have the same etching ratio, the inside surfaces of the grooves 14 completed with etching are formed to the vertical surfaces.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は・高集積に適した半導体装置、特に溝凰ア了ツ
°レージ田ン構造の半導体装置の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for manufacturing a semiconductor device suitable for high integration, particularly a semiconductor device having a trench-hole structure.

〔背景技術〕[Background technology]

IC,LSI等の半導体装置における素子間分離用アイ
ソレーションには従来選択酸化法(LOCO8法)によ
るフィールド酸化膜が利用されてきたが、近年の高集積
化の要求により溝型のアイソレーション構造が提案され
てきている。この溝型のアイソレージロンの一例として
発明者らは1983年4月発行の第30回応用物理学関
係連合講演会予稿集の531頁に次の様な方法を提案し
た。すなわち、第1図に示すようにシリコン基板10表
面に溝2を形成すると共に溝2内に選択的にシリコンを
成長させ、かつこのシリコンを酸化させてS iO,層
3を形成することによりアイソレージロンとするもので
ある。そして、通常では前記溝2は第1Si、N4膜4
をマスクとしたRIE(反応性イオンエツチング)法に
より形成し、また溝2内に成長されたシリコンのみを選
択的に酸化させるためにJ 2 S Is N4膜5を
形成する。
Conventionally, field oxide films made by selective oxidation (LOCO8 method) have been used for isolation between elements in semiconductor devices such as ICs and LSIs, but with the recent demand for higher integration, groove-type isolation structures have become more popular. It has been proposed. As an example of this groove type isolation iron, the inventors proposed the following method on page 531 of the Proceedings of the 30th Applied Physics Association Conference, published in April 1983. That is, as shown in FIG. 1, grooves 2 are formed on the surface of a silicon substrate 10, silicon is selectively grown in the grooves 2, and this silicon is oxidized to form an SiO layer 3, thereby forming an isoconductive layer. It is to be used as a regiron. Usually, the groove 2 is formed by the first Si, N4 film 4.
A J 2 S Is N4 film 5 is formed in order to selectively oxidize only the silicon grown in the groove 2.

しかしながら、さらにこの製造方法による溝型アイソレ
ーションを詳細に検討したところ、次のような不具合が
生じていることが判明した。即ち、前述した11+、I
 E法によってシリコン基板1に垂直内壁を有する溝2
をエツチング形成するのであるが、(100)シリコン
結晶を用いた場合シリコンの結晶性(面方位)によって
溝2上部に約54゜傾斜した(111)面6が出てしま
い、完全に垂直な内壁面形状にすることが困難になる。
However, when the groove type isolation produced by this manufacturing method was further examined in detail, it was found that the following problems occurred. That is, the above-mentioned 11+, I
A groove 2 having a vertical inner wall is formed in a silicon substrate 1 by the E method.
However, if a (100) silicon crystal is used, a (111) plane 6 inclined at an angle of about 54° will appear at the top of the groove 2 due to the crystallinity (plane orientation) of the silicon, and a completely vertical inner plane will appear. It becomes difficult to form a wall shape.

このため、溝2内で選択的にエピタキシャル成長される
シリコン(同図に仮想線で示す)3aの両側部の成長が
遅れてその上面両側にファセット7が形成され、したが
ってこれを酸化させて形成したS iO。
For this reason, the growth on both sides of the silicon 3a (indicated by phantom lines in the figure) that is selectively grown epitaxially within the trench 2 is delayed, and facets 7 are formed on both sides of the upper surface of the silicon 3a. SiO.

層3の上面両側にもシリコン基板1上面との間にファセ
ット、つまりV字状の凹部7が生ずることになる。
Facets, that is, V-shaped recesses 7, are formed on both sides of the upper surface of the layer 3 between the layer 3 and the upper surface of the silicon substrate 1.

したがって、このようにして生じたV字状の凹部7によ
りシリコン基板1全体としての平坦性が損なわれ、後工
程での素子形成に際してたとえば電極材料が凹部7に埋
め込まれ、短絡する静穏々の不具合が生じる。また、溝
2上部に傾斜面が存4在していることにより、エピタキ
シャル成長したシリコン3aの酸化膨張時に応力がこの
傾斜面6近傍に集中され易く、シリコン氷板1中に結晶
欠陥が生じるという問題もある。
Therefore, the flatness of the silicon substrate 1 as a whole is impaired by the V-shaped recess 7 generated in this way, and when forming elements in a later process, for example, electrode material is buried in the recess 7, resulting in a short circuit. occurs. In addition, due to the presence of the inclined surface 4 in the upper part of the groove 2, stress tends to be concentrated in the vicinity of the inclined surface 6 during oxidation expansion of the epitaxially grown silicon 3a, causing crystal defects in the silicon ice plate 1. There is also.

なお、RIE法において真空度を下げたり、パワーを上
げる等エツチング条件を変化させて前記傾斜面の発生を
抑制することも試みられているが、完全な垂直面を得る
ことはできず、またプラズマダメージの点からも好まし
くない。
In the RIE method, attempts have been made to reduce the degree of vacuum and change the etching conditions, such as increasing the power, to suppress the occurrence of the above-mentioned inclined surface, but it has not been possible to obtain a completely vertical surface, and the plasma It is also unfavorable from the point of view of damage.

〔発明の目的〕[Purpose of the invention]

本発明の目的は溝の内壁を完全な垂直面にエツチング形
成し、これにより選択エピタキシャル成長されるシリコ
ンおよびこれを酸化して得られるSin!層の上面での
V字状の凹部の発生を防止して平坦化を図ると共に、シ
リコン基板での結晶欠陥の発生を防止することができる
半導体装置の製造方法を提供することにある。
The object of the present invention is to form the inner wall of the groove into a perfectly vertical surface by etching, thereby selectively epitaxially growing silicon and oxidizing it to form a Si! It is an object of the present invention to provide a method for manufacturing a semiconductor device that can prevent the formation of a V-shaped recess on the upper surface of a layer to achieve planarization, and can also prevent the formation of crystal defects in a silicon substrate.

本発明の前記ならびにそのほかの目的と新規な特徴は、
本明細書の記述および添付図面からあきらかになるであ
ろう。
The above and other objects and novel features of the present invention include:
It will become clear from the description of this specification and the accompanying drawings.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、第28i3N4膜の形成に続いて必要な厚さ
の非晶質膜を形成しかっこの非晶質膜と第2S i3N
4膜のエツチング比を同程度とする条件下のRIE法に
よりこれら2膜をエツチングし、以下選択成長9選択酸
化を行なってアイソレーションを形成することにより、
アイソレーションにおけるV字状の凹部の発生を防止し
て平坦化を図ると共に、シリコン等半導体基板における
結晶欠陥の発生を防止することができる。
That is, following the formation of the 28th i3N4 film, an amorphous film of a required thickness is formed and the amorphous film and the 2nd Si3N film are formed.
By etching these two films by the RIE method under conditions where the etching ratio of the four films is the same, and performing selective oxidation in the following selective growth 9, isolation is formed.
It is possible to prevent the occurrence of V-shaped recesses in isolation and achieve planarization, and also to prevent the occurrence of crystal defects in a semiconductor substrate such as silicon.

〔実施例〕〔Example〕

第2図囚〜0は本発明方法の製造工程を示す図であり、
以下工程順に説明する。
Figures 2-0 are diagrams showing the manufacturing process of the method of the present invention,
The steps will be explained below in order.

先ず、第2図(イ)のように(100)面方位のシリコ
ン半導体基板11の主面を酸化させて薄いS iO,膜
12を形成した上にCVD法等により第1Si、N4膜
13を形成し、かつこれをホトレジストに使用した常法
のホトリソグラフィ技術によりアイソレーション形成部
位のみを開口する。次いで、この第18i3N4膜13
をマスクとしてRIE法によるドライエツチングを行な
い、同図■のように溝14を形成する。このとき、シリ
コン基板1.1の結晶性により溝14の下部では(11
1)面が露呈され、この結果θ=約54.7°の傾斜面
部15が生じてしまう。
First, as shown in FIG. 2(a), the main surface of a silicon semiconductor substrate 11 with a (100) plane orientation is oxidized to form a thin SiO film 12, and then a first Si, N4 film 13 is formed by CVD or the like. Then, using a conventional photolithography technique using this as a photoresist, only the isolation forming region is opened. Next, this 18i3N4 film 13
Using this as a mask, dry etching is performed by the RIE method to form grooves 14 as shown in FIG. At this time, due to the crystallinity of the silicon substrate 1.1, (11
1) The surface is exposed, resulting in an inclined surface portion 15 having an angle of θ=approximately 54.7°.

次いで、同図00ように溝1膜内面を酸化して−S i
o、膜16を形成した後、再びCVD法によりS i、
 N4をデyN ’) ’7 W :/ シ、第zSi
sNa膜17を全面に形成する。更に、これに続いて同
図◎のようにCVD法によりSin、膜18を全面に形
成する。
Next, as shown in FIG. 00, the inner surface of the groove 1 film is oxidized to -S i
o. After forming the film 16, Si,
N4 dyN') '7 W:/Si, No. zSi
An sNa film 17 is formed on the entire surface. Furthermore, following this, a film 18 of Sin is formed on the entire surface by the CVD method as shown by ◎ in the same figure.

この場合Sin、膜18の被着形状を良好にするため、
CVD法は高温低圧の条件で行なうことが好ましい。こ
のS iO,膜18は前記CVD条件にょって非晶質膜
として構成され、かつその厚さは後述する条件を満たす
のに十分な厚さとしている。
In this case, in order to improve the adhesion shape of the Sin film 18,
The CVD method is preferably carried out under high temperature and low pressure conditions. This SiO film 18 is formed as an amorphous film under the above-mentioned CVD conditions, and its thickness is sufficient to satisfy the conditions described later.

しかる上で、これを再びRIE法によりエツチングすれ
ば、同図(ト)のように溝14の底面上の前記S i0
2膜18.第2Si、、N、膜17およびSin。
Then, if this is etched again by the RIE method, the Si0 on the bottom surface of the groove 14 is etched as shown in FIG.
2 membranes 18. 2nd Si, N, film 17 and Sin.

膜16は全てエツチング除去され、溝14内底面にはシ
リコンが露呈される。このとき、エツチング条件はS 
iO2とSi、N、とが同一のエツチング比となるよう
に設定しておくことが肝要であり、このこととS iO
,膜18が非晶質であることと相俟ってエツチングが完
了された溝14の内側面は垂直な面に形成される。この
とき、シリコン基板11上においてもS io、膜18
と第2Si、N4膜17がエツチングされ、第1Si、
N、膜13が表面に露呈される(若干第2SilN、膜
13もエツチングされて薄くなる)。
The entire film 16 is removed by etching, and silicon is exposed on the inner bottom surface of the trench 14. At this time, the etching conditions are S
It is important to set the etching ratio of iO2, Si, and N to be the same.
, and the fact that the film 18 is amorphous, the etched groove 14 has a vertical inner surface. At this time, S io and film 18 are also formed on the silicon substrate 11.
The second Si, N4 film 17 is etched, and the first Si, N4 film 17 is etched.
The N film 13 is exposed on the surface (the second SilN film 13 is also slightly etched and becomes thinner).

次いで、同図(ト)のように、溝14内底面に露呈すF
Lf、−シリコン上に選択的にシリコンをエピタキシャ
ル成長させて溝14内に選択エピタキシャルシリコン1
9を溝14の略半分程度の深さにまで充填させる。この
とき、溝14は内側面が垂直であることから、エピタキ
シャルシリコン19の上面は殆んど平坦モあり、その上
面両側に77セツトが生じることはない。
Next, as shown in FIG.
Lf, - selective epitaxial growth of silicon on silicon to selectively epitaxially grow silicon 1 in trench 14;
9 to approximately half the depth of the groove 14. At this time, since the inner surface of the groove 14 is vertical, the upper surface of the epitaxial silicon 19 is almost flat, and 77 sets are not generated on both sides of the upper surface.

したがって、エピタキシャルシリコン19を酸化させて
同図00ように溝14内にS io、層20を形成し、
その後基鈑表面上の6膜を除去すればアイソレーション
を完成しても、S iO,層20の上面両側に7字状の
凹部が生ずることもなく、基板全体としての平坦化を図
ることができる。
Therefore, the epitaxial silicon 19 is oxidized to form a layer 20 in the groove 14 as shown in FIG.
If the 6 films on the surface of the substrate are then removed, even if the isolation is completed, a figure 7-shaped recess will not be formed on both sides of the top surface of the SiO layer 20, and the entire substrate can be planarized. can.

また、このとき酸化が下方に進行されても、溝14内面
は垂直で幅寸法が一定であることから、特に溝下部にお
いて応力が犬になることはなく、シリコン基板11内で
の結晶欠陥の発生を防止できる。
Furthermore, even if the oxidation progresses downward at this time, since the inner surface of the groove 14 is vertical and the width dimension is constant, the stress will not increase particularly in the lower part of the groove, and the crystal defects within the silicon substrate 11 will not increase. Occurrence can be prevented.

ここで、前記第1Si3N4膜13と非晶質Sin。Here, the first Si3N4 film 13 and amorphous Sin.

膜18の夫々の厚さについて検討する。今、第3図に示
すように、非晶質S iO,膜18.第2Si3N4膜
17.第1Si、N、膜13およびS iot膜12(
lf9の各膜厚をa、b、c、dとし、また傾斜面部1
5の高さをeとする。θは前述のように傾斜面部15の
傾き角度である。
Consider the thickness of each of the membranes 18. Now, as shown in FIG. 3, an amorphous SiO film 18. Second Si3N4 film 17. First Si, N, film 13 and Siot film 12 (
Let the film thicknesses of lf9 be a, b, c, and d, and the inclined surface portion 1
Let the height of 5 be e. θ is the inclination angle of the inclined surface portion 15 as described above.

これにおいて、前記第2図■におけるRIE法によるエ
ツチングにおいて、溝14内では側面にシリコン基板1
1が露呈されないようにする必要がある。側面に露呈さ
れると次工程でここからもエピタキシャル成長が行なわ
れ、前述の効果的なエピタキシャル成長が阻害される。
In this case, in the etching by the RIE method shown in FIG.
1 must be prevented from being exposed. If it is exposed on the side surface, epitaxial growth will occur from there in the next step, and the above-mentioned effective epitaxial growth will be inhibited.

この条件を満たすには、図示の寸法Xよりも非晶質5i
n2膜18の厚さaを大きくする必要があり、xsta
nθ=eであることから、 a≧e / tanθ ・・・・・・・・・・・・・・
 (1)が導かれる。
To satisfy this condition, amorphous 5i than the illustrated dimension
It is necessary to increase the thickness a of the n2 film 18, and xsta
Since nθ=e, a≧e/tanθ・・・・・・・・・・・・・・・
(1) is derived.

一方、溝14の内側面が完全に垂直面とされるためには
、図の1寸法(非晶%5i02膜18の傾斜面」二端の
高さ)が完全にエツチングされなければならないが、こ
のとき次工程を考慮すれば基板11表面の第1Si3N
、膜13がエツチング除去されることは好ましくない。
On the other hand, in order for the inner surface of the groove 14 to be a completely vertical surface, one dimension in the figure (the height of the two ends of the inclined surface of the amorphous %5i02 film 18) must be completely etched. At this time, considering the next process, the first Si3N on the surface of the substrate 11
, it is undesirable for the film 13 to be etched away.

したがって、エツチング後も残したい第1Si、N、膜
13の厚さを2とすると、 a + b + c −z ’> Y の条件が必要であり、これから c)’y−(a十b)+z が導かれる。ここで、1寸法は、角ψ3.ψ、が等しい
ことから y=e+f 。
Therefore, if the thickness of the first Si, N, film 13 to be left after etching is 2, then the condition a + b + c -z '> Y is required, and from this, c) 'y - (a + b) +z is derived. Here, one dimension is the angle ψ3. Since ψ are equal, y=e+f.

がめられ、結局 ・・・・・・・・・・・・・・・ (2)がめられる。Confronted, eventually ・・・・・・・・・・・・・・・(2) is observed.

以上のように、非晶質S io、膜18の厚さaと第1
Si3N4膜13の厚さCとが前記(1) 、 (2+
の条件を満たせば、良好な溝を完成することができる。
As described above, the amorphous S io, the thickness a of the film 18 and the first
The thickness C of the Si3N4 film 13 is the above (1), (2+
If the following conditions are met, a good groove can be completed.

〔効果〕〔effect〕

(1)溝のRIE法によるエツチングの前に、第2Si
3N、膜の上に十分な厚さの非晶質のS io、膜を形
成し、かつRIE法エツチングはこれらS io。
(1) Before etching the grooves by RIE method, the second Si
3N, a sufficiently thick amorphous SIO film is formed on the film, and RIE etching is performed on these SIO films.

膜と第2Si、N、膜とを同じエツチング比条件下で行
なっているので、溝の内側面を完全な垂直面に形成でき
る。
Since the film and the second Si, N, film are etched under the same etching ratio conditions, the inner surfaces of the grooves can be formed into perfectly vertical surfaces.

(2)溝の内側面を垂直面にできるので、溝内のシリコ
ンの酸化の進行を均一に行なうことができ、形成するS
in、層に偏った応力を発生させることがなく、シリコ
ン基板内に結晶欠陥を発生させることがない。
(2) Since the inner surface of the groove can be made vertical, the oxidation of the silicon inside the groove can proceed uniformly, and the S
In this case, uneven stress is not generated in the layer, and crystal defects are not generated in the silicon substrate.

(3)溝の内側面を垂直面にできるので、エピタキシャ
ル成長されるシリコンおよびこれを酸化したSin、層
の上面を平坦にし、上面両側における7字状の凹部の発
生を防止しで基板の平坦化を図ることができる。
(3) Since the inner surface of the groove can be made a vertical surface, the top surface of the epitaxially grown silicon and oxidized Si layer can be flattened, and the formation of a figure 7-shaped recess on both sides of the top surface can be prevented, thereby flattening the substrate. can be achieved.

(4)従来の製造方法に加えて非晶質のSiO2膜を形
成するだけで溝内面を垂直面にエツチングできるので、
工程数を殆んど増やすことな(良好なアイソレーション
構造を得ることができる。
(4) In addition to conventional manufacturing methods, the inner surface of the groove can be etched vertically by simply forming an amorphous SiO2 film.
A good isolation structure can be obtained without increasing the number of steps.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが、本発明は上記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で種々変更可
能であることはいうまでもな℃・。たとえば、非晶質S
 io、の代りに他の非晶質材料を使用してもよい。ま
た、選択エピタキシャル成長法や酸化法には従来知られ
ている種々の方法が利用できる。
Although the invention made by the present inventor has been specifically explained above based on Examples, it goes without saying that the present invention is not limited to the above Examples and can be modified in various ways without departing from the gist thereof. Mona ℃・. For example, amorphous S
Other amorphous materials may be used in place of io. Furthermore, various conventionally known methods can be used for selective epitaxial growth and oxidation.

〔利用分野〕[Application field]

以上の説明では主として本発明者によってなされた発明
をその背景となった利用分野である半導体装置の溝型ア
イソレーションの形成技術に適用した場合について説明
したが、それに限定されるものではなく、垂直に切り立
った側壁を持つ溝あるいは段差を必要とする半導体装置
の全てに適用できる。
In the above explanation, the invention made by the present inventor was mainly applied to the technology for forming groove type isolation of semiconductor devices, which is the field of application that formed the background of the invention, but it is not limited to this. It can be applied to all semiconductor devices that require grooves or steps with steep sidewalls.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方法における不具合を説明するための断面
図、 第2図(A)〜0は本発明の製造方法を工程順に示す断
面図、 第3図は膜厚を算出する方法を説明するための要部の拡
大断面図である。 11・・・シリコン基板、12・・・S iot膜、1
3・・・第1Si3N4膜、14・・・溝、15・・・
傾斜面部、16・・・S iO,膜、17・・・第2S
i、N、膜、18・・・非晶質SiO*[,19・・・
エビタキシャ/L/(成長)シリコン、20・・・Si
n、層。 第 1 図 第 3 図
Fig. 1 is a cross-sectional view to explain the defects in the conventional method, Fig. 2 (A) to 0 are cross-sectional views showing the manufacturing method of the present invention in the order of steps, and Fig. 3 is a cross-sectional view to explain the method of calculating the film thickness. FIG. 11...Silicon substrate, 12...Siot film, 1
3... First Si3N4 film, 14... Groove, 15...
Inclined surface portion, 16... SiO, film, 17... 2nd S
i, N, film, 18... amorphous SiO*[, 19...
Ebitaxia/L/(growth) silicon, 20...Si
n, layer; Figure 1 Figure 3

Claims (1)

【特許請求の範囲】 1、半導体基板に第1Si3N4膜をマスクとして溝を
エツチング形成する二[程と、基板上面ないし溝内面に
第2Si3N4膜および非晶質膜を十分な厚さに形成す
る工程と、これら第2Si、N4膜、非晶質膜等を同等
のエツチング比でRIE法によりエツチングする工程と
、溝内に半導体を選択的にエビタキシャ〃成長させる工
程と、この半導体を酸化させて前記溝内を酸化層で充填
させてアイソレーションを宿成する工程とを備えること
を特徴とする半導体装1にの製造方法。 2、非晶質膜は高温低圧CVD法により形成したS i
o、膜である特許請求の範囲第1項記載の半導体装置の
製造方法。 3、非晶質膜は溝側面に半導体が露呈され得ないよう所
定の関係式からめられる厚さ以上の膜厚に形成してなる
特許請求の範囲第1項又は第2項記載の半導体装置の製
造方法。
[Claims] 1. Steps of etching a groove on a semiconductor substrate using the first Si3N4 film as a mask; and forming a second Si3N4 film and an amorphous film to a sufficient thickness on the upper surface of the substrate or the inner surface of the groove. , a step of etching these second Si, N4 films, amorphous films, etc. by the RIE method at the same etching ratio, a step of selectively epitaxially growing a semiconductor in the groove, and a step of oxidizing this semiconductor to form the above-mentioned etching layer. 1. A method for manufacturing a semiconductor device 1, comprising the step of filling a trench with an oxide layer to provide isolation. 2. The amorphous film is Si formed by high temperature and low pressure CVD method.
o. The method for manufacturing a semiconductor device according to claim 1, wherein the semiconductor device is a film. 3. The semiconductor device according to claim 1 or 2, wherein the amorphous film is formed to have a thickness greater than the thickness calculated from a predetermined relational expression so that the semiconductor cannot be exposed on the side surface of the groove. Production method.
JP2707584A 1984-02-17 1984-02-17 Manufacture of semiconductor device Pending JPS60171737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2707584A JPS60171737A (en) 1984-02-17 1984-02-17 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2707584A JPS60171737A (en) 1984-02-17 1984-02-17 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60171737A true JPS60171737A (en) 1985-09-05

Family

ID=12210947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2707584A Pending JPS60171737A (en) 1984-02-17 1984-02-17 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60171737A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281537A (en) * 1985-06-06 1986-12-11 Fujitsu Ltd Manufacture of semiconductor device
JPS6257232A (en) * 1985-09-05 1987-03-12 イ−ストマン コダツク カンパニ− Isolation device and making thereof
JPS63141346A (en) * 1986-12-03 1988-06-13 Sony Corp Manufacture of semiconductor device
JPS63258040A (en) * 1987-04-15 1988-10-25 Nec Corp Formation of element isolation region

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281537A (en) * 1985-06-06 1986-12-11 Fujitsu Ltd Manufacture of semiconductor device
JPS6257232A (en) * 1985-09-05 1987-03-12 イ−ストマン コダツク カンパニ− Isolation device and making thereof
JPS63141346A (en) * 1986-12-03 1988-06-13 Sony Corp Manufacture of semiconductor device
JPS63258040A (en) * 1987-04-15 1988-10-25 Nec Corp Formation of element isolation region

Similar Documents

Publication Publication Date Title
KR100275730B1 (en) Trench isolating method
US20160322226A1 (en) Techniques for Fabricating Reduced-Line-Edge-Roughness Trenches for Aspect Ratio Trapping
JPH05121379A (en) Method of manufacturing semiconductor device
US6521510B1 (en) Method for shallow trench isolation with removal of strained island edges
US5185286A (en) Process for producing laminated semiconductor substrate
US11456367B2 (en) Trench gate structure and method of forming a trench gate structure
CN111986992A (en) Groove etching method
US20060145288A1 (en) Method of forming shallow trench isolation of semiconductor device
JPS60171737A (en) Manufacture of semiconductor device
US5824594A (en) Integrated circuit device isolating methods including silicon spacers and oxidation barrier films
JP3153632B2 (en) Manufacturing method of SOI structure
CN113471138B (en) Method for preparing semiconductor substrate and semiconductor device
JP2000164690A (en) Manufacture of semiconductor device
USRE34400E (en) Method for fabricating isolation region in semiconductor devices
KR20190098715A (en) Methods for bottom up fin structure formation
JPS6388821A (en) Vapor growth method
JPS60193324A (en) Manufacture of semiconductor substrate
JPH03153031A (en) Manufacture of semiconductor device
JPH01258439A (en) Semiconductor device and manufacture thereof
JPH06224187A (en) Forming method for locos oxide film
JPS5928358A (en) Manufacture of semiconductor device
KR19990051399A (en) Device Separation Method of Semiconductor Device
JP3206944B2 (en) Semiconductor device
JPS63141346A (en) Manufacture of semiconductor device
JP3057511B2 (en) Method for manufacturing semiconductor device having recess filling step