JPS60171377A - Method of recovering argon - Google Patents

Method of recovering argon

Info

Publication number
JPS60171377A
JPS60171377A JP59026294A JP2629484A JPS60171377A JP S60171377 A JPS60171377 A JP S60171377A JP 59026294 A JP59026294 A JP 59026294A JP 2629484 A JP2629484 A JP 2629484A JP S60171377 A JPS60171377 A JP S60171377A
Authority
JP
Japan
Prior art keywords
methane
argon
tower
nitrogen
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59026294A
Other languages
Japanese (ja)
Inventor
正幸 田中
福里 隆一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP59026294A priority Critical patent/JPS60171377A/en
Publication of JPS60171377A publication Critical patent/JPS60171377A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はアルゴンの回収方法に関し、特にアンモニア合
成パージガス中に含まれるアルゴンを深冷分離法によっ
て分離回収するに当たり、従来不可欠とされていた高圧
循環窒素圧縮機を省略可能とすることによって設備費及
び動力原単位の低減を図り、アルゴンを経済的に回収す
る方法に関するものである。
[Detailed Description of the Invention] The present invention relates to a method for recovering argon, and in particular, when separating and recovering argon contained in ammonia synthesis purge gas by a cryogenic separation method, it is possible to omit the high-pressure circulating nitrogen compressor that was conventionally considered indispensable. This invention relates to a method for economically recovering argon by reducing equipment costs and power consumption.

ナフサの水蒸気改質ガスを原料とするアンモニア合成反
応においては、未分解のメタン及び原料空気中に含まれ
るアルゴンが合成ループ内で蓄積して反応を阻害するの
で、これらを未反応の水素と共にループ系外へ放出する
必要があり、これはパージガスと呼ばれ、水素、窒素、
アルゴン、メタンを含んでいる。本発明は、この様なア
ンモニア合成パージガスからアルゴンを経済的に高収率
で回収する方法として特に有用な技術を提供するもので
ある。
In the ammonia synthesis reaction using steam-reformed naphtha gas as raw material, undecomposed methane and argon contained in the feed air accumulate in the synthesis loop and inhibit the reaction, so they are looped together with unreacted hydrogen. It is necessary to release it outside the system, and this is called purge gas, which contains hydrogen, nitrogen,
Contains argon and methane. The present invention provides a particularly useful technique for economically recovering argon from such ammonia synthesis purge gas in a high yield.

上記の様なアンモニア合成パージガスからアルゴンを回
収する方法として現在量も広く実用化されているのは、
第1図(フロー図)に示す様な深冷分離法である。この
図において、水素、窒素、アルゴン及びメタンを含む原
料ガスは、第1熱交換器1及び第2熱交換器2へ順次導
入され、ここを逆方向に通過して、設備外へ取り出され
る水素やオフガスとの熱交換を受けることによって降温
させる。次いで第1フラツシユドラム3でフラッシュ蒸
留に付して最も低沸点の水素を分離すると共に残部は液
化され、更に第2フラツシユドラム4で微量の低沸点分
を除去した後、ラインLXからメタン塔5の中腹部へ供
給する。メタン塔5の底部にはりボイラー6が設けられ
て詔り、該ボイラー6は、後述する如く高圧循環窒素圧
縮a7からラインL2を経て送られてくる高圧で温度が
約−160℃の液体窒素により加熱されており、メタン
塔5では該液体窒素の熱によって蒸留が行なわれ、高沸
点のメタンは塔底部からラインL3を通して第1熱交換
器1に入り原料ガスと熱交換した後オフガスとして系外
へ排出される。一方メタン塔5内を上昇した窒素とアル
ゴンの混合ガスの一部は、塔頂部に設けたコンデンサー
8(冷媒は液体窒素溜9から供給される液体窒素)によ
り冷却され、液状となってメタン塔5の頂部に戻り、還
流液となる。残りの窒素とアルゴンの混合ガスは、ライ
ンL5から順次抜き出してアルゴン塔10へ送り込み、
ここでアルゴンの回収が行なわれる。即ちアルゴン塔1
0の底部にはりボイラー11が設けられており、該リボ
イラー11は、後備する中圧循環窒素圧縮機12からラ
インL6を通して送られてくる中圧で温度が約−173
℃の液体窒素により加温されてあり、これを熱源として
蒸留が行なわれる。
Currently, the methods for recovering argon from the ammonia synthesis purge gas described above are as follows:
This is a cryogenic separation method as shown in Figure 1 (flow diagram). In this figure, a raw material gas containing hydrogen, nitrogen, argon, and methane is sequentially introduced into a first heat exchanger 1 and a second heat exchanger 2, through which it passes in the opposite direction, and hydrogen is taken out of the equipment. The temperature is lowered by undergoing heat exchange with the gas and off-gas. Next, flash distillation is carried out in the first flash drum 3 to separate hydrogen with the lowest boiling point, and the remainder is liquefied.Furthermore, after removing a small amount of low boiling point components in the second flash drum 4, methane is extracted from the line LX. It is supplied to the middle part of tower 5. A boiler 6 is installed at the bottom of the methane column 5, and the boiler 6 is powered by high pressure liquid nitrogen at a temperature of about -160°C, which is sent from the high pressure circulating nitrogen compressor a7 through the line L2, as will be described later. Distillation is carried out in the methane tower 5 by the heat of the liquid nitrogen, and high-boiling point methane enters the first heat exchanger 1 from the bottom of the tower through line L3, exchanges heat with the raw material gas, and then exits the system as an off-gas. is discharged to. On the other hand, a part of the mixed gas of nitrogen and argon that has risen in the methane tower 5 is cooled by a condenser 8 installed at the top of the tower (the refrigerant is liquid nitrogen supplied from a liquid nitrogen reservoir 9), becomes liquid, and is transferred to the methane tower. It returns to the top of 5 and becomes a reflux liquid. The remaining nitrogen and argon mixed gas is sequentially extracted from line L5 and sent to the argon column 10.
Here, argon is recovered. That is, argon tower 1
A boiler 11 is provided at the bottom of the reboiler 11, and the reboiler 11 is heated to a temperature of approximately -173°C by medium pressure sent through line L6 from a medium pressure circulating nitrogen compressor 12 provided behind.
It is heated with liquid nitrogen at ℃, and distillation is performed using this as a heat source.

そして高沸点のアルゴンは塔底部から製品として抜き出
される。また微量のアルゴンを含む窒素ガスはアルゴン
塔10の頂部に設けたコンデンサー1B(冷媒は液体窒
素溜9から供給される液体窒素)により冷却され、一部
は液状となって循環するが、液化しない低沸点の高純度
窒素は順次塔頂部からラインL7を通して抜き出される
。又液状で循環している低純度液体窒素(微量のアルゴ
ンを含む)の一部はラインL8から順次抜き出し、第2
フラツシユドラム4からのオフガスと合流させた後、第
2熱交換器2及び第1熱交換器1で原料ガスとの熱交換
を行なった後系外へ排出される。
The high boiling point argon is then extracted as a product from the bottom of the column. In addition, the nitrogen gas containing a trace amount of argon is cooled by the condenser 1B installed at the top of the argon column 10 (the refrigerant is liquid nitrogen supplied from the liquid nitrogen reservoir 9), and some of it becomes liquid and circulates, but it does not liquefy. High purity nitrogen with a low boiling point is sequentially withdrawn from the top of the column through line L7. In addition, a part of the low-purity liquid nitrogen (containing a trace amount of argon) circulating in liquid form is sequentially extracted from line L8 and
After being combined with the off-gas from the flash drum 4, it exchanges heat with the raw material gas in the second heat exchanger 2 and first heat exchanger 1, and is then discharged to the outside of the system.

他方メタン塔5の頂部からラインL4を通して抜き出さ
れた高純度窒素ガスは、アルゴン塔lOから抜き出され
た高純度窒素ガスとラインL7で合流させた後、ライン
L、から過冷却器14、第2循環窒素熱交換器15及び
第1循環窒素熱交換器16を経て中圧循環窒素圧縮機1
2へ送って圧縮し、その一部は各熱交換器16.15を
逆に通過させて適正な温度(約−173℃)に調整しラ
イン■、6を通してアルゴン塔リボイラー11の熱源と
して循環供給しここで放熱して凝縮した液体窒素は過冷
却器14で更に冷却された後ラインL1oを通して液体
窒素溜9へ送られる。また中圧循環窒素圧縮機12から
出た残りの中圧窒素は更に高圧循環窒素圧縮機7により
加圧昇温された後、各熱交換器16.15を逆に通過し
て適正な温度(約−160℃)に調整された後ラインL
2からメタン塔リボイラー6の熱源として供給され、こ
こで放熱して凝縮した液体窒素はラインL□□から液体
窒素溜9へ送られる。図中17は膨張タービンであり、
高純度窒素の冷却ひいては装置全体の冷却の為に使用さ
れる。又図において一点鎖線で囲んだ部分は断熱保冷箱
内に装入されている。
On the other hand, the high-purity nitrogen gas extracted from the top of the methane tower 5 through the line L4 is combined with the high-purity nitrogen gas extracted from the argon tower 1O in the line L7, and then passed from the line L to the supercooler 14, Medium pressure circulating nitrogen compressor 1 via second circulating nitrogen heat exchanger 15 and first circulating nitrogen heat exchanger 16
2 and compressed, a portion of which is passed through each heat exchanger 16 and 15 in reverse to adjust the temperature to an appropriate temperature (approximately -173°C), and is circulated and supplied as a heat source to the argon column reboiler 11 through lines ① and 6. The liquid nitrogen condensed by radiating heat here is further cooled in the subcooler 14 and then sent to the liquid nitrogen reservoir 9 through the line L1o. In addition, the remaining intermediate pressure nitrogen discharged from the intermediate pressure circulating nitrogen compressor 12 is further pressurized and heated by the high pressure circulating nitrogen compressor 7, and then passes through each heat exchanger 16, 15 in reverse to reach an appropriate temperature ( Line L after being adjusted to approximately -160℃)
2 as a heat source for the methane column reboiler 6, and the liquid nitrogen condensed by dissipating heat here is sent to the liquid nitrogen reservoir 9 from the line L□□. 17 in the figure is an expansion turbine,
It is used for cooling high-purity nitrogen and, in turn, for cooling the entire equipment. Also, in the figure, the part surrounded by a dashed line is placed in an insulated cold box.

この種の設備を稼動させるに当たっては、運転条件に応
じて処理流体(ガス又は液体)を加圧又は減圧処理する
為の圧縮機や膨張機が使用されるが、特に圧縮機の作動
に要する動力費は設備全体の動力費の大半を占めている
のが実情である。特にこの種の設備はかなり大規模なも
のが多く動力費が嵩むため、回収アルゴンの低コスト化
を図るうとすればこれら動力費の低減が不可避の解決課
題となる。
When operating this type of equipment, compressors and expanders are used to pressurize or depressurize the processing fluid (gas or liquid) depending on the operating conditions, but especially the power required to operate the compressor. The reality is that these costs account for most of the power costs for the entire facility. In particular, this type of equipment is often quite large-scale and requires high power costs, so reducing these power costs is an unavoidable problem if the cost of recovered argon is to be reduced.

本発明はこうした点に鍾み、第1図に示した様なアルゴ
ン回収設備における高圧循環窒素圧縮機の採用を中止し
て、別途新規な技術的手段を有機的に組合わせることに
より、少なくとも製品アルゴンの回収効率及びその円滑
性を損なうことなく、従来のアルゴン回収設備に要して
いた動力費を節 −減し、経済性を高めるところにその
目的を有するものである。しかしてこの様な目的を達成
し得た本発明の構成とは、第1図に示した様なアルゴン
の回収方法にかいて、メタン塔底部から取出した液体メ
タンの一部を原料ガスとの熱交換に供して昇温させた後
、メタン塔の底部に循環させてメタン塔の熱源とし、メ
タン塔の底部から取出した液体メタンの残部とアルゴン
塔頂部から回収された液体窒素とを混合して原料ガスと
の熱交換に供し、他方系外から導入されたアルゴン塔加
熱用中圧窒素を原料ガスとの熱交換に供するところに要
旨を有するものである。
The present invention takes into account these points, and by discontinuing the use of a high-pressure circulating nitrogen compressor in the argon recovery equipment shown in Figure 1 and organically combining new technical means, it is possible to at least improve the quality of the product. The purpose is to reduce the power cost required for conventional argon recovery equipment and increase economic efficiency without compromising argon recovery efficiency and smoothness. However, the structure of the present invention that has achieved this purpose is that a part of the liquid methane taken out from the bottom of the methane tower is combined with the raw material gas using the argon recovery method shown in Figure 1. After being subjected to heat exchange to raise the temperature, it is circulated to the bottom of the methane tower and used as a heat source for the methane tower, and the remaining liquid methane taken out from the bottom of the methane tower is mixed with liquid nitrogen recovered from the top of the argon tower. The gist is that medium-pressure nitrogen introduced from outside the system for heating the argon column is used for heat exchange with the raw material gas.

以下実施例図面を参照しながら本発明の構成及び作用効
果を説明するが、図は代表例であって本発明を限定する
性質のものではなく、前・後記の趣旨に適合し得る範囲
で熱交換器等の設置数や位置或は配管ライン等を適当に
変更することも勿論可能であり、それらは何れも本発明
の技術的範囲に含まれる。第2図は本発明の実施例を示
すフロー図であり、基本的な構成は第1図の従来例と同
じであるので、同一の部分には同一の符号を付しその説
明は重複を避ける為省略する。そして本発明に射ける特
徴は、第1図における高圧循環窒素圧縮機7の設置を積
極的に省略すると共に、第2図に太線で示したラインを
新たに設けて中圧操業を可能としたところに存在するの
で、これらを主体にして説明する。
The structure and effects of the present invention will be explained below with reference to the drawings, but the drawings are representative examples and do not limit the present invention. Of course, it is also possible to appropriately change the number and position of exchangers, piping lines, etc., and all of these are included in the technical scope of the present invention. FIG. 2 is a flow diagram showing an embodiment of the present invention, and the basic configuration is the same as the conventional example shown in FIG. Therefore, it is omitted. The unique feature of the present invention is that the installation of the high-pressure circulating nitrogen compressor 7 in Fig. 1 is actively omitted, and the line shown in bold line in Fig. 2 is newly installed to enable medium-pressure operation. Since they exist in many places, I will mainly explain them.

まず本発明では、メタン塔5の下部に設けたメタン抜き
出しラインL3に分岐ラインL12を接続し、液化メタ
ンの一部を該分岐ラインL1□から第1熱交換器1に導
いて原料ガスとの間で熱交換させ、昇温ガス化させた後
、このガス化したメタンを再びメタン塔5の底部に導入
し、メタン塔による蒸留の熱源としたので、高圧循環窒
素によるリボイラー加熱を省略可能とすることができる
に至り、ここに第1の特徴がある。即ち従来では、メタ
ン塔5の底部をメタンの沸点である一160℃付近まで
加熱する為に、約80 Kf 7cm2Gの高圧循環窒
素を利用して詔り、この為に高圧循環窒素圧縮機7が不
可欠とされていた。これは、加熱用循環窒素を一160
℃の温度レベルで凝縮させることに′ よる潜熱加熱を
可能とし、循環窒素の熱交バランスを保つうえで高圧を
必須とするからである。一方メタン塔5の加熱に80 
K7/cIn2G未満の中・低圧窒素を使用することも
考えられるが、メタン塔5の底部ではメタンの加熱蒸発
が一160℃程度の温度で行なわれるので、この温度レ
ベルで液化しない中・低圧窒素でリボイラー6の加熱を
行なうと、潜熱(原料ガスの蒸発)と顕熱の熱交換とな
る為循環窒素の入側窒素温度が極端に上昇し、循環窒素
の熱交バランスがくずれて操業不能に陥る恐れがある。
First, in the present invention, a branch line L12 is connected to the methane extraction line L3 provided at the bottom of the methane tower 5, and a part of the liquefied methane is guided from the branch line L1□ to the first heat exchanger 1 to be exchanged with the raw material gas. After the gasified methane was heated and gasified by exchanging heat between the two, the gasified methane was reintroduced into the bottom of the methane tower 5 and used as a heat source for distillation in the methane tower, making it possible to omit reboiler heating using high-pressure circulating nitrogen. Herein lies the first feature. That is, conventionally, in order to heat the bottom of the methane tower 5 to around -160°C, which is the boiling point of methane, high-pressure circulating nitrogen of about 80 Kf 7 cm2G is used, and for this purpose, the high-pressure circulating nitrogen compressor 7 is used. was considered essential. This supplies circulating nitrogen for heating to -160
This is because latent heat heating is possible by condensing at a temperature level of °C, and high pressure is essential to maintain the heat exchange balance of circulating nitrogen. On the other hand, for heating the methane tower 5,
It is possible to use medium/low pressure nitrogen below K7/cIn2G, but since methane is heated and evaporated at a temperature of about 1160°C at the bottom of the methane tower 5, medium/low pressure nitrogen that does not liquefy at this temperature level is considered. When reboiler 6 is heated, latent heat (evaporation of raw material gas) and sensible heat are exchanged, so the nitrogen temperature on the inlet side of circulating nitrogen rises extremely, and the heat exchange balance of circulating nitrogen is disrupted, making it impossible to operate. There is a risk of falling.

従ってこうした熱交バランスのくずれを回避する為には
、リボイラーでの加熱を潜熱同士の熱交換によって行な
う必要があり、その為には循環窒素を高圧として−i 
a o ”c温度レベルで液化が可能な状態としなけれ
ばならず、メタン塔のりボイラー加熱に窒素を使用する
限り高圧化は不可欠の要件となる。これに対し本発明で
は、「循環窒素によるメタン塔のりボイラー加熱」とい
う一般常識を打破し、メタン塔から抜き出される液化メ
タンを加温してメタン塔底部へ返送するという独自の加
熱手段を採用することにより、操業効率等に一切の悪影
響を及ぼすことなく高圧循環窒素圧縮機を省略できる様
になった。
Therefore, in order to avoid such a loss of heat exchange balance, it is necessary to perform heating in the reboiler by heat exchange between latent heats, and for this purpose, it is necessary to use circulating nitrogen at high pressure and -i
The state must be such that liquefaction is possible at a Breaking away from the common wisdom of "heating the methane tower over the boiler" and adopting a unique heating method that heats the liquefied methane extracted from the methane tower and returns it to the bottom of the methane tower, we are able to eliminate any negative effects on operational efficiency, etc. The high-pressure circulating nitrogen compressor can now be omitted without any negative impact.

ところで高圧循環窒素圧縮837を省略した場合には、
高圧循環窒素によるメタンt?55の加熱がなくなり原
料ガスの熱をメタン塔の加熱に使うため、第1熱交換器
1と第2熱交換器2の熱収支を考えるとこの部分におけ
る原料ガスの冷却効果が過大となってメタン塔5へのフ
ィード温度が低下し、メタン塔5底部における加熱の負
βが増大し、ひいてはラインL1□から第1熱交換器1
を経て循環供給される液体メタンによる加熱が不十分と
なり、プロセスとして成立しない場合も発生することが
考えられる。そこで本発明では原料ガスの過度の降温を
防止する為、中圧(一般的には7 KF!/cm2G程
度)の中圧循環窒素をラインL6からラインL13を通
して第2熱交換器2へ導きここで中圧の循環窒素を凝縮
させることで、この部分でメタン塔5への供給原料の温
度を高め、メタン塔底部における加熱負荷の増大を防止
している。尚第2熱交換器2で熱交換した後の中圧循環
窒素は、ラインL14を通して液体窒素溜9へ送られる
By the way, if the high pressure circulating nitrogen compression 837 is omitted,
Methane from high pressure circulating nitrogen? 55 is no longer heated, and the heat of the raw material gas is used to heat the methane tower, so when considering the heat balance of the first heat exchanger 1 and the second heat exchanger 2, the cooling effect of the raw material gas in this part becomes excessive. The feed temperature to the methane tower 5 decreases, the negative β of heating at the bottom of the methane tower 5 increases, and as a result, from the line L1□ to the first heat exchanger 1
It is conceivable that the heating by the liquid methane that is circulated and supplied through the process may become insufficient and the process may not be viable. Therefore, in the present invention, in order to prevent excessive temperature drop of the raw material gas, medium pressure circulating nitrogen (generally about 7 KF!/cm2G) is guided from the line L6 to the second heat exchanger 2 through the line L13. By condensing the medium-pressure circulating nitrogen at this point, the temperature of the feedstock to the methane tower 5 is increased in this part, thereby preventing an increase in the heating load at the bottom of the methane tower. The medium-pressure circulating nitrogen after heat exchange in the second heat exchanger 2 is sent to the liquid nitrogen reservoir 9 through the line L14.

ところで熱交換器によって原料ガスの冷却を行なう場合
において、ある温度、たとえば液体メタン温度(約−1
60℃)に原料ガス冷却用寒冷源が集中したとする。そ
してこの部分におけ2寒冷源の集中が大きくなり、当該
部分の熱交換量が増大すると、原料ガスは液体メタン温
度付近まで冷却される。しかし冷却する側が一160℃
であれば、原料ガスが一160℃以下の温度まで降下す
ることはあり得ない訳で、このことから各温度レベルに
おいて交換可能な熱量には、原料ガスの熱量に対応した
最大値があることが分かる(ある温度レベルでの熱交換
量が、その温度レベルにおける交換可能な最大熱量を超
えることをピンチと称している)。
By the way, when the raw material gas is cooled by a heat exchanger, a certain temperature, for example, the temperature of liquid methane (approximately -1
Assume that the cold source for cooling the raw material gas is concentrated at 60°C. When the concentration of the two cold sources increases in this area and the amount of heat exchange in this area increases, the raw material gas is cooled to around the temperature of liquid methane. However, the cooling side is 1160℃
If so, it is impossible for the raw material gas to drop to a temperature lower than 1160°C, and this means that the amount of heat that can be exchanged at each temperature level has a maximum value that corresponds to the amount of heat in the raw material gas. (A pinch is when the amount of heat exchanged at a certain temperature level exceeds the maximum amount of heat that can be exchanged at that temperature level).

これらのことを第1図(従来例)及び第2図(本発明例
)に適用して考えてみた場合、従来例では、本発明の様
に第1熱交換器1で原料ガスと液体メタン(メタン塔5
底部の加熱用)の熱交換が行なわれていないので、メタ
ン塔5底部からの液体メタンをそのまま第1熱交換器l
に供給しても液体メタン温度(−160℃)レベルで交
換熱量の集中が起こらず、交換熱量が交換可能な最大熱
量を上回ることがなく、前記「ピンチ」の問題は生じな
い。ところが本発明で、メタン塔5の底部より抜き出さ
れる液体メタンの残部(加熱源として循環される液化メ
タンを除いたもの)を従来例と同様第1熱交換器lを通
して系外へ排出させようとすると、第1熱交換器1にお
いて■メタン塔5の加熱用液化メタンの加熱と■残部液
化メタンの加熱蒸発の双方に原料ガスとの熱交換を利用
することになるが、液化メタン温度レベルにおける上記
■、■の必要交換熱量は、理論上当該温度レベルにおけ
る交換可能な最大熱量を超えることになって「ピンチ」
を生じる。そこで本発明ではこうした弊害も確実に防止
する為、メタン塔底部から抜き出される液体メタンをア
ルゴン塔頂部から抜き出された低純度窒素(ラインL8
)と合流させることによりメタンの蒸発温度を低下させ
、ラインL15から第2熱交換器2及び第1熱交換器1
を通して系外へ排出することにより、熱交換器112に
おける各温度レベルでの熱交換器が、交換可能な最大熱
交換爪を越えない様にし、ピンチの発生を確実に回避し
ている。
When considering these matters by applying them to Fig. 1 (conventional example) and Fig. 2 (inventive example), in the conventional example, the raw material gas and liquid methane are exchanged in the first heat exchanger 1 as in the present invention. (Methane tower 5
Since heat exchange (for heating the bottom part) is not performed, liquid methane from the bottom part of methane tower 5 is directly transferred to the first heat exchanger l.
Even if it is supplied to the liquid methane temperature (-160° C.), the amount of heat exchanged does not concentrate at the level of the liquid methane temperature (-160° C.), the amount of heat exchanged does not exceed the maximum amount of heat that can be exchanged, and the above-mentioned “pinch” problem does not occur. However, in the present invention, the remainder of the liquid methane extracted from the bottom of the methane tower 5 (excluding the liquefied methane that is circulated as a heating source) is discharged out of the system through the first heat exchanger l, as in the conventional example. Then, in the first heat exchanger 1, heat exchange with the raw material gas is used for both (1) heating the liquefied methane for heating the methane tower 5 and (2) heating and evaporating the remaining liquefied methane, but the liquefied methane temperature level The amount of heat exchanged above (■) and (■) in
occurs. Therefore, in the present invention, in order to reliably prevent such adverse effects, liquid methane extracted from the bottom of the methane column is replaced with low-purity nitrogen (line L8) extracted from the top of the argon column.
) to lower the evaporation temperature of methane, and from the line L15 to the second heat exchanger 2 and the first heat exchanger 1.
By discharging the heat to the outside of the system through the heat exchanger 112, the temperature of the heat exchanger 112 at each temperature level is prevented from exceeding the maximum exchangeable heat exchange claw, and the occurrence of a pinch is reliably avoided.

本発明は以上の様に構成されるが、要は■メタン塔の加
熱源としてメタン塔から抜き出され加温循環される液体
メタンを使用し、■メタン塔底部における加熱負荷の増
大を防止する為、中圧循環窒素を原料ガス冷却用熱交換
器に導いて冷却液化させることによって、メタン塔への
原料フィード温度を高め、更に■メタン塔底部から系外
へ抜き出される液化メタンをアルゴン塔頂部から抜き出
される低純度窒素と合流した後、熱交換器を通して排出
させることによって、熱交換器で発生し得るピンチを回
避し、これらによって操業効率等に何らの障害も生ずる
ことなく高圧循環窒素圧縮機の使用を積極的に省略し得
ることになった。その結果設備費の大幅な低減と、該圧
縮機の稼動に要する動力が不要となり設備全体の所要動
力を大幅に低減し得ると共に、プロセス自体の運転操業
性も高め得ることになった。
The present invention is constructed as described above, but the key points are: 1) Use liquid methane extracted from the methane tower and heated and circulated as a heating source for the methane tower, and 2) Prevent an increase in heating load at the bottom of the methane tower. Therefore, by guiding medium-pressure circulating nitrogen to a heat exchanger for cooling the raw material gas and cooling it to liquefy it, the temperature at which the raw material is fed to the methane tower is increased. Furthermore, the liquefied methane extracted from the bottom of the methane tower is transferred to the argon tower. By combining with the low-purity nitrogen extracted from the top and then discharging it through the heat exchanger, the pinches that can occur in the heat exchanger are avoided, and the high-pressure circulating nitrogen is maintained without causing any problems in operational efficiency. It became possible to positively omit the use of a compressor. As a result, the equipment cost was significantly reduced, the power required to operate the compressor became unnecessary, the power required for the entire equipment was significantly reduced, and the operability of the process itself was improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のアルゴン回収設備を示すフロー図、第2
図は本発明の実施例を示すフロー図である。 l・・・第1熱交換器、 2・・・第2熱交換器、3・
・・第1フラツシユドラム、 4・・・第2フラツシユドラム、 5・・・メタン塔、 7・・・高圧循環窒素圧縮機、 6.11・・・リボイラー、 8.13・・・コンデンサー、 9・・・液体窒素溜、 lO・・・アルゴン塔、12・
・・中圧循環窒素圧縮機、 15・・・第2循環窒素熱交換器、 16・・・第1循環熱交換器、 17・・・膨張タービン。 出願人株式会社神戸製鋼所 代理人弁理士植木久ρ)
Figure 1 is a flow diagram showing conventional argon recovery equipment, Figure 2
The figure is a flow diagram showing an embodiment of the present invention. l...first heat exchanger, 2...second heat exchanger, 3...
...First flash drum, 4...Second flash drum, 5...Methane tower, 7...High pressure circulating nitrogen compressor, 6.11...Reboiler, 8.13...Condenser , 9...Liquid nitrogen reservoir, lO...Argon column, 12.
... Medium-pressure circulating nitrogen compressor, 15... Second circulating nitrogen heat exchanger, 16... First circulating heat exchanger, 17... Expansion turbine. Hisashi Ueki, patent attorney representing applicant Kobe Steel, Ltd.)

Claims (1)

【特許請求の範囲】[Claims] 水素、窒素、メタン及びアルゴンを含む混合ガスを熱交
換により冷却し分縮により水素を分離した後、メタン塔
に導いてメタンを塔底より分離し、塔頂部から取出した
液体窒素と液体アルゴンの混合液をアルゴン塔に導いて
アルゴンを塔底部より取出すことにより高純度アルゴン
を回収する方法であって、メタン塔底部から取出した液
体メタンの一部を原料ガスとの熱交換に供して昇温させ
た後、メタン塔の底部に循環させてメタン塔の熱源とし
、メタン塔の底部から取出された液体メタンの残部とア
ルゴン塔頂部から回収された液体窒素とを混合して原料
ガスとの熱交換に供し、他方系外から導入されたアルゴ
ン塔加熱用中圧窒素の一部を原料ガスとの熱交換に供す
ることを特徴とするアルゴンの回収方法。
A mixed gas containing hydrogen, nitrogen, methane, and argon is cooled by heat exchange and hydrogen is separated by partial condensation, then led to a methane tower, where methane is separated from the bottom of the tower, and liquid nitrogen and liquid argon taken out from the top of the tower are separated. This method recovers high-purity argon by guiding the mixed liquid into an argon column and taking out argon from the bottom of the column. A part of the liquid methane taken out from the bottom of the methane column is heated by subjecting it to heat exchange with the raw material gas. After that, the remaining liquid methane taken out from the bottom of the methane tower is mixed with the liquid nitrogen recovered from the top of the argon tower to generate heat with the raw material gas. A method for recovering argon, characterized in that a part of medium-pressure nitrogen for heating the argon column introduced from outside the system is subjected to heat exchange with a raw material gas.
JP59026294A 1984-02-14 1984-02-14 Method of recovering argon Pending JPS60171377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59026294A JPS60171377A (en) 1984-02-14 1984-02-14 Method of recovering argon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59026294A JPS60171377A (en) 1984-02-14 1984-02-14 Method of recovering argon

Publications (1)

Publication Number Publication Date
JPS60171377A true JPS60171377A (en) 1985-09-04

Family

ID=12189297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59026294A Pending JPS60171377A (en) 1984-02-14 1984-02-14 Method of recovering argon

Country Status (1)

Country Link
JP (1) JPS60171377A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118586A (en) * 1986-11-07 1988-05-23 日本酸素株式会社 Method of recovering argon from ammonia synthesis purge gas
JPS63118588A (en) * 1986-11-07 1988-05-23 日本酸素株式会社 Method of recovering argon from ammonia synthesis purge gas
US4827641A (en) * 1986-06-10 1989-05-09 Carl Manufacturing Co., Ltd. Index device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51159919U (en) * 1975-06-12 1976-12-20
JPS5746175U (en) * 1980-08-29 1982-03-13
JPS57102783U (en) * 1980-12-15 1982-06-24

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51159919U (en) * 1975-06-12 1976-12-20
JPS5746175U (en) * 1980-08-29 1982-03-13
JPS57102783U (en) * 1980-12-15 1982-06-24

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827641A (en) * 1986-06-10 1989-05-09 Carl Manufacturing Co., Ltd. Index device
JPS63118586A (en) * 1986-11-07 1988-05-23 日本酸素株式会社 Method of recovering argon from ammonia synthesis purge gas
JPS63118588A (en) * 1986-11-07 1988-05-23 日本酸素株式会社 Method of recovering argon from ammonia synthesis purge gas

Similar Documents

Publication Publication Date Title
US4592766A (en) Parallel stream heat exchange for separation of ethane and higher hydrocarbons from a natural or refinery gas
CA2063928C (en) Process for low-temperature air fractionation
JP7355978B2 (en) Cryogenic air separation equipment
US11353262B2 (en) Nitrogen production method and nitrogen production apparatus
NO824107L (en) CRYOGENIC AIR Separation.
US4629484A (en) Process for separating hydrogen and methane from an ethylene rich stream
JPS6096686A (en) Separation of hydrocarbon mixture
US3675434A (en) Separation of low-boiling gas mixtures
KR100240323B1 (en) Method and apparatus for producing liquid products from air in various proportions
US4338107A (en) Wash system gas separation
US4338108A (en) Process for the recovery of argon
EP0283213B1 (en) Process for the recovery of argon
JP3737611B2 (en) Method and apparatus for producing low purity oxygen
JPS60171377A (en) Method of recovering argon
US20110146343A1 (en) Process And Apparatus For The Separation Of Air By Cryogenic Distillation
JPS63118586A (en) Method of recovering argon from ammonia synthesis purge gas
JPS59215577A (en) Method of recovering co gas from converter gas
JPS61189233A (en) Method of purifying hydrocarbon decomposition product
JPH0730998B2 (en) Method for recovering argon from ammonia synthesis purge gas
JPH1163812A (en) Manufacture and device for low-purity oxygen
JPH1163811A (en) Method and device for manufacturing low impurity oxygen
JPS62141485A (en) Manufacture of nitrogen having high purity
JPH0730999B2 (en) Method for recovering argon from ammonia synthesis purge gas
JPS61243273A (en) Air liquefying separating method
JPS61276680A (en) Method of liquefying and separating air