JPS60170758A - Semiconductor gas detecting element - Google Patents

Semiconductor gas detecting element

Info

Publication number
JPS60170758A
JPS60170758A JP2638184A JP2638184A JPS60170758A JP S60170758 A JPS60170758 A JP S60170758A JP 2638184 A JP2638184 A JP 2638184A JP 2638184 A JP2638184 A JP 2638184A JP S60170758 A JPS60170758 A JP S60170758A
Authority
JP
Japan
Prior art keywords
oxide
gas
resistance
detecting element
gas detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2638184A
Other languages
Japanese (ja)
Inventor
Toshisuke Hishii
菱井 利祐
Nobuaki Shohata
伸明 正畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP2638184A priority Critical patent/JPS60170758A/en
Publication of JPS60170758A publication Critical patent/JPS60170758A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Abstract

PURPOSE:To obtain a gas detecting element having the low temp. coefft., of resistance by containing a prescribed quantity of SiO2, Al2O3, MgO, PtCl in SnO2, calcining them by hot pressing method and providing a RuO2 system electrode thereto. CONSTITUTION:0.1-20wt% silicon oxide, 0.1-30wt% aluminum oxide, 0.1- 5wt% magnesium oxide and 0.1-10wt% platinum chloride are added to a stannic oxide powder and mixed therewith, then calcined to 600-1,000 deg.C temp. under 100-1,000kg/cm<2> impressing pressure by hot pressing method to form a gas sensitive body 1. Ruthenium oxide system thick film resistance paste having 10OMEGA/square-10OMEGA/square sheet resistance is painted to the body 1, said body is baked at 600 deg.C to form an electrode 2, and the gas detecting element is obtained. The temp. coefft. (1/R.DELTAR/DELTAT) of said element is 5.1X10<-3>/ deg.C in 1,000ppm gaseous isobutane.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はガスの吸着により抵抗値が変化する金属酸化物
半導体を用いた半導体ガス検知素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a semiconductor gas sensing element using a metal oxide semiconductor whose resistance value changes due to gas adsorption.

〔従来技術〕[Prior art]

従来、この種の半導体ガス横細素子は、金、白金等の導
体tl−電極として厚膜印刷したアルミナ基板に、酸化
第二錫(Sn02) ’fc主成分とした原料粉末トエ
チルセルロース及びテルピネオールから成る有機ビヒク
ルとを混練しペースト状にしだ感ガスペーストラ厚膜印
刷して構成されている。通常、この種の半導体ガス検知
素子は、被検知ガス中ちイソブタン(i C4H1G)
ガスおよびメタン(CH4)ガスの吸脱着を促進するた
め、約400℃に加熱して使用される。ところが、この
温度雰囲気における被検知ガス中の素子の抵抗温度係数
が高いため、周囲温度の影響を受けやすく、従ってガス
漏れ警報器に適用するには、高精度の素子温度制御回路
を必要とし高価格化を免れ得ない。
Conventionally, this type of semiconductor gas horizontal thin device has been manufactured using raw material powders of toethylcellulose and terpineol with stannic oxide (Sn02)'fc as the main component on an alumina substrate printed with a thick film as a conductor tl-electrode of gold, platinum, etc. It is made by kneading an organic vehicle consisting of the following ingredients into a paste and printing a thick film on the gas-sensitive paste. Usually, this type of semiconductor gas detection element uses isobutane (iC4H1G) as the gas to be detected.
In order to promote adsorption and desorption of gas and methane (CH4) gas, it is heated to about 400°C. However, since the temperature coefficient of resistance of the element in the gas to be detected is high in this temperature atmosphere, it is easily affected by the ambient temperature. Therefore, when applied to a gas leak alarm, a highly accurate element temperature control circuit is required. It cannot be avoided from being priced out.

〔発明の要約〕[Summary of the invention]

本発明は、このような問題点を解消することを目的とし
、酸化第二錫(SnO2)に酸化硅素(’5ins)を
0.1〜2Qwt%、酸化アルミニウム(Al*Os)
を0.1〜30wt9J 、酸化マグネシウム(MgO
)を0.1〜5wt%、および塩化白金(PtC4)を
0.1〜10wt%含有した粉体をホットプレス法にょ
ハ焼成温度600〜1000℃、 印7Jl圧力100
〜1000kg/cIIL”において焼成してガス感応
体を形成し、シート抵抗10Q/口〜IOKΩ/口の酸
化ルテニウム(Ru O□)系厚膜抵抗ペーストを電極
としてカス感応体に焼付けたことを%徴とする。
The purpose of the present invention is to solve these problems by adding 0.1 to 2 Qwt% of silicon oxide ('5ins) to stannic oxide (SnO2) and aluminum oxide (Al*Os).
0.1~30wt9J, magnesium oxide (MgO
) and 0.1 to 10 wt% of platinum chloride (PtC4) were heated using a hot press method at a firing temperature of 600 to 1000°C and a pressure of 7Jl marked 100.
A gas sensitive body was formed by firing at ~1000 kg/cIIL'', and a ruthenium oxide (RuO□)-based thick film resistance paste with a sheet resistance of 10Q/mm ~ IOKΩ/mm was baked on the gas sensitive body as an electrode. be a sign.

〔実施例の説明〕[Explanation of Examples]

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明によるガス検知素子の一実施例を示す構
成図である。酸化第二錫粉体に酸化ケイ素を2wt’%
、酸化アルミニウムk1wt係、酸化マグネシウムを1
wt%、および塩化白金を0.9wtfrを添加し、ボ
ールミルで46時間混合した後、700℃で2時間仮焼
し、再粉砕を行ない混合粉末を得る。このようにして得
られた混合粉末をプレス等で成形し、さらにホットプレ
スによ、b s o o ”oで550kg/cIIL
”の圧力に2時間保ち焼結せしめる。次に、この焼結体
を例えば1,3m1x 1,5mmx 2.2朋の直方
体に切断してガス感応体1を得る。さらに、このガス感
応体1の両端部にノート抵抗が100Ωの酸化ルテニウ
ム系厚膜抵抗ペーストを塗布し、600℃で焼付けて電
極2と形成しガス検知素子を得る。
FIG. 1 is a configuration diagram showing one embodiment of a gas detection element according to the present invention. 2wt'% silicon oxide in stannic oxide powder
, aluminum oxide k1wt, magnesium oxide 1
wt% and 0.9 wtfr of platinum chloride, mixed in a ball mill for 46 hours, calcined at 700° C. for 2 hours, and re-pulverized to obtain a mixed powder. The mixed powder thus obtained was molded using a press, etc., and then hot pressed to give a weight of 550 kg/cIIL.
2 hours at a pressure of A ruthenium oxide thick film resistor paste having a notebook resistance of 100 Ω is applied to both ends of the electrode 2 and baked at 600° C. to form electrodes 2, thereby obtaining a gas sensing element.

ここで、ガス検知素子の温度係数(TCR)は°Cにお
けるイソブタンガス110001)p中ノ’l’ CB
Here, the temperature coefficient (TCR) of the gas sensing element is isobutane gas at °C 110001) p 'l' CB
.

は5.lX10”/’Oでろるが、従来の原模型ガス検
知素子のTCRは2.OX 10−!/’0である。
is 5. The TCR of the conventional original model gas sensing element is 2.OX 10''/'0.

第2図および第3図には、酸化硅素2wt%、酸化アル
ミニウム1wt%、酸化マグネシウム1wt%。
2 and 3 show 2 wt% silicon oxide, 1 wt% aluminum oxide, and 1 wt% magnesium oxide.

および塩化白金0.9wt%を中心(基本)組成として
、酸化硅素を01〜20wtチ、酸化アルミニウム全0
.1〜30wt%、酸化マグネシウムを0.1〜swt
チ、および塩化白金を0.1〜lQwt%の範囲でそれ
ぞれ展開した素子の400℃に2けるイソブタンガス1
1000pp中のT CILおよび感度(R,A/I(
、、:R,A=空気中の素子抵抗s RG”イソブタン
ガス11000pp中における素子抵抗)が示されてい
る。また、第4図および第5図には、酸化硅素、酸化ア
ルミニウム、酸化マグネシウム、および塩化白金をそれ
ぞれ中心組成Q、1wt%とじて、各成分を上記同様に
展開した素子の400℃におけるイソブタン11000
pp中のT CRおよび感度が示されている。
The main (basic) composition is 0.9 wt% platinum chloride, 01 to 20 wt% silicon oxide, and 0 total aluminum oxide.
.. 1-30wt%, magnesium oxide 0.1-swt
Isobutane gas 1 at 400°C for an element developed with H and platinum chloride in the range of 0.1 to 1Qwt%, respectively.
T CIL and sensitivity (R, A/I (
, , :R, A=device resistance in air s RG "device resistance in isobutane gas 11000pp" is shown. Also, in FIGS. 4 and 5, silicon oxide, aluminum oxide, magnesium oxide, Isobutane 11000 at 400°C was obtained by developing each component in the same manner as above, with central composition Q and platinum chloride at 1wt%.
TCR and sensitivity in pp are shown.

応らに、第6図および第7図には酸化硅素20wt%。Correspondingly, in FIGS. 6 and 7, silicon oxide is 20 wt%.

酸化アルミニウム30wt%、酸化マグネシウム5wt
%。
Aluminum oxide 30wt%, magnesium oxide 5wt
%.

および塩化白金0.9wt%e中心組成として各成分を
同様に展開した素子の400℃におけるイソブタンガス
11000pp中のTCRおよび感度が示されている。
The TCR and sensitivity in isobutane gas of 11,000 ppm at 400° C. are shown for a device developed in the same manner with each component having a central composition of 0.9 wt % e of platinum chloride.

なお、これらの素子の形成条件は上述したものと同様で
ある。一方、第2図〜第7図に示した各組成について従
来の方法によシ厚膜型ガス検知素子を作成したが、組成
とTCRとの間で顕iな関係ハナく、TCRは1.8 
X 10= 〜2.2 X 10−”7℃であった。
Note that the conditions for forming these elements are the same as those described above. On the other hand, thick film gas sensing elements were fabricated using the conventional method for each of the compositions shown in FIGS. 2 to 7, but there was no significant relationship between the composition and TCR, and the TCR was 1. 8
X 10 = ~2.2 X 10-''7°C.

第2図〜第7図から明らかなように、酸化硅素。As is clear from FIGS. 2 to 7, silicon oxide.

酸化アルミニウム、酸化マグネシウム、および塩化白金
がそれぞれ0.1wt%未満ではTCR’ji下げる効
果が充分でない。また、酸化硅素が20wt%。
If each of aluminum oxide, magnesium oxide, and platinum chloride is less than 0.1 wt%, the effect of lowering TCR'ji is not sufficient. Also, silicon oxide is 20wt%.

酸化アルミニウムが30wt%、酸化マグネシウムが5
wt%、塩化白金が10wt%全それぞれ超える場合は
、いずれもインブタンガスに対する感度が10以下とな
シガス検知素子の性能として不充分なものとなる。
Aluminum oxide is 30wt%, magnesium oxide is 5%
If wt% and platinum chloride exceed 10 wt%, the sensitivity to inbutane gas will be 10 or less, resulting in insufficient performance of the gas detection element.

次に、電極材料の効果について示す。Next, the effects of electrode materials will be described.

上記実施例の組成構成の集子電極材料を7一ト抵抗10
Ω/口〜104Ω/口の酸化ルテニウム系厚膜抵抗ペー
ストとした場合の素子についての’1’ CRおよび感
度をそれぞれ第8図および第9図に示す。
The collector electrode material having the composition of the above example has a resistance of 7 points and 10 points.
The '1' CR and sensitivity of the device are shown in FIGS. 8 and 9, respectively, in the case of a ruthenium oxide thick film resistor paste of Ω/Ω to 10 4 Ω/Ω.

一方、電極材料としてAu及びAgの導体ペーストを使
用した場合のTCRはそれぞれ1.9X 10 ”10
゜1、7 X 10’−”/’Oであった。これらの結
果から明らかなように、10Ω/口〜10’Ω/口のシ
ート抵抗を有する酸化ルテニウム系厚膜抵抗ペーストt
itt極材料として使用することによ、j)、TCRの
低いガス検知素子を得ることができる。なお、シート抵
抗が10Ω/口未満ではTC)tf下げる効果が充分で
なく、またノート抵抗が104Ω/口よυ大きくなると
感度が充分でなく不適邑である。
On the other hand, when Au and Ag conductor pastes are used as electrode materials, the TCR is 1.9X 10 ''10
゜1,7 x 10'-''/'O.As is clear from these results, the ruthenium oxide-based thick film resistance paste t having a sheet resistance of 10Ω/hole to 10'Ω/hole.
By using it as an electrode material, j) a gas sensing element with low TCR can be obtained. Note that if the sheet resistance is less than 10 Ω/mouth, the effect of lowering TC)tf is not sufficient, and if the note resistance is greater than 10 4 Ω/mouth, the sensitivity is insufficient and unsuitable.

応体形成時、ホットプレスの印加圧力’e100kg/
cIrL2〜1σookgメ漂2の範囲で装出させた場
合の素子についての’l’ Clもおよび感度を示した
もので必る。
When forming the reaction body, the applied pressure of hot press 'e100kg/
The 'l' Cl values and sensitivities for the device when loaded in the range of cIrL2 to 1σookgm2 are also shown.

両図から印加圧力100〜1000 k g/cm2の
範−囲においてガス検知素子のTC)tおよび感度が良
好であることが理解できる。なお、印加圧力が100k
gZ薄2未満では焼結性が充分でないため壊れやすく。
It can be seen from both figures that the TC)t and sensitivity of the gas sensing element are good in the applied pressure range of 100 to 1000 kg/cm2. In addition, the applied pressure is 100k
If the gZ thickness is less than 2, the sinterability will not be sufficient and it will break easily.

且つTCRを下げる効果も充分でない。また、印加圧力
が1000kg/cmzを超えると、素子がち密となり
過ぎるためガスの通気性が悪く感度の低下を度’t60
0℃〜1000°0の範囲で変rヒさせた場合のガス検
知素子のTCRおよび感度を示したものである。600
℃〜1000℃の焼成温朋範囲においてはTCRの低い
感度の良いガス検知素子を得ることができるが、600
℃未満の焼成温度ではTCRを下げる効果が充分でなく
、また1ooo”cを超える焼成温度では感度が充分で
ないことが判明した。
Moreover, the effect of lowering TCR is not sufficient. Furthermore, if the applied pressure exceeds 1000 kg/cmz, the element becomes too dense, resulting in poor gas permeability and a decrease in sensitivity.
The figure shows the TCR and sensitivity of the gas detection element when the temperature is varied in the range of 0°C to 1000°0. 600
A highly sensitive gas sensing element with a low TCR can be obtained in the firing temperature range of 600°C to 1000°C.
It has been found that a firing temperature lower than 0.degree. C. does not have a sufficient effect of lowering TCR, and a firing temperature higher than 100"C does not provide sufficient sensitivity.

上記実施例においてはカス検知素子をインブタンガス雰
囲気中で実験した場合について述べたが、メタンカス中
でも同様に作用する。
In the above embodiment, a case was described in which the scum detection element was tested in an inbutane gas atmosphere, but it works similarly even in methane scum.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、被検知ガス中にお
ける抵抗温度係数の低いガス検知素子を得ることができ
、低価格で且つ高信頼度なガス漏れ警報器の実現を容易
にする。
As described above, according to the present invention, it is possible to obtain a gas detection element with a low temperature coefficient of resistance in a gas to be detected, thereby facilitating the realization of a low-cost and highly reliable gas leak alarm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるガス検知素子の一実施例に関する
構成図、第2図〜第13図は同実施例のガス検知素子の
評価結果を示す図である。 1・・・・・・ガス感応体、2・・・・・・電極。 l −−−m−, 5番茄量(Vがり 鳩7メ 5が聞辛((すt−/−] 第 3図 j#−力n 量 〆tut修ン 84 図 5t′−カDi (wt、h ) 85 図 4−anテ fwt〆フ 86区 k 力0’%(tutl) $7図 erJ 77n Fx ly’ (Kl/1m2)ρθ
 契θ mρρ 力ε、6梨゛s1り【(乙) %Iz図 ρ 2θθ 〃ρ 〃 αψ /JIJρ印 力Dli
 力 (k1/と442)結ylIb 又乞^ J、夕 6°乙ノ 第13区
FIG. 1 is a block diagram of an embodiment of a gas detection element according to the present invention, and FIGS. 2 to 13 are diagrams showing evaluation results of the gas detection element of the same embodiment. 1... Gas sensitive body, 2... Electrode. l ---m-, Quantity of No. 5 eggplant (V grated 7 pigeons 5 are spicy ((st-/-) , h ) 85 Fig. 4-ante fwt〆fu 86 section k Force 0'% (tutl) $7 Fig. erJ 77n Fx ly' (Kl/1m2) ρθ
Contract θ mρρ Force ε, 6 pears 1 ri [(Otsu) % Iz diagram ρ 2θθ 〃ρ 〃 αψ /JIJρ sign Force Dli
Power (k1/and 442) YuilIb Matabei ^ J, Evening 6° Otono 13th Ward

Claims (1)

【特許請求の範囲】[Claims] 酸化第二錫に酸化硅素を0.1〜20Wtチ、酸化アル
ミニウム”eo、1〜3Qwt%、酸化マグネシウムを
0.1〜5wt饅、および塩化白金を0.1〜10wt
チ含有する粉体を温度600〜1000℃および印加圧
力100〜1000 kg/′c+n”において焼成し
て成るガス感応体と、このガス感応体に焼付は形成され
るシート抵抗lOΩ/口〜IOKΩ/口の酸化ルテニウ
ム系厚膜抵抗ペーストよ構成る電極とから構成されるこ
とを特徴とする半導体ガス検知素子。
Add 0.1 to 20 Wt of silicon oxide to stannic oxide, 1 to 3 Qwt% of aluminum oxide, 0.1 to 5 wt of magnesium oxide, and 0.1 to 10 wt of platinum chloride.
A gas sensitive body formed by firing a powder containing H at a temperature of 600 to 1,000°C and an applied pressure of 100 to 1,000 kg/'c+n'', and a sheet resistance formed on this gas sensitive body of lOΩ/mouth to IOKΩ/ 1. A semiconductor gas sensing element comprising an electrode made of a ruthenium oxide thick film resistor paste.
JP2638184A 1984-02-15 1984-02-15 Semiconductor gas detecting element Pending JPS60170758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2638184A JPS60170758A (en) 1984-02-15 1984-02-15 Semiconductor gas detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2638184A JPS60170758A (en) 1984-02-15 1984-02-15 Semiconductor gas detecting element

Publications (1)

Publication Number Publication Date
JPS60170758A true JPS60170758A (en) 1985-09-04

Family

ID=12191943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2638184A Pending JPS60170758A (en) 1984-02-15 1984-02-15 Semiconductor gas detecting element

Country Status (1)

Country Link
JP (1) JPS60170758A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209159A (en) * 1984-04-03 1985-10-21 Nippon Muki Kk Gas detecting element
EP0409018A2 (en) * 1989-07-17 1991-01-23 National Semiconductor Corporation Electrodes for electrical ceramic oxide devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209159A (en) * 1984-04-03 1985-10-21 Nippon Muki Kk Gas detecting element
JPH053541B2 (en) * 1984-04-03 1993-01-18 Nippon Muki Kk
EP0409018A2 (en) * 1989-07-17 1991-01-23 National Semiconductor Corporation Electrodes for electrical ceramic oxide devices

Similar Documents

Publication Publication Date Title
CN111413375A (en) Gas sensor based on gas-sensitive membrane-electrode interface resistance signal
JPS61260605A (en) Ceramic humidity sensor
US4464647A (en) Humidity sensor made of metal oxide
JPS60170758A (en) Semiconductor gas detecting element
US2862090A (en) Apparatus for determining moisture
CA1196990A (en) Gas sensor
CA1197995A (en) Humidity sensitive device
JPS60114759A (en) Semiconductor type gas detecting element
JPS6327841B2 (en)
JPH0378761B2 (en)
KR940003746B1 (en) Manufacturing method of ceramic humidity sensor
JPS6183949A (en) Semiconductor type gas detecting element
JPS587041B2 (en) Moisture sensitive resistance element for relative humidity
JPS58168950A (en) Gas and humidity sensitive element
JPS6224378B2 (en)
JPS58168952A (en) Gas sensitive element
JPS63128248A (en) Composite gas sensor
JPS5710446A (en) Gas detecting element
JPH0572157A (en) Humidity sensing element
JPS5945964A (en) Ceramic resistor material
JPS5832303A (en) Humidity sensitive dielectric loss element
JPS5960349A (en) Gas sensitive element
JPS5811082B2 (en) Temperature and humidity detection element
JPS61245049A (en) Humidity sensor
JPH04194659A (en) Humidity sensor