JPS60170969A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60170969A
JPS60170969A JP2600584A JP2600584A JPS60170969A JP S60170969 A JPS60170969 A JP S60170969A JP 2600584 A JP2600584 A JP 2600584A JP 2600584 A JP2600584 A JP 2600584A JP S60170969 A JPS60170969 A JP S60170969A
Authority
JP
Japan
Prior art keywords
layer
film
emitter
electrode
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2600584A
Other languages
Japanese (ja)
Inventor
Yasushi Yanagida
柳田 寧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2600584A priority Critical patent/JPS60170969A/en
Publication of JPS60170969A publication Critical patent/JPS60170969A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To simplify the process of a device with its emitter provided with series- resistor by a method wherein an N-layer on a P-type Si substrate is coated with poly Si and an N-type oxide layer is laminated before heattreatment while a poly Si resisting film is simultaneously formed on an electrode leading film and an insulating film. CONSTITUTION:An opening is made on an SiO2 film 5a on a P-base 5 and an N-emitter 7 on the surface of an Si substrate and then a poly Si11 and BSG13 are laminated thereon to be left selectively on the upper part of the opening. Firstly overall surface is laminated with the PSG13 to be heattreated for diffusing in the poly Si11 and then a P<+> layer 11a and an N<-> layer 11b are formed to be selectively etched for leaving respectively on corresponding electrode windows and then leaving an N-layer 11c on the SiO2 film 5a to form a thin P<+> layer 5c on a P-base 5 coming into contact with the P<+> layer 11a. Secondly overall surface is coated with Al to be photoetched forming a connecting layer 12c, a base electrode 12B, an emitter electorde 12E and a wiring pattern of the emitter 7 and the resistance layer 11c. In such a constitution, the reliability of a semiconductor device may be improved since the processes of oxidation, impurity introduction and photoetching are reduced to shorten the production process making electrode leading process easier.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は半導体装置の製造方法に関し、特に晶出力で
エミッタに直列に抵抗を有する半導体装IMの製造に用
いられる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and is particularly used for manufacturing a semiconductor device IM having a crystal output and a resistor in series with an emitter.

〔発明の技術的R景〕[Technical landscape of invention]

従来シリコントランジスタで、特に高出力のトランジス
タの製造においてASO(安全動作領域〕対策としてエ
ミッタに直列に抵抗を設は電流の集中を防ぐ方法が一般
に用いられている。ここではエミッタ抵抗を利用したト
ランジスタの一例を挙げる。
Conventional silicon transistors, especially in the manufacture of high-output transistors, generally use a method to prevent current concentration by installing a resistor in series with the emitter as a measure against ASO (safe operating area). Here is an example.

高出力トランジスタで、周波数が100M1lz程度、
出力が100Wというクラスのものでは、エミッタに流
れる電流が非常に大きいので、分離エミッタ方式が採用
され、同一装置内のエミッタ群の各単一エミッタが均等
な働きをし、電流の集中が生じないように各単一エミッ
タに各抵抗が直列に形成されている。ここでは抵抗は多
結晶シリコンに任意の濃度のリンを拡散させて他の熱処
理とは別個に行なわれている。一方、数量四方のベース
領域に数百個のエミッタが形成されるので、そのバター
ニング技術は数ミクロン級の微細蝕刻技術が必要になっ
ている。
High output transistor, frequency is about 100M1lz,
For devices with an output of 100 W, the current flowing through the emitter is very large, so a separate emitter method is adopted, so that each single emitter in a group of emitters in the same device works equally, and current concentration does not occur. Each resistor is formed in series with each single emitter. Here, the resistor is made by diffusing phosphorus at an arbitrary concentration into polycrystalline silicon, which is performed separately from other heat treatments. On the other hand, since hundreds of emitters are formed in a square base area, the patterning technique requires a fine etching technique of several microns.

上記−例の製造方法を第1図ないし第7図に示し、以下
に説明する。まず、N+層(1)上にN一層(2)を有
するシリコン基板゛(3)のN一層(2)の露出面に酸
化シリコン膜(4)を形成し、これを写真蝕刻によりベ
ース領域形成予定域の酸化シリコン膜を除去し選択的に
P型のベース領域(5)を形成する(第1図)。
The manufacturing method of the above-mentioned example is shown in FIGS. 1 to 7 and will be explained below. First, a silicon oxide film (4) is formed on the exposed surface of the N layer (2) of a silicon substrate (3) having an N layer (2) on the N+ layer (1), and this is used to form a base region by photolithography. The silicon oxide film in the planned area is removed to selectively form a P-type base region (5) (FIG. 1).

次に、数百側のエミッタが形成される各々の領域を囲ん
で格子状にP+層(6)が表面の酸化シリコンIII(
5a)の開孔(6a)から拡散形成され、同様に写真蝕
刻法により選択的に数百のエミッタ領域(71、(力・
・・(図示はその1個を示す)を表面の酸化膜に開孔を
設けて形成する(第2図)。
Next, a P+ layer (6) is placed on the surface of the silicon oxide III (
Similarly, hundreds of emitter regions (71, (force/
... (one of which is shown) is formed by providing an opening in the oxide film on the surface (FIG. 2).

次に、全面にポリシリコンを被着しリンを拡散すること
によってPドープトポ9フ93フ層(8′)に形成する
(第3図)。
Next, a P-doped polysilicon layer (8') is formed by depositing polysilicon on the entire surface and diffusing phosphorus (FIG. 3).

前記Pドープトポ9フ93フ層(8勺に写真蝕刻を施し
て所定形状の抵抗層(8)に形成する(第4図)。
The P-doped top 9 layer (8 layers) is photo-etched to form a resistive layer (8) in a predetermined shape (FIG. 4).

次に、前記P+層(6)とエミッタ領域+7) 、 (
7)・・・の上部を被段している酸化シリコン+漠(5
a)に夫々の開孔(6b)、(7a) 、 (7a)−
を設ける(第5図)。
Next, the P+ layer (6) and the emitter region +7), (
7) Silicon oxide + vague (5
a) with respective openings (6b), (7a), (7a)-
(Figure 5).

次に、アルミニウム電極膜を被着しこれに写真蝕刻を施
しこれを、エミッタ領域と抵抗層との接続層(9) 、
 t9)・・・、抵抗層(81上のエミッタ電極(9E
) 。
Next, an aluminum electrode film is deposited and photo-etched to form a connection layer (9) between the emitter region and the resistor layer.
t9)..., emitter electrode (9E
).

(9E)・・・、P+層を導出するベース電極(9B)
、および上記を含み所定の配線パターン(図示省略)を
選択的に残す(第6図、第7図)。
(9E)..., base electrode from which the P+ layer is derived (9B)
, and a predetermined wiring pattern (not shown) including the above is selectively left (FIGS. 6 and 7).

〔背景技術の問題点〕[Problems with background technology]

上記従来の方法には次に挙げる問題がある。 The above conventional method has the following problems.

まず、1層の形成において、写真蝕刻による該1層形成
予定域の酸化シリコン膜の開孔工程、P+不純物の導入
のための不純物源の堆積と熱処理工程、P+層の保護の
だめの酸化工程など多くの工程を必要とする。
First, in the formation of the first layer, there is a step of opening a silicon oxide film in the area where the first layer is to be formed by photolithography, a step of depositing an impurity source and heat treatment for introducing P+ impurities, an oxidation step for protecting the P+ layer, etc. Requires many steps.

次に、上記P+層の保繰に用いる酸化シリコン膜の形成
には表面安定性を得るために水素燃焼塩酸酸化という極
めて清浄を重んする酸化工程を心安とする。
Next, for the formation of the silicon oxide film used for preserving the P+ layer, an oxidation process called hydrogen combustion hydrochloric acid oxidation, which emphasizes extremely cleanliness, is used to obtain surface stability.

また、酸化工程によってベース層表層の不純物濃度の低
下を促進し表1ni安定化を妨げる。
In addition, the oxidation process promotes a decrease in the impurity concentration in the surface layer of the base layer, thereby hindering the stabilization of Table 1ni.

さらに、叙上の如き微細パターンが要求されている場合
、その電極導出部に欠陥を生じやすく、技術的に問題が
多い。
Furthermore, when a fine pattern as described above is required, defects are likely to occur in the electrode lead-out portion, resulting in many technical problems.

〔発明の目的〕[Purpose of the invention]

この発明は上記従来の問題点に鑑み、工程の簡略化と、
素子の′成極導出および信頼性を向上させるために改良
された半導体装置の製造方法を提供する。
In view of the above conventional problems, this invention simplifies the process and
An improved method for manufacturing a semiconductor device is provided to improve polarization and reliability of the device.

〔発明の概要〕[Summary of the invention]

この発明にかかる半導体装置の製造方法は、シリコン基
板の一方の主面に露出部を有して形成された異なる導電
型の活性領域の該露出部にポリシリコン層、を被着し、
前記各領域の露出部上に各領域の導電型と同じ導電型式
を示す導電物質がドープされたドープドオキサイド層を
被着し、ついで加熱して同時に拡散を施し電極導出膜を
形成すると同時に絶縁膜上にドープドポリシリコンの抵
抗l換を形成し、電極導出膜と抵抗膜の一端とを金属層
で接続させ抵抗膜の他端に電極を設けることを特徴とす
る。
A method for manufacturing a semiconductor device according to the present invention includes depositing a polysilicon layer on the exposed portion of an active region of a different conductivity type formed with an exposed portion on one main surface of a silicon substrate,
A doped oxide layer doped with a conductive material having the same conductivity type as that of each region is deposited on the exposed portion of each region, and then heated and simultaneously diffused to form an electrode lead-out film and insulate it at the same time. The method is characterized in that a doped polysilicon resistor is formed on the film, the electrode leading film and one end of the resistive film are connected through a metal layer, and an electrode is provided on the other end of the resistive film.

し発明の実施例〕 次にこの発明を1実施例につき第8図ないし第12図を
参照して詳細に説明する。なお、この実施例はNPN)
ランジスタの製造を例示し、第1図に示される工程は従
来と変わらないので、以降の工程につき詳述する。
Embodiments of the Invention Next, one embodiment of the present invention will be explained in detail with reference to FIGS. 8 to 12. Note that this example is NPN)
The manufacturing of a transistor will be exemplified, and since the steps shown in FIG. 1 are the same as conventional ones, the following steps will be described in detail.

次に、表面の酸化シリコンl換(5a)に写真蝕刻によ
り開孔し選択的に数百のエミッタ領域(力、(7)・・
・(図示はその1個を示す)を形成する。ついで、酸化
シリコン膜(5a)に上記と同様に写真蝕刻法によって
ベース電極導出用開孔(6a)、エミッタ電極導出用開
孔(7a)を設ける(第8図)。
Next, holes are formed in the silicon oxide layer (5a) on the surface by photolithography to selectively form several hundred emitter regions (force, (7)...
・(The figure shows one of them). Next, a base electrode lead-out hole (6a) and an emitter electrode lead-out hole (7a) are formed in the silicon oxide film (5a) by photolithography in the same manner as described above (FIG. 8).

次に、全面に多結晶シリコン層(lυを被着し、さらに
P+層を形成するためのB S G IIaDをCVD
法により積層させ、これを写真蝕刻法によりベース電極
導出用開孔(6a)上に残す(第9図)。
Next, a polycrystalline silicon layer (lυ) is deposited on the entire surface, and BSG IIaD is further deposited by CVD to form a P+ layer.
This layer is left on the base electrode lead-out hole (6a) by photolithography (FIG. 9).

次に、N一層を形成するためのPSG膜u3+を全面に
CVD法により積層させたのち、熱処理を施して多結晶
シリコン層Uυ中にP型高濃度拡散層とN型低磯度拡散
層を形成する(第10図)。
Next, a PSG film u3+ for forming a single N layer is laminated by CVD over the entire surface, and then heat treatment is performed to form a P-type high concentration diffusion layer and an N-type low-strength diffusion layer in the polycrystalline silicon layer Uυ. (Figure 10).

次に、写真蝕刻法によりベース電極導出用開孔(6a)
上にP型窩濃度拡散多結晶シリコン層(lla)を、エ
ミッタ電極導出用開孔(7a)上にエミッタ領域導出用
N型低一度拡散多結晶シリコン層(llb)を、さらに
酸化シリコンIN上にN型低濃度多結晶シリコン層の抵
抗層(llclを夫々残す。なお、上記P型窩濃度多結
晶シリコン層(llb)に接する基板のベース領域(5
)に浅いP+拡散層(5c)が形成され忙いる(第11
図)。
Next, a hole (6a) for leading out the base electrode is formed by photolithography.
A P-type hole concentration diffused polycrystalline silicon layer (lla) is formed on the top, an N-type low-degree diffusion polycrystalline silicon layer (llb) for leading out the emitter region is formed on the emitter electrode lead-out opening (7a), and further on the silicon oxide IN. A resistive layer (llcl) of the N-type low concentration polycrystalline silicon layer is left in each of the substrates.
), a shallow P+ diffusion layer (5c) is formed in the 11th
figure).

次に、全面にアルミニウム電極膜を被着し、これに写真
蝕刻を施してエミッタ領域(力、(7)・−・と抵抗層
(llc)との接続層(12c) 、(12c)・−・
、抵抗層(11c)にエミッタ電極(IIE) 、 (
IIE) ・、ベース北極層(12B)、さらに上記を
含み所定の配線パターン(図示省1113 )を選択的
に残す(第12図、第13図)。
Next, an aluminum electrode film is deposited on the entire surface and photo-etched to form connection layers (12c), (12c), etc. between the emitter region (force, (7)... and the resistance layer (llc)).・
, an emitter electrode (IIE) on the resistance layer (11c), (
IIE) - Selectively leave the base arctic layer (12B) and a predetermined wiring pattern (not shown 1113) including the above (FIGS. 12 and 13).

〔発明の効果〕〔Effect of the invention〕

この発明によれば、多結晶シリコン膜にN型低濃度拡散
多結晶シリコン膜で形成される抵抗層の形成時に、これ
と同時にベース電極導出を容易にするP型高票度拡散多
結晶シリコン膜を形成するようにしたので、次の利点が
ある。
According to this invention, when forming a resistance layer formed of an N-type low concentration diffused polycrystalline silicon film on a polycrystalline silicon film, at the same time, a P-type high-density diffused polycrystalline silicon film is formed to facilitate the derivation of a base electrode. This has the following advantages.

(al 製造工程を大幅に短縮することができる。(Al The manufacturing process can be significantly shortened.

(bl 酸化工程、不純物導入加熱工程が減少し、素子
の信頼性が著るしく向上する。
(bl) The oxidation process and impurity introduction heating process are reduced, and the reliability of the device is significantly improved.

(c、1 酸化膜の写真蝕刻工程の減少と、電極導出手
段が容易になり、不良の発生が減少する。
(c, 1) The number of photo-etching steps for the oxide film is reduced and the means for leading out the electrodes becomes easier, reducing the occurrence of defects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第6図は従来の半導体装置の製造方法を工
程順に示すいずれも断面図、第7図は第6図の上面図、
第8図ないし第12図は第1図を援用してこの発明の半
導体装置の製造方法を工程順に示すいずれも断面図、第
13図は第12図の上面図である。 5 ベース領域 5a 酸化シリコン膜 5c P+拡散層 7.7・・・ エミッタ領域 11 多結晶シリコン層 11a P型高蹟度拡散多結晶シリコン層11b N型
低濃度拡散多結晶シリコ7層11c 浅いP+拡散層 12 BSG膜(ボロンシリケートガラス)12B ベ
ース電極 12E エミッタ電極 13 PSGII!!(リンシリケートガラス)代理人
 弁理士 井 上 −一 男 第 3 図 第 4 図 第 5 図 第 6 図 第 7 図 γ1=jsa’7B 第 8 図 第10図
1 to 6 are cross-sectional views showing a conventional semiconductor device manufacturing method in the order of steps; FIG. 7 is a top view of FIG. 6;
8 to 12 are cross-sectional views showing the method of manufacturing a semiconductor device of the present invention in the order of steps with reference to FIG. 1, and FIG. 13 is a top view of FIG. 12. 5 Base region 5a Silicon oxide film 5c P+ diffusion layer 7.7... Emitter region 11 Polycrystalline silicon layer 11a P-type highly diffused polycrystalline silicon layer 11b N-type low concentration diffused polycrystalline silicon 7 layer 11c Shallow P+ diffusion Layer 12 BSG film (boron silicate glass) 12B Base electrode 12E Emitter electrode 13 PSGII! ! (Phosphorsilicate Glass) Agent Patent Attorney Kazuo Inoue Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure γ1=jsa'7B Figure 8 Figure 10

Claims (1)

【特許請求の範囲】[Claims] シリコン基板の一方の主面に露出部を有して形成された
異なる4電型の活性領域の該露出部にポリシリコン層を
被着し、前記各領域の露出部上に各領域の導電型と同じ
導電型式を示す導電物質がドープされたドープドオキサ
イド層を被着し、ついで加熱して同時に拡散を施し゛市
5極導出膜を形成すると同時に絶縁+jA上にドープド
ポリシリコンの抵抗膜を形成し、′電極導出膜と抵抗膜
の一端とを金属層で接続させ抵抗膜の他端に電極を設け
ることを特徴とする半導体装置の製造方法。
A polysilicon layer is deposited on the exposed portions of active regions of four different conductivity types formed with exposed portions on one main surface of a silicon substrate, and a polysilicon layer is deposited on the exposed portions of each of the conductivity types of each region. A doped oxide layer doped with a conductive material exhibiting the same conductivity type is deposited, then heated and simultaneously diffused to form a five-pole conductive film and at the same time a doped polysilicon resistive film is formed on the insulating layer. 1. A method for manufacturing a semiconductor device, comprising: forming an electrode-leading film and one end of a resistive film by a metal layer, and providing an electrode at the other end of the resistive film.
JP2600584A 1984-02-16 1984-02-16 Manufacture of semiconductor device Pending JPS60170969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2600584A JPS60170969A (en) 1984-02-16 1984-02-16 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2600584A JPS60170969A (en) 1984-02-16 1984-02-16 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60170969A true JPS60170969A (en) 1985-09-04

Family

ID=12181577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2600584A Pending JPS60170969A (en) 1984-02-16 1984-02-16 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60170969A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7928946B2 (en) 1991-06-14 2011-04-19 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7928946B2 (en) 1991-06-14 2011-04-19 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same

Similar Documents

Publication Publication Date Title
US4343080A (en) Method of producing a semiconductor device
US7619299B2 (en) Semiconductor device and method of manufacturing the same
US3758943A (en) Method for manufacturing semiconductor device
US4735912A (en) Process of fabricating a semiconductor IC device
JP2605030B2 (en) Quadrature bipolar transistor
EP0076147B1 (en) Method of producing a semiconductor device comprising an isolation region
JPS60170969A (en) Manufacture of semiconductor device
JP2668528B2 (en) Method for manufacturing semiconductor device
US4012763A (en) Semiconductor device having insulator film with different prescribed thickness portions
JPH06196707A (en) Manufacture of vertical type insulated-gate transistor
JPS6115372A (en) Semiconductor device and manufacture thereof
JPH0778833A (en) Bipolar transistor and its manufacture
JP2000232111A (en) Manufacture of semiconductor device
JPS61236161A (en) Manufacture of semiconductor device
JPS6011459B2 (en) Method for manufacturing a diffused semiconductor device
JPH04152531A (en) Manufacture of semiconductor device
JPS629226B2 (en)
JPH02337A (en) Manufacture of semiconductor integrated circuit
JPS62172757A (en) Bipolar transistor
JPH07193082A (en) Semiconductor device and its manufacture
JPH05198747A (en) Manufacture of semiconductor device
JPS60235464A (en) Manufacture of semiconductor device
JPH05121726A (en) Semiconductor device and manufacturing method thereof
JPH02294039A (en) Semiconductor device and manufacture thereof
JPS61150212A (en) Manufacture of semiconductor device