JPS60169515A - Manufacture of wear resistant casting - Google Patents

Manufacture of wear resistant casting

Info

Publication number
JPS60169515A
JPS60169515A JP2491484A JP2491484A JPS60169515A JP S60169515 A JPS60169515 A JP S60169515A JP 2491484 A JP2491484 A JP 2491484A JP 2491484 A JP2491484 A JP 2491484A JP S60169515 A JPS60169515 A JP S60169515A
Authority
JP
Japan
Prior art keywords
casting
carbide
tungsten carbide
cast iron
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2491484A
Other languages
Japanese (ja)
Other versions
JPH02424B2 (en
Inventor
Toshio Tani
谷 登志夫
Atsushi Funakoshi
淳 船越
Hitoshi Nishimura
仁志 西村
Toshiaki Morichika
森近 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2491484A priority Critical patent/JPS60169515A/en
Publication of JPS60169515A publication Critical patent/JPS60169515A/en
Publication of JPH02424B2 publication Critical patent/JPH02424B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys

Abstract

PURPOSE:To manufacture a casting with much superior wear resistance by inoculating W carbide into molten cast iron contg. W to disperse densely and uniformly crystallized lump W carbide in the cast iron. CONSTITUTION:When molten cast iron contg. 2.5-5.0% C, <3.5% Si, <3.5% Mn and 25.0-80.0% W or further contg. <=10% Ni, Cr, Co or other element substituted for part of Fe is cast, <=0.05% powder of W carbide such as WC and W2C is inoculated into the molten cast iron in a melting furnace, during charging into a casting mold or in the casting mold. Fine lump WC of 5-100mum grain size is uniformly crystallized and dispersed by 15-75vol% in the matrix of the resulting casting. Thus, a casting with very high hardness and superior wear resistance is obtd. It is suitable for use as the material of a roll for rolling.

Description

【発明の詳細な説明】 本発明は、基地中に塊状晶出タングステン炭化物が緻密
かつ均一に分散した組織を有する耐摩耗性にすぐれた鋳
造物の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a cast article having excellent wear resistance and having a structure in which massive crystallized tungsten carbide is densely and uniformly dispersed in the matrix.

耐摩4毛材料としては、例えば化学成分組成と熱処理の
組合せにより基地中に硬い炭化物などを析出させた各種
合金、タングステン炭化物などとニッケル、コバルトな
どの金属とを結合焼結した超硬合金、アルミナ、炭化け
い素などのセラミック焼結体等がある。本発明に係る耐
摩耗材料は、このような各種の従来材と異なり、基地中
に微細な塊状タングステン炭化物を多量に晶出させるこ
とにより高+Ir1J摩1.ε性を具現したものである
Wear-resistant materials include, for example, various alloys in which hard carbides are precipitated in the matrix by a combination of chemical composition and heat treatment, cemented carbide made by bonding and sintering tungsten carbide with metals such as nickel and cobalt, and alumina. , ceramic sintered bodies such as silicon carbide, etc. The wear-resistant material according to the present invention differs from such various conventional materials by crystallizing a large amount of fine lumpy tungsten carbide in the matrix, thereby achieving high +Ir1J wear resistance. It embodies the ε-character.

すなわぢ、本発明者等は耐摩耗材料の研究において、多
量のり/ゲステン(W)を含有する一定の化学成分組成
に調節された鉄系合金溶賜は、その鋳造凝固過程で多H
7Hの塊状タングステン炭化物の晶出をみること、その
塊状晶出タングステン炭化物が基地中に緻密かつ均一に
分散した組織を有する鋳造物はすぐれた耐摩耗性を有し
、例えば圧延用ロールなとの用途に好適であることを見
出し゛た。
In other words, in our research on wear-resistant materials, the present inventors found that iron-based alloy melts adjusted to a certain chemical composition containing a large amount of glue/Gestene (W) contain a large amount of H during the casting and solidification process.
Observing the crystallization of the massive tungsten carbide of 7H, the cast product has a structure in which the massive crystallized tungsten carbide is densely and uniformly dispersed in the matrix, and has excellent wear resistance, and is suitable for use in rolling rolls, for example. It has been found that it is suitable for various purposes.

その鋳造物は、c2.5−5.0%、Si3.5%以−
r−1八4n3.5%以r:、、W 25.0〜80.
0%を基本イア4成々分とする鉄系合金てあって、基地
中に、粒径約5〜l (l Opmの塊状晶出タングス
テン炭化物が、容積率で約15〜75%を占めるような
組織を有する鋳物として得ることができる。
The casting is made of c 2.5-5.0%, Si 3.5% or more.
r-184n3.5% or morer:,,W 25.0-80.
The iron-based alloy has four basic components of 0% IA, and in the base, bulk crystallized tungsten carbide with a grain size of about 5 to 1 (l Opm) occupies about 15 to 75% by volume. It can be obtained as a casting with a fine structure.

しかし、その鋳造凝固過程で生成する晶出タンゲステン
炭化物は粗大な塊状、あるいは塊状物の連続したものと
なり易く、そのような組織になると、材料の脆化や耐摩
耗性の劣化を生じ、圧延用ロールやその他の構造材料と
しての適性に欠けたものとなる。耐摩耗性とともに、強
度、靭性などの緒特性を具備させるには、多量の塊状品
出タングステン炭化物が、緻密でしかも均一に分散した
組織を形成させることが必要である。本発明者等はこの
点に関し更に研究の結果、その鋳造において溶湯に対し
タングステン炭化物粒子による接種を施すことが、塊状
品出タングステン炭化物の均一な分散化に効果的である
ことを見出した。
However, the crystallized tungsten carbide produced during the casting and solidification process tends to be in the form of coarse lumps or a series of lumps, and such a structure causes embrittlement of the material and deterioration of wear resistance, making it difficult to use for rolling. It becomes unsuitable as a roll or other structural material. In order to provide wear resistance as well as other properties such as strength and toughness, it is necessary for a large amount of massive tungsten carbide to form a dense and uniformly dispersed structure. As a result of further research on this point, the present inventors have found that inoculating the molten metal with tungsten carbide particles during casting is effective in uniformly dispersing the tungsten carbide produced in bulk.

本発明は」二記諸知見に基づいてなされたものであり、
C’2.5−5.0%、Si3.5%以下、Mn35%
以下、W25.0〜800%を含む鉄系合金の鋳造にお
いて、その溶湯にタングステン炭化物粒子による接種を
行うことにより、基地中に塊状晶出タングステン炭化物
を微細均一に分散させることを特徴とする。
The present invention has been made based on the findings described in section 2.
C'2.5-5.0%, Si3.5% or less, Mn35%
Hereinafter, in the casting of an iron-based alloy containing W25.0 to 800%, the molten metal is inoculated with tungsten carbide particles, thereby finely and uniformly dispersing the massive crystallized tungsten carbide in the matrix.

本発明によれば、所定の化学成分組成に調節されたWを
含む鉄系合金溶湯の鋳造において、タングステン炭化物
粒子による接種が行なわれる。
According to the present invention, inoculation with tungsten carbide particles is performed in casting a molten iron-based alloy containing W adjusted to a predetermined chemical composition.

その接種の時期は、出湯直前の炉中てもよく、あるいは
出湯中もしくは出局後の取鍋中であってよい1、また、
鋳型内に散布しておくか、鋳型内への鋳込中に行っても
よい。
The timing of the inoculation may be in the furnace immediately before pouring the hot water, or in the ladle during or after pouring the hot water.
It may be sprinkled into the mold or may be carried out during pouring into the mold.

接種に使用されるタングステン炭化物粒子は、WC,、
W2Cなとであり、またタングステン・チクン炭化物な
との複炭化物であってよい。これらの炭化物粒子は適宜
複合使用しても構わない。その粒径は10〜25077
mであるのが好ましい。、粒径が1. Oμm〕)に満
たないと、粒子は溶76.1月こ完全に溶解し拡11し
易く、拡散してしまうと接種の効果が消失する。一方、
250μnlをこえる粗大粒子であると、溶湯中にその
まま粒子として残存するため、この場合も接種の効果が
少くなる。粒子径が10〜250μmnの範囲内にあれ
ば、接種された炭化物粒子は、崩壊、分散して溶湯中に
均 1−に分布し、あるいは均一に分布した粒子が溶解
はするが拡散はしない状態にあって残留様あるいは晶出
核としての作用をなし、それによって晶出炭化物の粗大
化・凝集が回避され、細微均一に分散した組織の形成を
みるものと推定される。
The tungsten carbide particles used for inoculation are WC,
It may be W2C or a double carbide such as tungsten/chikun carbide. These carbide particles may be used in combination as appropriate. Its particle size is 10-25077
Preferably, it is m. , particle size is 1. If the particle size is less than 76.1 μm, the particles will completely dissolve and spread easily, and once they spread, the inoculation effect will disappear. on the other hand,
If coarse particles exceed 250 μnl, they will remain as particles in the molten metal, so the effect of inoculation will be reduced in this case as well. If the particle size is within the range of 10 to 250 μm, the inoculated carbide particles will collapse and disperse and be evenly distributed in the molten metal, or the uniformly distributed particles will dissolve but not diffuse. It is presumed that the crystallized carbides act as residual particles or crystallization nuclei, thereby avoiding the coarsening and agglomeration of crystallized carbides and forming a fine and uniformly dispersed structure.

また、接種するタングステン炭化物粒子の量は、溶湯量
に対し0.05%以」二であるのが好ましい。
Further, the amount of tungsten carbide particles to be inoculated is preferably 0.05% or more based on the amount of molten metal.

接種量か0.05%に満たないと、造核作用が不足し、
工業的に十分な効果を得がたいからであるt接種量を多
くした場合は、投与された粒子の吸熱に伴う溶湯の降温
、あるいは崩壊・分散したタングステン炭化物粒子の多
量の混在等により溶湯の流動性の低下をみるカス所要の
流動性が保たれる限り、接種量を多くしても特に問題は
ない。余剰のタングステン炭化物粒子は、造核作用に関
与しないが、そのまま残存して耐摩耗性の向」二に寄与
するからである。もつとも、投与量が20%をこえても
その効果は殆んど増加せず、経済的に不利である。
If the inoculation amount is less than 0.05%, the nucleation effect will be insufficient,
This is because it is difficult to obtain a sufficient industrial effect.If the amount of inoculation is increased, the fluidity of the molten metal may decrease due to the temperature drop of the molten metal due to heat absorption by the administered particles, or the presence of a large amount of collapsed and dispersed tungsten carbide particles. There is no particular problem in increasing the amount of inoculation as long as the required fluidity is maintained. This is because the surplus tungsten carbide particles do not participate in the nucleation effect, but remain as they are and contribute to improving wear resistance. However, even if the dose exceeds 20%, the effect hardly increases, which is economically disadvantageous.

尾 次に、鋳造合金の成分限理由について説明する。tail Next, the reason for limiting the composition of the cast alloy will be explained.

C:2.5〜50% Cは晶出タングステン炭化物の形成に必要である。その
含有量が25%に満たないと、個々に独立した塊状のタ
ングステン炭化物は晶出せず、連続した鉄−タングステ
ン複炭化物の形成をみる。
C: 2.5-50% C is necessary for the formation of crystallized tungsten carbide. If the content is less than 25%, individual lumpy tungsten carbides cannot be crystallized, and continuous iron-tungsten double carbides are formed.

また、50%をこえると、基地中に黒鉛が晶出し脆化す
る。よって、25〜50%とする。
Moreover, when it exceeds 50%, graphite crystallizes in the base and becomes brittle. Therefore, it is set at 25 to 50%.

Si:3.5%以下 基地中への剣状のタングステン炭化物の晶出とそれに伴
う脆化の防止、および鋳造時の溶湯の流動性改善効果を
有する。しかし、多量に含有するとり、(地の116を
化が著しくなるので、35%以下とする。
Si: 3.5% or less It has the effect of preventing the crystallization of sword-shaped tungsten carbides in the matrix and the accompanying embrittlement, and improving the fluidity of molten metal during casting. However, if it is contained in a large amount, (116) will become noticeable, so it should be kept at 35% or less.

Mn : 3.5%以下 溶湯を清rJI化する効果を有するが、あまり多いと)
f(地の脆化を招くので、35%以下とする。
Mn: 3.5% or less It has the effect of purifying the molten metal, but if it is too much)
f (as it causes embrittlement of the ground, it should be 35% or less.

W : 25.0〜80.0% 本発明クツI造物を構成する最も重要な元素である。W: 25.0-80.0% It is the most important element constituting the product of the present invention.

初晶タングステン炭化物を十分に晶出させるには、少く
とも250%を必要とする。一方、800%をこえると
、溶融点が高く、溶解−鋳造が困難となる。よって、2
50〜800%とする。
At least 250% is required to fully crystallize primary tungsten carbide. On the other hand, if it exceeds 800%, the melting point will be high and melting and casting will become difficult. Therefore, 2
50-800%.

本発明における鋳造合金は、上記各元素を基本構成4分
とし、必要ならば材質の改善を目的として基本構成元素
のほか、Ni 、Cr、Co、その他の諸元素群から選
らばれる任意の1種もしくは2種以−にの元素を適量(
合計量約10%以下)含有し、残部は実質的にFeから
なる鉄系合金である。例えば、基地の強化を目的とする
任意元素としてCrおよびN1のいづれか一方または両
者を含有する。その場合のCr含有量は、クロム複炭化
物の晶出による脆化を避けるために、5,0%以下とす
るのがよい。また、N1の場合は、添加効果とコストを
絞量すると、6.0%以下にとどめるのが適当である。
The cast alloy in the present invention has four basic constituents of each of the above elements, and if necessary, in addition to the basic constituent elements, any one element selected from the group of Ni, Cr, Co, and other elements may be added for the purpose of improving the material quality. Or appropriate amounts of two or more elements (
(total amount of about 10% or less), and the remainder is an iron-based alloy consisting essentially of Fe. For example, one or both of Cr and N1 is contained as an optional element for the purpose of strengthening the base. In that case, the Cr content is preferably 5.0% or less in order to avoid embrittlement due to crystallization of chromium double carbides. Further, in the case of N1, it is appropriate to limit the amount to 6.0% or less when considering the effect of addition and cost.

本発明における鋳造合金の化学成分組成を第4図のF 
e −C−W三元系状態図に当てはめると、相当組成の
液相面は約1700〜1200°Cの範囲にあり、初晶
としてタングステン炭化物の晶出をみることがわかる。
The chemical composition of the cast alloy in the present invention is shown in Fig. 4.
When applied to the e-C-W ternary system phase diagram, it can be seen that the liquid phase surface of the corresponding composition is in the range of about 1700 to 1200°C, and tungsten carbide crystallizes as a primary crystal.

本発明によれば、上記化学成分組成を有する鋳物を、そ
の基地中に粒径約5〜100μn〕(円形換算値)の塊
状晶出炭化物が、容「1率で約15〜75%を占めるよ
うな組織を有する鋳造物として得ることができ、その硬
度は、TTvで例えば900〜1/100と非常に硬質
である。第1図および第2図に本発明による鋳造物の組
織の例を示す(接種剤はWC粒子)。晶出炭化物は幾何
学的晶癖を呈する微細塊状物で、基地中に緻密かつ均一
に分布している。なお、X線マイク6アナライザーによ
れは、その晶出炭化物はWCであり、Fe、C+−など
の元素は殆んど含まれていない。
According to the present invention, a casting having the above-mentioned chemical composition is made such that massive crystallized carbides with a grain size of approximately 5 to 100 μn (circular equivalent value) occupy approximately 15 to 75% of the total volume in the matrix. It can be obtained as a casting having such a structure, and its hardness is extremely hard, for example, 900 to 1/100 in terms of TTv.Examples of the structure of the casting according to the present invention are shown in FIGS. 1 and 2. (The inoculant is WC particles).The crystallized carbide is a fine lump exhibiting a geometric crystal habit, and is densely and uniformly distributed in the base. The extracted carbide is WC, and contains almost no elements such as Fe and C+-.

本発明におりる鋳造方案には特別の制限はなく、に1的
とする鋳物は、例えば中実柱状体として得ることができ
、あるいは中空筒体として得ることもできる1、ロール
類を目的とする場合は、耐摩耗性は表面の問題であるか
ら、中空円筒体を鋳造し、必要ならばその中空孔にコア
ー材として他種金属を鋳造して2層構造を形成してもよ
い。こうすれば、溶湯の成分元素および接種剤としての
高価なり タングステンの使用量を節減しながら所要の材料特性を
満たすことができる。また、中空筒状鋳物の鋳造には遠
心力鋳造法を利用し、塊状晶出炭化物を遠心力で比重分
離させることにより表層部に晶出炭化物が緻密に分布し
た組織を形成することもできる。
There is no particular restriction on the casting method according to the present invention, and the casting method according to the present invention can be obtained, for example, as a solid columnar body or as a hollow cylindrical body. In this case, since wear resistance is a surface issue, a hollow cylindrical body may be cast and, if necessary, another type of metal may be cast as a core material in the hollow hole to form a two-layer structure. In this way, the required material properties can be met while reducing the amount of tungsten used, which is expensive as a constituent element of the molten metal and an inoculant. Furthermore, a centrifugal force casting method is used to cast hollow cylindrical castings, and by separating bulk crystallized carbide by specific gravity using centrifugal force, it is also possible to form a structure in which crystallized carbide is densely distributed in the surface layer.

本発明の実施例について説明すると、高周波溶解炉で溶
製した下記成分組成の溶湯を、800°Cに予熱したセ
ラミック鋳型(内径3 Q mjll X高さl Q 
Q yrrm )に鋳込み鋳物(A)および(B)を得
た。溶湯に対する接種は出湯直前の炉中まプこは鋳型内
にて行った。
To explain an embodiment of the present invention, a ceramic mold (inner diameter 3 Q mjll x height l Q
Castings (A) and (B) were obtained by casting Q yrrm ). Inoculation of the molten metal was carried out in the mold in the furnace immediately before tapping.

(1)溶湯成分組成:C4,10%、Si0.54%、
Mn0.8%、W42.0%、Ni2.8%、CrO,
88%、残部F e 。
(1) Molten metal composition: C4, 10%, Si 0.54%,
Mn0.8%, W42.0%, Ni2.8%, CrO,
88%, remainder F e .

(11)鋳込温度:1550°C (iii) 接種剤: W2C粒子、粒径10〜63 
μ+11(1■)接種時期および接種量 鋳物(A):鋳型内溶湯に08%接種 鋳物(B)二出易直前の炉中溶湯に10%接種。
(11) Casting temperature: 1550°C (iii) Inoculant: W2C particles, particle size 10-63
μ+11 (1■) Inoculation timing and inoculation amount Casting (A): 08% inoculation to the molten metal in the mold Casting (B) 10% inoculation to the molten metal in the furnace just before release.

比較例として、接種を行なわない点を除いて上記と同じ
鋳造条件で鋳物(C)を得た。
As a comparative example, a casting (C) was obtained under the same casting conditions as above except that no inoculation was performed.

(1,1組織 」二記各鋳物(A)、(B)および(C)の底部から3
0庸Hの位置における組織をそれぞれ第1図〜第3図に
示す。接種しなかった比較例(第3図)では、晶出欠化
物が粗大で、かつ塊状の連続がみられるのに付し、接種
が施こされた本発明例(A)(第1図)および(B)(
第2図)は、晶出炭化物が極微細で緻密かつ均一に分1
!した組織を有する。
(1,1 structure) 2 marks 3 from the bottom of each casting (A), (B) and (C)
The structures at the 0-H position are shown in FIGS. 1 to 3, respectively. In the comparative example (Fig. 3) in which no inoculation was carried out, the crystallized crystals were coarse and continuous in the form of blocks, but inoculation was carried out in the present invention example (A) (Fig. 1) and (B)(
Figure 2) shows that the crystallized carbides are extremely fine, dense, and uniformly separated.
! It has an organized structure.

なお、本発明例(A)、(B)の各組織における晶出炭
化物の平均粒径はほぼ44 ltm 、容積率は約42
%前後(l m11方眼交点計測法による)である。
In addition, the average grain size of the crystallized carbide in each structure of the present invention examples (A) and (B) is approximately 44 ltm, and the volume ratio is approximately 42 ltm.
% (according to lm11 grid intersection measurement method).

11J] 耐摩耗性 各鋳物(Δ)、(13)および(C)から板状試片を調
製し、大越式迅速摩耗試験機にて下記条件で摩耗試験を
行い、各鋳物の耐摩耗性を単位荷重・単位すべり距離当
りの摩耗体積(比摩耗量)にて評価した。。
11J] Wear resistance A plate specimen was prepared from each casting (Δ), (13), and (C), and an abrasion test was conducted using an Okoshi type rapid abrasion tester under the following conditions to determine the abrasion resistance of each casting. The evaluation was based on the wear volume (specific wear amount) per unit load and unit sliding distance. .

(イ)相手材(回転輪): SUJ 2、硬度(HRC
)62.0 (ロ)ずベリ速度: 3.’477Z/秒。すべり距離
:200yツノ。
(a) Mating material (rotating ring): SUJ 2, hardness (HRC
)62.0 (b) Zuburi speed: 3. '477Z/sec. Sliding distance: 200y horn.

(ハ)最終荷重:176〜18.5kgf。(c) Final load: 176 to 18.5 kgf.

第1表に試験結果を示す。同表には従来材であるNi 
グレン鋳鉄(C3,22%、Si0.75%、Mn0.
68%、Ni4.38%、Cr1.64%、hh035
%、残部Fe)およびチルド鋳物(C3,99%、Si
0.29%、出1023%、Ni3.38%、CrO,
98%、Mo0.22%、残部Fe)について同し摩耗
試験による試験結果を併記した。本発明鋳物は比較例の
鋳物(C)およびN1グレン鋳鉄、チルド鋳物を凌ぐ耐
摩耗性を有している。
Table 1 shows the test results. The same table shows the conventional material Ni.
Glen cast iron (C3, 22%, Si0.75%, Mn0.
68%, Ni4.38%, Cr1.64%, hh035
%, balance Fe) and chilled castings (C3, 99%, Si
0.29%, 1023% Ni, 3.38% Ni, CrO,
The test results of the same abrasion test for 98% Mo, 0.22% Mo, and the balance Fe are also shown. The casting of the present invention has wear resistance superior to that of the comparative casting (C), N1 grain cast iron, and chilled casting.

第 1 表 010 偵り性 鋳物(ん、(B)および(C)のそれぞれにつき、JI
SZ 2242による両軍試験を実施し、ツヤルビー吸
収エネルギーをめた。
Table 1 010 JI for each of curved castings (N, (B) and (C))
Tests were conducted on both sides using SZ 2242, and the absorption energy of glossy ruby was confirmed.

鋳物(A) : 0.40 kqf −yn鋳物(B)
 : 0.3 5 kqf ・7ノl鋳物L) ’ 0
.30 /cg(・711本発明例の鋳物は耐衝撃性に
すぐれていることかわかる。
Casting (A): 0.40 kqf -yn casting (B)
: 0.3 5 kqf ・7 nol casting L)' 0
.. 30/cg (・711) It can be seen that the casting of the example of the present invention has excellent impact resistance.

ツ、−にのように、本発明により得られる鋳物は基地中
に極微細の塊状品出炭化物が緻密かつ均一に分散した組
織をM I、、極めて硬質で耐摩耗性lこ富むとともに
#dJ性にもすぐれており、例えは鉄鋼関連、没!ni
iにおける1延ロール、搬送ロールなどのロール3:(
t、各押金11.IJやダイス、その他耐摩耗性の要求
される各種il’j 造材料として好適である。
As shown in (2), the castings obtained by the present invention have a structure in which ultrafine lumpy carbides are densely and uniformly dispersed in the matrix, are extremely hard, have high wear resistance, and have #dJ. It also has excellent properties, such as those related to steel, etc. ni
Roll 3 such as 1 rolling roll and conveyance roll in i: (
t, each pusher 11. It is suitable as a material for making IJs, dies, and other various types of metals that require wear resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はJ、%地中に晶出タングステン炭化物
を有するにJ1織を示す図面代用顕微鏡写真(×/IO
)、第4図は1ンc −C−W三元系状態図であ代理人
 弁理士 宮 崎 新八部
Figures 1 to 3 are micrographs (×/IO
), Figure 4 is a phase diagram of the 1-c-C-W ternary system. Agent: Patent Attorney Shinhachibe Miyazaki

Claims (1)

【特許請求の範囲】[Claims] (1) C2,5−5,0%、Si3.5%以下、Mn
35%以下、W250〜80.0%、残部実質的にFe
、またはFeの一部が1種もしくは2種以」二の合金元
素で置換されてなる鉄系合金の鋳造において、その溶湯
にタングステン炭化物粒子による接種を行うことにより
、基地中に微細な塊状晶出タングステン炭化物が均一に
分散した組織を形成せしめることを特徴とする耐摩耗鋳
物の製造法、。
(1) C2,5-5,0%, Si3.5% or less, Mn
35% or less, W250-80.0%, remainder substantially Fe
, or in the casting of iron-based alloys in which a portion of Fe is replaced with one or more alloying elements, by inoculating the molten metal with tungsten carbide particles, fine lumpy crystals are formed in the matrix. A method for producing a wear-resistant casting, characterized by forming a structure in which extracted tungsten carbide is uniformly dispersed.
JP2491484A 1984-02-10 1984-02-10 Manufacture of wear resistant casting Granted JPS60169515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2491484A JPS60169515A (en) 1984-02-10 1984-02-10 Manufacture of wear resistant casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2491484A JPS60169515A (en) 1984-02-10 1984-02-10 Manufacture of wear resistant casting

Publications (2)

Publication Number Publication Date
JPS60169515A true JPS60169515A (en) 1985-09-03
JPH02424B2 JPH02424B2 (en) 1990-01-08

Family

ID=12151432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2491484A Granted JPS60169515A (en) 1984-02-10 1984-02-10 Manufacture of wear resistant casting

Country Status (1)

Country Link
JP (1) JPS60169515A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011094800A1 (en) * 2010-02-05 2011-08-11 Weir Minerals Australia Ltd Hard metal materials
AU2013203102B2 (en) * 2010-02-05 2015-02-05 Weir Minerals Australia Ltd Hard metal materials
CN104762546A (en) * 2015-03-04 2015-07-08 鞍钢集团矿业公司 Antiwear modification additive for enhancing abrasion strength of grinding balls and use method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011094800A1 (en) * 2010-02-05 2011-08-11 Weir Minerals Australia Ltd Hard metal materials
CN102822367A (en) * 2010-02-05 2012-12-12 伟尔矿物澳大利亚私人有限公司 Hard metal materials
AU2013203102B2 (en) * 2010-02-05 2015-02-05 Weir Minerals Australia Ltd Hard metal materials
CN104805346A (en) * 2010-02-05 2015-07-29 伟尔矿物澳大利亚私人有限公司 Hard metal materials
EA033535B1 (en) * 2010-02-05 2019-10-31 Weir Minerals Australia Ltd Hard metal materials
CN104762546A (en) * 2015-03-04 2015-07-08 鞍钢集团矿业公司 Antiwear modification additive for enhancing abrasion strength of grinding balls and use method

Also Published As

Publication number Publication date
JPH02424B2 (en) 1990-01-08

Similar Documents

Publication Publication Date Title
AU657753B2 (en) Method of making cemented carbide articles
US5074935A (en) Amorphous alloys superior in mechanical strength, corrosion resistance and formability
EP0187235A2 (en) Production of increased ductility in articles consolidated from a rapidly solidified alloy
US3556780A (en) Process for producing carbide-containing alloy
JPS5947352A (en) Super-rapidly chilled alloy containing dispersed second phase particle
US4410490A (en) Nickel and cobalt alloys which contain tungsten aand carbon and have been processed by rapid solidification process and method
JPH1088333A (en) Sputtering target and its production
US3690962A (en) Carbide alloys suitable for cutting tools and wear parts
US3655365A (en) High speed tool alloys and process
JPH0512424B2 (en)
JPS60169515A (en) Manufacture of wear resistant casting
JP4317930B2 (en) Amorphous alloy particles
US3779746A (en) Carbide alloys suitable for cutting tools and wear parts
JP2926397B2 (en) Impact-resistant iron-based alloy spherical particles
JPS6160858A (en) Wear resistant casting
JPH01230759A (en) Composite powder for thermal spraying
JPS60177945A (en) Centrifugal casting method of wear resistance casting
JP2813760B2 (en) Iron-based ceramic material and its manufacturing method
KR880000158B1 (en) The method of manufacturing of super cooling alloy
JPS631361B2 (en)
US4111691A (en) Crushable low reactivity nickel-base magnesium additive
JPS6017029A (en) Production of second phase particle dispersion type ultraquickly cooled alloy
JPS631365B2 (en)
JPS6160857A (en) Wear resistant casting
JPS613870A (en) Wear resistant parts and its production