JPS60167471A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS60167471A
JPS60167471A JP2344784A JP2344784A JPS60167471A JP S60167471 A JPS60167471 A JP S60167471A JP 2344784 A JP2344784 A JP 2344784A JP 2344784 A JP2344784 A JP 2344784A JP S60167471 A JPS60167471 A JP S60167471A
Authority
JP
Japan
Prior art keywords
insulating film
gate
source
oxide film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2344784A
Other languages
Japanese (ja)
Inventor
Toshio Saito
斉藤 寿男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP2344784A priority Critical patent/JPS60167471A/en
Publication of JPS60167471A publication Critical patent/JPS60167471A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To contrive the increase in integration and speed by a method wherein source and drain regions have a high concentration part and a low concentration part, the latter of which parts is positioned under an insulation film formed on the side surface of a polycrystalline Si gate, and most parts of this insulation film and the high concentration part and a metallic electrode come into contact with each other. CONSTITUTION:The source-drain electrode 211 is in contact with a gate poly Si side surface oxide film 207 and a field oxide film region 202. This enables the reduction in source-drain area without the need of contact margins. Thereby, the speed and the integration can be increased.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は半導体装置、特にゲートが多結晶シリコンで形
成されたシリコンゲート半導体装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a semiconductor device, and particularly to a silicon gate semiconductor device whose gate is formed of polycrystalline silicon.

〔従来技術〕[Prior art]

最近の半導体装置は低消費電力化及び高集積化が強く要
望され、その丸めにトランジスタの微細化がますます活
発になって亀ている。
Recently, there is a strong demand for lower power consumption and higher integration in semiconductor devices, and as a result, miniaturization of transistors has become more and more active.

このような要求を満たす為に、第1図に示すような装置
が使用されている。これt、その製造工程と共に説明す
ると、まず、第一導電型導体基板101の一生面に選択
酸化技術により一部が基板内に埋設された酸化膜102
t−選択的に形成する(第1図(a))。次に、ゲート
酸化膜103およびポリシリコン104t−順次形成し
、ゲートとして使用する部分のポリシリコン104 を
残し、他の部分を除去する。第二導電型不純物を例えば
イオン注入により導入してソース、ドレイン領域105
を形成し、ゲートポリシリコン104の上部及び側面に
酸化膜106′を形成する(第1図(−)。次に、リン
ガ2ス107t−形成しく第1図(C))、リン、//
9x107 Kコンタクトホールt14ffソース。
In order to meet such requirements, a device as shown in FIG. 1 is used. To explain this along with its manufacturing process, first, an oxide film 102 is formed on the entire surface of the first conductive type conductor substrate 101 by selective oxidation technology, and a portion thereof is buried in the substrate.
t-selectively formed (FIG. 1(a)). Next, a gate oxide film 103 and polysilicon 104t are sequentially formed, leaving a portion of the polysilicon 104 to be used as a gate, and removing the other portions. A second conductivity type impurity is introduced into the source and drain regions 105 by, for example, ion implantation.
An oxide film 106' is formed on the top and side surfaces of the gate polysilicon 104 (FIG. 1(-).Next, a ringer 2s 107t- is formed (FIG. 1(C)).
9x107K contact hole t14ff source.

ドレインのアルミニウム電極108 t−形成する(第
1図(d))。
A drain aluminum electrode 108 is formed (FIG. 1(d)).

このような従来の製法では、リンガラス107にコンタ
クトホールを開けるために、フィールド領域の酸化11
1[102とコンタクトホール間及びゲートポリシリコ
ン104の側面酸化膜106とコンタクトホール間に、
位置ズレをみこしたマージンが必要となり、この結果、
ソース・ドレイン面積が大龜(な9集積度の低下及び寄
生容量の増大によるスピードの低下という問題が生じる
In such a conventional manufacturing method, in order to open a contact hole in the phosphor glass 107, the oxidation layer 11 in the field region is
1 [Between 102 and the contact hole and between the side oxide film 106 of the gate polysilicon 104 and the contact hole,
A margin that takes into account misalignment is required, and as a result,
If the source/drain area is large, problems arise such as a decrease in the degree of integration and a decrease in speed due to an increase in parasitic capacitance.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高集積化、高速化に適した構造の牛導
体装置およびその製造方法を提供することにある。
An object of the present invention is to provide a conductor device having a structure suitable for high integration and high speed, and a method for manufacturing the same.

〔発明の構成〕[Structure of the invention]

本発明は、ソースおよびドレイン領域が高濃度部分と低
濃度部分とtvLl この低111度部分は多結晶シリ
コンゲートの側面に形成された絶縁膜の下に位置し、こ
の絶縁膜および高濃度部分の大部分と金属電極が接する
ことt−特徴とする。
In the present invention, the source and drain regions have a high concentration portion, a low concentration portion, and tvLl. Characterized by the fact that most of the metal electrode is in contact with the metal electrode.

さらに本発明は、多結晶シリコンゲート【マスクに低濃
度ソース、ドレイン領#JR’を形成し、多結晶シリコ
ンゲートの側面に絶縁膜を形成してこれをマスクに高f
lk度ソース、ドレイン領域を形成し。
Furthermore, the present invention provides a polycrystalline silicon gate (low concentration source and drain regions #JR' are formed on a mask, an insulating film is formed on the side surface of the polycrystalline silicon gate, and this is used as a mask to form a high f.
Form source and drain regions.

高S度部およびゲート側面の絶縁膜に接する金属ゲート
を形成することを特徴とする。
The method is characterized in that a metal gate is formed in contact with the high S degree part and the insulating film on the side surface of the gate.

すなわち2本発明は、高濃度ソース、ドレイン領賦部と
金属電極とを自己整合的に接触させて高集積化および高
速化全実現したものである。
In other words, the present invention achieves high integration and high speed by bringing the highly doped source and drain regions into contact with the metal electrode in a self-aligned manner.

〔夾施例〕[Example]

以下、図面を参照して本発明の実施例’ep細に説明す
る。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

82図は本発明の一実施例による製造方法を示す。まず
、g−電導臘半導体(シリコン)基板201の一生面に
選択酸化技IIuを用いて基板201内に一部が埋設さ
れた酸化膜202 t−8000〜1oooo人厚さに
選択的に形成する(第2図(a))。
Figure 82 shows a manufacturing method according to one embodiment of the present invention. First, an oxide film 202 partially buried in the substrate 201 is selectively formed on the entire surface of a g-conducting semiconductor (silicon) substrate 201 to a thickness of t-8000 to 1000 mm using selective oxidation technique IIu. (Figure 2(a)).

次に、ゲート酸化膜203 t400〜600人厚に。Next, the gate oxide film 203 is made to have a thickness of 400 to 600 t.

ポリシリコン層204 t−4000〜8000人厚に
Polysilicon layer 204 t-4000 to 8000 thick.

シリコン酸化膜2(l i−約500〜5oooA厚に
夫々111次形成する(第2図(b))。ゲートとして
使用すべき部分のポリシリコン層上に酸化膜205が残
るように他の部分の酸化膜205を除去し。
A silicon oxide film 2 (l i - is formed 111 times to a thickness of about 500 to 500A (FIG. 2(b)).Other parts are formed so that the oxide film 205 remains on the polysilicon layer in the part to be used as a gate. oxide film 205 is removed.

続いて残り良識化膜205 tマスクとしてポリシリコ
ン層204 ′f:選択的に除去する(第2図(C))
Subsequently, the remaining common sense film 205t is selectively removed as a mask (FIG. 2(C)).
.

これによって、シリコンゲートパターンが形成される。This forms a silicon gate pattern.

次に第二導電壁不純物を低濃度でイオン注入法により導
入して低濃度ソース、ドレイン領域206を形成する(
82図(d))。co後、soo。
Next, a second conductive wall impurity is introduced at a low concentration by ion implantation to form a low concentration source and drain region 206 (
Figure 82(d)). After co, soo.

5− 〜8000人厚(DCVDシリ:xy酸化11[207
f衆面をおおう(第2図(e))。異方性エツチングに
より、酸化膜207tゲートポリシリコン204の@間
に残し、さらに低S度ンース、ドレイン領域206上の
酸化11203 を除去する。ゲートポリクリコンgI
i面酸化$207からフィールド酸化膜領域202に至
る領域に、低lI1度ンース、ドレイン領域206より
高濃度にかつ深く第二導電型不純物を導入して高濃度ン
ース、ドレイン領域208を形成する←第2図(f))
。ゲートポリシリコン側面酸化膜207の存在により、
ソースおよびドレイン領域のチャンネル側端部は低a度
領1206となっている。次に、アルンニクA209を
8oo。
5- ~8000 thickness (DCVD silicon: xy oxidation 11 [207
Cover the whole surface (Fig. 2(e)). Anisotropic etching is performed to remove the oxide 11203 remaining between the oxide film 207 and the gate polysilicon 204, and further remove the oxide 11203 on the drain region 206 with a low S degree. Gate polycricon gI
In the region from the i-plane oxidation $207 to the field oxide film region 202, a second conductivity type impurity is introduced at a higher concentration and deeper than the low II 1 degree drain region 206 to form a high concentration drain region 208. Figure 2 (f))
. Due to the presence of the gate polysilicon side oxide film 207,
The end portions of the source and drain regions on the channel side form a low a degree region 1206. Next, 8oo of Arunnik A209.

〜12000人の厚さで全面に形成し、フォトレジスト
210 を約1μm塗布する。このと亀、アルミニウム
層209の形状の起伏の九め、ゲートポリシリラン20
4上部のレジストは他の部分と比べて薄くなる(第2図
(g))。ドライエツチングにより、上記ゲートボリシ
リスン上部のレジストt−除去し、他の部分のレジス)
210は残す(#I2図(h))。この後、ドライエツ
チングにより1ゲ一トポリシリコン204上部のアルミ
ニウムを除去し、レジスト210t−除去してソース、
ドレイン電極211t−形成する(第2図(i) )。
A photoresist 210 is applied to a thickness of about 1 μm. In this case, the shape of the aluminum layer 209 is undulating, and the gate polysilicon layer 209 is undulating.
4. The resist at the top is thinner than other parts (Fig. 2 (g)). By dry etching, the resist on the upper part of the gate voltage is removed, and the resist on other parts is removed.
210 will remain (#I2 figure (h)). After that, the aluminum on the top of the 1-gate polysilicon 204 is removed by dry etching, and the resist 210t is removed to form a source.
A drain electrode 211t is formed (FIG. 2(i)).

上記の製造方法に形成された装置では、ソース。In the device formed by the above manufacturing method, the source.

ドレイン電極211は、ゲートポリシリコン側面酸化膜
207とフィールド酸化膜領域202に接触する丸め、
上記コンタクトマージンを必要とせずンース、ドレイン
面積會小さくすることが可能である。この丸め、高速化
及び高集積化の製造方法として利点を有する。
The drain electrode 211 has a round shape that contacts the gate polysilicon side oxide film 207 and the field oxide film region 202.
It is possible to reduce the drain area without requiring the above-mentioned contact margin. This rounding has advantages as a manufacturing method for high speed and high integration.

なお、本発明は、相補11MO8,E/DMO8等、他
のシリコンゲートMO8装置にも適用できることは熱論
である。を九、各領域の導電Wt−入れ換え得るし、実
施的で示し九寸法、材質はこれらに限定されるものでな
い。
It is a matter of course that the present invention can be applied to other silicon gate MO8 devices such as complementary 11MO8 and E/DMO8. The conductivity Wt of each region can be replaced, and the dimensions and materials are not limited to those shown in the practical example.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は従来製法の工程断面図を示す。 101・・・・・・第−導電型中導体基板、102・・
・・・・酸化膜、103・・・・・・酸化膜、104・
・・・・・第−導電梨ボリシリコン、105・・・・・
・第二導電戯不純物領賦、106・・・・・・酸化膜、
107・・・・・・リンガラス。 108・・・・・・アル電ニウム電極。 第2図(!I)〜(りは本発明の実施例の断面図會示す
。 201・・・・・・第一導電型半導体基板、202・・
・・・・酸化膜、203・・・・・・酸化膜、204・
・・・・・第−導電戯ボリシリコン、205・・・・・
・酸化膜、206・・・・・・第二導電載不純智低濃度
領域、207・・・・・・酸化膜。 208・・・・・・第二導電賊不純物高fIk度領域、
209・・・・・・アルミニウム、210・・・・・・
レジス)、211・・・・・・ソース、ドレイン電極。 牛 2 毛■ (久) 峯2回(ト2
FIGS. 1(a) to 1(d) show cross-sectional views of the conventional manufacturing process. 101...-th conductivity type medium conductor substrate, 102...
... Oxide film, 103 ... Oxide film, 104.
... No. 1 - Conductive Pear Polysilicon, 105...
・Second conductive impurity distribution, 106...Oxide film,
107...Lingarasu. 108... Aluminum electrode. FIG. 2 (!I) to (ri) show cross-sectional views of embodiments of the present invention. 201... First conductivity type semiconductor substrate, 202...
... Oxide film, 203 ... Oxide film, 204.
...No. 1 conductive polysilicon, 205...
- Oxide film, 206... Second conductive impurity low concentration region, 207... Oxide film. 208...Second conductive impurity high fIk degree region,
209...aluminum, 210...
(Register), 211... Source, drain electrode. Cow 2 hair ■ (ku) Mine 2 times (to 2

Claims (2)

【特許請求の範囲】[Claims] (1) ゲートが多結晶シリコンでなる半導体装置にお
いて、ソースおよびドレイン領域がそれぞれ低濃度部分
と高111度部分とでなり、前記低濃度部分は前記多結
晶シリコンの側面に形成され九絶縁膜下に位置し、この
絶縁膜および前記高機度部分の大部分と金属電極が接触
していることt−特徴とする半導体装置。
(1) In a semiconductor device whose gate is made of polycrystalline silicon, the source and drain regions each have a low concentration part and a high 111 degree part, and the low concentration part is formed on the side surface of the polycrystalline silicon and is formed under an insulating film. t- A semiconductor device characterized in that the insulating film and most of the high-performance portion are in contact with a metal electrode.
(2) 半導体基板の一主面にフィールド絶縁膜および
ゲート絶縁膜を形成する工程と、前記ゲート絶縁膜に多
結晶シリコングー)1−選択的に形成する工程と、この
多結晶シリコンゲートおよび紬記フィールド絶縁膜をマ
スクに低濃度ソースおよびドレイン領域を前記半導体基
板内に形成する工程と、前記多結晶シリコングー)1−
絶縁膜で覆う工程と、この絶縁膜および前記フィールド
絶縁膜をマスクに高濃度ソースおよびドレイン領域を形
成する工程と、これら高濃度ソースおよびドレイン領域
ならびに前記多結晶シリコンゲートの側面に形成され九
絶縁膜と接する金属電極を形成する工程とt−有するこ
とt特徴とする半導体装置の製造方法。
(2) A step of forming a field insulating film and a gate insulating film on one main surface of the semiconductor substrate, a step of selectively forming polycrystalline silicon on the gate insulating film, and a step of selectively forming the polycrystalline silicon gate and the pongee. forming low concentration source and drain regions in the semiconductor substrate using the field insulating film as a mask;
a step of covering with an insulating film, a step of forming highly doped source and drain regions using this insulating film and the field insulating film as a mask, and a step of forming highly doped source and drain regions and an insulating film on the sides of the polycrystalline silicon gate. A method for manufacturing a semiconductor device, comprising: forming a metal electrode in contact with a film;
JP2344784A 1984-02-10 1984-02-10 Semiconductor device and manufacture thereof Pending JPS60167471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2344784A JPS60167471A (en) 1984-02-10 1984-02-10 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2344784A JPS60167471A (en) 1984-02-10 1984-02-10 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS60167471A true JPS60167471A (en) 1985-08-30

Family

ID=12110754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2344784A Pending JPS60167471A (en) 1984-02-10 1984-02-10 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60167471A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093275A (en) * 1989-09-22 1992-03-03 The Board Of Regents, The University Of Texas System Method for forming hot-carrier suppressed sub-micron MISFET device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093275A (en) * 1989-09-22 1992-03-03 The Board Of Regents, The University Of Texas System Method for forming hot-carrier suppressed sub-micron MISFET device

Similar Documents

Publication Publication Date Title
JP3229665B2 (en) Method of manufacturing MOSFET
JP2780162B2 (en) Method for manufacturing semiconductor device
JP2579954B2 (en) MOS transistor
US5523605A (en) Semiconductor device and method for forming the same
JPS60167471A (en) Semiconductor device and manufacture thereof
EP0017934B1 (en) Method of manufacturing insulated-gate field-effect transistors
JP2557206B2 (en) Method for manufacturing semiconductor device
JP2000196102A (en) Semiconductor device and its production method
JP2000077678A (en) Semiconductor element and its manufacture
KR0161737B1 (en) Method for fabricating mosfet
JP3182860B2 (en) Semiconductor device
JPH04146627A (en) Field-effect type semiconductor device and manufacture thereof
JPH053135B2 (en)
JPH05243261A (en) Insulated-gate field-effect transistor
JPH056965A (en) Semiconductor integrated circuit and manufacture thereof
KR100307047B1 (en) Manufacturing method of S.O.I. semiconductor device
JPS6159866A (en) Mos type dynamic memory and manufacture thereof
JPH04179127A (en) Semiconductor device
JPS626664B2 (en)
JPH04241465A (en) Manufacture of field effect type semiconductor device
JPS63310173A (en) Semiconductor device and its manufacture
JPH04348040A (en) Thin film transistor and manufacture thereof
JPS6311778B2 (en)
JPS61170066A (en) Semiconductor device and manufacture thereof
JPH02272772A (en) Semiconductor device