JPS60166868A - Apparatus for measuring wind direction and velocity - Google Patents

Apparatus for measuring wind direction and velocity

Info

Publication number
JPS60166868A
JPS60166868A JP2240884A JP2240884A JPS60166868A JP S60166868 A JPS60166868 A JP S60166868A JP 2240884 A JP2240884 A JP 2240884A JP 2240884 A JP2240884 A JP 2240884A JP S60166868 A JPS60166868 A JP S60166868A
Authority
JP
Japan
Prior art keywords
wind
wind direction
thermocouple
wind speed
velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2240884A
Other languages
Japanese (ja)
Inventor
Seiji Kawaguchi
清司 川口
Kazuma Matsui
松井 数馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP2240884A priority Critical patent/JPS60166868A/en
Publication of JPS60166868A publication Critical patent/JPS60166868A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/10Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables

Abstract

PURPOSE:To take out data of wind direction and velocity as electric signals and to enhance accuracy, comformity and durability, by measuring a time required in that air heated in the upstream side of an air flowline advances over a predetermined distance in a predetermined direction. CONSTITUTION:Thermocouples 10 are arranged to the periphery of a heat generator 9 so as to provide a predetermined distance L and the divided streams of an air stream 101 pass this sensor part. The output voltage of each thermocouple 10 is compared with a threshold value by a comparator 15 and discriminated from noise by atmospheric temp. A control part 18 calculates wind velocity v= L/DELTAT from a time DELTAT required in that air heated by the heat generator 9 reaches the thermocouple 10 and, at the same time, inputs relative wind velocity by the running of a vehicle from a car speed detection part 24a and subtracts the same from the wind velocity (v) to calculate absolute wind velocity. The control part 18 discriminates the position of the thermocouple 10 outputting voltage to calculate a relative wind direction and adds the same to data from a direction detection part 24b to calculate an absolute wind direction.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は風向風速検出装置の精度および耐久性の改良に
開プる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is directed to improving the accuracy and durability of wind speed and direction detection devices.

本発明の風向風速検出装置は、たとえば自動車等の移動
体に搭載して該移動体における相対的な風速および風向
の検出に使用することができる。
The wind speed and direction detection device of the present invention can be mounted on a moving body such as a car and used to detect relative wind speed and wind direction in the moving body.

[従来技術] 従来から提案され、又は実用化されている風向風速検出
装置には、風向あるいは風速を機械的な変位によって検
出するものや、熱の伝導を利用するもの等がある。
[Prior Art] Wind direction and wind speed detection devices that have been proposed or put into practical use include those that detect wind direction or wind speed by mechanical displacement, and those that utilize heat conduction.

しかしながら、これら従来の風向風速検出装置には、精
度、耐久性、および即応性の全ての点で十分満足のいく
もの番よない。
However, none of these conventional wind speed and direction detection devices are fully satisfactory in terms of accuracy, durability, and quick response.

たとえば空気の流れを機械的な変位によって検出ヅる梗
類の装置では、機械的な可動部が存在するために、摩耗
等によって精度が悪化するという欠点がある。
For example, a conventional device that detects air flow by mechanical displacement has the disadvantage that accuracy deteriorates due to wear and the like because of the presence of mechanically movable parts.

また、風向や風速の測定値は可動部の変位等によって表
現されるために、使用者が読み取るだ【ノならば問題な
いが、その測定値をデータとして電気的な信号処理を行
う場合には極めて不便である。
Also, since the measured values of wind direction and wind speed are expressed by the displacement of moving parts, etc., there is no problem if the user reads them, but if the measured values are used as data for electrical signal processing, This is extremely inconvenient.

このような欠点および不便さを解消するものとしC1熱
の仏心を利用した風向風速検出装置が提案されている。
In order to eliminate these drawbacks and inconveniences, a wind direction/wind speed detection device using the C1 heat Buddha has been proposed.

この種の検出装置は、検出値を電気信)」どして得るこ
とができる利点を有している。
This type of detection device has the advantage that detected values can be obtained by electronic transmission.

しかしながら、環境の影響を被り易く、又金属等の熱伝
導を利用しているために即応性が無く、イの土構造的な
耐久性が低い。したがって自動車等の移動体に固定して
使用することが困難である。
However, it is easily affected by the environment, does not have quick response because it uses heat conduction from metals, etc., and has low structural durability. Therefore, it is difficult to use it by fixing it to a moving object such as a car.

このJ、うに、従来の風向風速検出波Uには、精度、耐
久性、そして即応性の全てにわたって満足できるしのは
存在しない。
However, there is no conventional wind direction/wind speed detection wave U that can satisfy all aspects of accuracy, durability, and quick response.

[発明の目的] 本発明は」1記欠点の解消を企図して案出されたもので
あり、その目的は風向J3 J:び風速のf−タを電気
信すとして取り出すとどもに、環境の影響を受けにくく
、精度、即応性、そして耐久性に優れた川向風速検出装
置を提供り゛ることにある。
[Object of the Invention] The present invention has been devised with the intention of eliminating the drawbacks mentioned in 1.The purpose of the present invention is to obtain information on the wind direction and wind speed as electric signals, and to The purpose of the present invention is to provide a river direction wind speed detection device that is less susceptible to the effects of wind and has excellent accuracy, quick response, and durability.

[発明の構成] 本発明(31、空気流路の上流において加熱された空気
が、所定方向へ所定距離進む時間を測定することで風向
風速を検出するものである。
[Structure of the Invention] The present invention (31) detects the wind direction and speed by measuring the time taken for air heated upstream of an air flow path to travel a predetermined distance in a predetermined direction.

即ち、本発明はパルス電圧供給部と、 空気流路内に配設され前記パルス電圧によって光熱する
光熱体と、 前記流路内であって前記発熱体から所定距離下流に配設
された熱電変換素子と、 前記パルス電圧の印加時刻と、前記熱電変換素子から信
号が発生する時刻との時間差を検出する時間差検出部と
、 前記熱電変換素子から発生する信号および前記時間差と
hs rら、空気流の速度および方向を線用する演粋部
と、 からなることを特徴とする風向風速検出装置である。
That is, the present invention includes: a pulse voltage supply unit; a photothermal body disposed in an air flow path that generates light heat by the pulse voltage; and a thermoelectric converter disposed within the flow passage and a predetermined distance downstream from the heating element. an element; a time difference detection unit that detects a time difference between a time when the pulse voltage is applied and a time when a signal is generated from the thermoelectric conversion element; This is a wind direction/wind speed detection device characterized by comprising: an operation section that linearly calculates the speed and direction of the wind.

ここにおいて、パルス電圧供給部は、パルス発生器と増
幅器とから構成される。パルス発生器から出力される所
望の周波数の繰返しパルス電圧は増幅器によって増幅さ
れ、発熱体へ印加される。
Here, the pulse voltage supply section is composed of a pulse generator and an amplifier. A repetitive pulse voltage of a desired frequency outputted from the pulse generator is amplified by an amplifier and applied to the heating element.

発熱体はジュール熱を利用J°る抵抗線であり、パルス
電圧供給部から印加されるパルス電圧によって急速加熱
および急速冷却が行なわれる。
The heating element is a resistance wire that utilizes Joule heat, and is rapidly heated and cooled by a pulse voltage applied from a pulse voltage supply section.

熱電変換素子は発熱体から所定距離下流に段番)Iうれ
、熱電変換素子の出力信号に基づいて後述の演綽部にお
いて風向J3よび風速がめられる。なお熱雷変換素子と
しては゛熱電対、サーミスタ等を利用できる。
The thermoelectric conversion element is located a predetermined distance downstream from the heating element, and the wind direction J3 and wind speed are determined in a calculation section described later based on the output signal of the thermoelectric conversion element. Note that a thermocouple, a thermistor, etc. can be used as the thermal lightning conversion element.

時間差検出部は主にカウンタで構成され、十分高い周波
数で駆動づるカウンタのカウント値にょつ−C、パルス
電圧印加時刻と、熱雷変換素子から信号が出力された時
刻との時間差を検出づる。
The time difference detection section is mainly composed of a counter, and detects the count value of the counter driven at a sufficiently high frequency, the time difference between the pulse voltage application time and the time when the signal is output from the thermal lightning conversion element.

演惇部は、前記発熱体ど前記熱電変換素子との距離及び
前記時間差とから風速を算出するとともに、との熱電変
換素子がイを号を出力したかによって川向を判定する。
The performance section calculates the wind speed from the distance between the heating element and the thermoelectric conversion element and the time difference, and determines the direction of the river based on whether the thermoelectric conversion element outputs a signal.

[発明の実施例] 以下、本発明の実施例を図面を用いて詳細に説明する。[Embodiments of the invention] Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図および第2図は、本発明による風向風速検出装置
の一実施例にJ3ける空気流路部を示し、第1図はその
一部破砕の平面図、第2図はその断面図である。
Figures 1 and 2 show the air flow path section in J3 of an embodiment of the wind speed and direction detecting device according to the present invention, Figure 1 is a partially fragmented plan view thereof, and Figure 2 is a sectional view thereof. be.

第7図JJよび第2図において、軸対象形状を有りるケ
ーシング・アッパー1とケーシング・ロウツ−2とは、
スベーナ3を介してビス4で互いに固定されている。
In Fig. 7 JJ and Fig. 2, the casing upper 1 and the casing lower 2, which have an axis-symmetrical shape, are
They are fixed to each other with screws 4 via a subena 3.

ケーシング・ロウワー2の中央には、中空で頭部が円板
状の基板取付部5が設けられ、この円板状の頭部によっ
て、中高のケーシング・アッパー1との間に上流路が、
またケーシング・ロウヮー2との間に下流路がそれぞれ
形成される。
At the center of the casing lower 2, there is provided a board mounting part 5 which is hollow and has a disk-shaped head, and this disk-shaped head creates an upstream passage between it and the middle-high casing upper 1.
In addition, downstream passages are formed between the casing row 2 and the casing row 2, respectively.

基板取付部5上には、ベークライ1〜製の円形の基板6
が接着され、基板6には電極7および8、発熱体9、そ
して16個の熱電対1oが配設されてセンサ部を構成し
でいる。
On the board mounting part 5 is a circular board 6 manufactured by Bakery 1.
are adhered to the substrate 6, and electrodes 7 and 8, a heating element 9, and 16 thermocouples 1o are arranged on the substrate 6 to constitute a sensor section.

発熱体9は、基板6のtに設けられた電極7と基板6の
中央部に埋め込まれた電極8との間にろう付り等によっ
て取り付けられ、直径約50μm、L(さ約5mmの線
形状を有し、かつニクロムあるいは白金等の金属を材料
として作製された抵抗線である。。
The heating element 9 is attached by brazing or the like between the electrode 7 provided at t of the substrate 6 and the electrode 8 embedded in the center of the substrate 6, and is made of a wire with a diameter of about 50 μm and a length of about 5 mm. It is a resistance wire that has a shape and is made of metal such as nichrome or platinum.

熱雷対10は、発熱体9を中心どした円周上に等間隔に
16個配設され、その半径しは予め定められている。
Sixteen thermal lightning pairs 10 are arranged at equal intervals on a circumference centered on the heating element 9, and the radius thereof is predetermined.

熱電対10、電極7および8からのリード線11は塁仮
6の下側から基板取付部5の中空部を通して引き出され
、後述づ−る風向風速検出回路に接続される。
Lead wires 11 from the thermocouple 10 and the electrodes 7 and 8 are drawn out from the underside of the base 6 through the hollow portion of the board mounting portion 5, and connected to a wind speed and direction detection circuit to be described later.

なお、ケーシング・アッパー1どケーシング・ロウワー
2との互いに向い合った外周部には溝が削られ一ζおり
、それらの溝に金1!112がはさみ込まれている。ま
lこ、ケーシング中アッパー1の内側の上流路と下流路
とが分流する場所には、水切り用の突起13が設置)ら
れでいる。
Incidentally, grooves are cut in the outer peripheral parts of the casing upper 1 and the casing lower 2 facing each other, and gold 1!112 is inserted into these grooves. A draining protrusion 13 is installed inside the upper 1 of the casing at a place where the upstream passage and the downstream passage diverge.

このような構成を有する本実施例の動作を、第2図J3
よび第3図を用いて説明する。第3図は、本実施例にJ
3りる空気の流れを説明するだめの概略的rffi面図
である。
The operation of this embodiment having such a configuration is shown in FIG.
This will be explained using FIG. Figure 3 shows the J
FIG. 3 is a schematic RFFI diagram illustrating the flow of air.

まず、任意の方向から流入する空気流101は金網12
を通過づる。ここで、金網12は防塵J3よび降雨時に
おける水切りのために設けられたものC1これにJ、っ
て流路部へのほこりや水滴の侵入を効果的に防ぐことが
できる。
First, the air flow 101 flowing in from any direction is caused by the wire mesh 12
Pass through. Here, the wire mesh 12 is provided for dustproofing J3 and draining water in the event of rain, and can effectively prevent dust and water droplets from entering the flow path.

金網12を通過した空気流101は、主流102と分流
103に分かれ、分流103がセンサ部に流入Jる。分
流103の流路は、分流102の流路に比べて上側へ湾
曲しているために、空気流101に含まれている比較的
大きな粒子や水滴、そして水切り用の突起13によって
流入を阻止された水滴などは慣性によって主に主流10
2へ流れ込む。したがってセンサ部はほこりや水滴によ
る悪影響から守られる。
The air flow 101 that has passed through the wire mesh 12 is divided into a main flow 102 and a branch flow 103, and the branch flow 103 flows into the sensor section. Since the flow path of the divided flow 103 is curved upward compared to the flow path of the divided flow 102, relatively large particles and water droplets contained in the air flow 101 and the drainage protrusion 13 prevent the inflow. Due to inertia, water droplets mainly flow into the mainstream10.
Flows into 2. Therefore, the sensor section is protected from the harmful effects of dust and water droplets.

このようにケーシング・アッパーI J5よびケーシン
グ・1」ウワ〜2によって空気流路が形成され、しから
センサ部がケーシング・アッパー1等によっ−C保護さ
れる構成となっているために、構造的な耐久性を十分高
めることがでさる」ニに、はこりや水滴等の影響を抑え
ることができる。
In this way, the air flow path is formed by the casing upper I J5 and the casing 1~2, and the sensor section is protected by the casing upper 1 etc., so the structure By sufficiently increasing the durability of the material, it is possible to suppress the effects of flakes and water droplets.

次に、第4図ないし第6図を用いて本実施例で用いる検
出回路について説明づる。ただし、ここではu31図お
にび第2図に示す空気流路部を全方Sit、 bs r
)の凪を流入さl!得る車輌ルーフに取り(Jす、その
検出信号に基いて」1輌の進行方向補正IIfアクブユ
」ニータ制御を行なう場合を一例として取り上げる。
Next, the detection circuit used in this embodiment will be explained using FIGS. 4 to 6. However, here, the entire air flow path shown in Figure U31 and Figure 2 is Sit, bs r
) is flowing into the calm! Let us take as an example a case in which "one vehicle's traveling direction correction IIf" unit control is performed based on the detected signal from the roof of the vehicle.

第4図は本実施例で用いる風向風速検出回路を承りブロ
ック図である。
FIG. 4 is a block diagram of the wind direction/wind speed detection circuit used in this embodiment.

第4図において、16個の熱雷対10からのリード#:
I Gま増幅器14の入力端子に−ぞれぞれ接続され、
増幅器14の出/IJ端子は比較器15の一方の人力、
IAI+ 、、j、7に接続されている。さらに外気温
を検知する熱雷変換索子16(たどえば熱電対)からの
リード線も増幅器17を介して、比較器15の他方の入
力端子に接続されている。比較器15の出力端子は制御
部18に接続され、熱電対10からの信号を制御部18
へ伝達リーる。
In Figure 4, lead # from 16 thermal lightning pairs 10:
I and G are connected to the input terminals of the amplifier 14, respectively,
The output/IJ terminal of the amplifier 14 is connected to one side of the comparator 15,
It is connected to IAI+,,j,7. Further, a lead wire from a thermal lightning converter 16 (for example, a thermocouple) for detecting the outside temperature is also connected to the other input terminal of the comparator 15 via an amplifier 17. The output terminal of the comparator 15 is connected to the control section 18, and the signal from the thermocouple 10 is sent to the control section 18.
Transfer to.

制御部18は、制御4g19を通してパルス発生器20
、カウンタ21、ぞして演算部22の各動作を制御部る
The control unit 18 controls the pulse generator 20 through the control 4g19.
, the counter 21, and the operation section 22.

パルス発生器20の出力端子は、増幅器23の入力端子
とカウンタ21の制御端子とにそれぞれ接続され、各々
に所定周波数の繰返しパルスを供給Jる。
The output terminal of the pulse generator 20 is connected to the input terminal of the amplifier 23 and the control terminal of the counter 21, respectively, and supplies a repetitive pulse of a predetermined frequency to each.

増幅器23の出力端子は発熱体9からのリード線に接続
され、増幅′I!1i23によって増幅されたパルス電
圧を発熱体9へ印加する。
The output terminal of the amplifier 23 is connected to the lead wire from the heating element 9, and the amplification 'I! The pulse voltage amplified by 1i23 is applied to the heating element 9.

カウンタ21は、パルス発生器20からのパルスが入力
するfuに、カウントを開始する。カウンタ21の出力
端子は演算部22の入力端子に接続されCカラン1へ終
了時のカウント値を演算部22へ出力づる。
The counter 21 starts counting at fu when the pulse from the pulse generator 20 is input. The output terminal of the counter 21 is connected to the input terminal of the arithmetic unit 22, and the count value at the end of the C run 1 is outputted to the arithmetic unit 22.

演算部22の入出力端子は制御部18に接続され、演算
結果を制御部18へ出力するとともに、制御部18から
必要なデータを入カリ−る。
The input/output terminals of the calculation section 22 are connected to the control section 18, and output the calculation results to the control section 18, as well as input necessary data from the control section 18.

制御部18には、車速検出部24a/J日ら車輌の速度
データが、方角検出部24.11から方角(東西南北)
データが、入力する。また制御部18はインパネ表示部
25へ制御信舅とデータとを出力して、イの時々の風速
および風向を表示さV1アクヂュエータ26へ制御信号
を出力して車輌の進行IJ向を補正さlる。
The control unit 18 receives the speed data of the vehicle from the vehicle speed detection unit 24a/J from the direction detection unit 24.11.
Data is input. The control unit 18 also outputs control signals and data to the instrument panel display unit 25 to display the current wind speed and wind direction, and outputs a control signal to the V1 actuator 26 to correct the IJ direction of the vehicle. Ru.

次に、このような構成を有する検出回路の動作を第5図
のフローチャー1−および第6図の波形図を参照しなが
ら説明する。ここに第6図に示す波形図には、発熱体9
への印加電圧vinおよび熱電対からの出力電圧vou
tの波形がIFiJ一時間軸”F上に描かれている。
Next, the operation of the detection circuit having such a configuration will be explained with reference to the flowchart 1- in FIG. 5 and the waveform diagram in FIG. 6. In the waveform diagram shown in FIG. 6, the heating element 9
The applied voltage vin to the thermocouple and the output voltage vou from the thermocouple
The waveform of t is drawn on the IFiJ time axis "F".

ま覆゛、電源が投入されると制御部18はカウンタ21
8よび演惇部22等の初期化を行なう(第5図の5T1
)。続いて、制御部18はパルス発生器20を始動させ
る( S T 2 >。
However, when the power is turned on, the control unit 18 starts the counter 21.
8, performance section 22, etc. (5T1 in Figure 5).
). Subsequently, the control unit 18 starts the pulse generator 20 (ST2>).

死生したパルス電圧は増幅器23で増幅され、印加電圧
vinのパルス104(第6図参照)として発熱体9に
印加される。それと同時に、パルス発生器20から出力
されたパルス電圧はカウンタ21に入力して、カウンタ
21をスタートさせる( S T 3 )。以後、制御
部18は熱電対10からの信号が来るまで待機状態とな
る( S T、4 )。
The dead pulse voltage is amplified by the amplifier 23 and applied to the heating element 9 as a pulse 104 of applied voltage vin (see FIG. 6). At the same time, the pulse voltage output from the pulse generator 20 is input to the counter 21 and starts the counter 21 (ST3). Thereafter, the control unit 18 is in a standby state until a signal from the thermocouple 10 arrives (ST, 4).

J”でに第1図および第2図を用いて説すJしたように
、発熱体9の周囲には所定距11tLを隔てて熱電対1
0が配設されており、空気流101の分流103がこの
センサ部を通過する構造となっている。したがって、発
熱体9で加熱された空気が熱電対10に到達するまでの
時間へTを測定すれば、風速Vは、V−L/八へで算出
することができる。
As explained in "J" using FIG. 1 and FIG.
0 is arranged, and the structure is such that a branch flow 103 of the air flow 101 passes through this sensor section. Therefore, if T is measured until the air heated by the heating element 9 reaches the thermocouple 10, the wind speed V can be calculated as V-L/8.

イこで、発熱体9へ印加電圧■inのパルス104が印
加され発熱体9が周囲の空気を加熱してから、時間△T
後に、成る熱電対10がその熱に反応した、とげる。
Now, a pulse 104 of voltage ■in is applied to the heating element 9, and after the heating element 9 heats the surrounding air, a period of time △T
Later, the thermocouple 10 reacts to the heat and twitches.

その熱電対10の出り電圧voutのパルス105は増
幅器14で増幅され、比較器15へ入力す、−− る。比較器15は、外気温を検出1−る熱電変換素子1
6からの出力電圧vthをしきい値として入力し、熱電
対10からの出力電圧youtがしきい値yth以上と
なると信号を制御部18へ出力する。
A pulse 105 of the output voltage vout of the thermocouple 10 is amplified by an amplifier 14 and input to a comparator 15. Comparator 15 detects outside temperature 1 - thermoelectric conversion element 1
The output voltage vth from the thermocouple 10 is input as a threshold value, and when the output voltage yout from the thermocouple 10 exceeds the threshold value yth, a signal is output to the control unit 18.

V out @ V tl+と比較する理由は、外気温
等による雑音と必要な信号とを明確に区別するためであ
る。
The reason for comparing with V out @ V tl+ is to clearly distinguish between noise due to outside temperature, etc., and a necessary signal.

ただし&ji即的には、熱電対10の他端を外気温にし
てJ3けば、しきい値Vt11による比較は必要ない。
However, immediately, if the other end of the thermocouple 10 is set to the outside temperature J3, comparison using the threshold value Vt11 is not necessary.

しかし、実際のところ外気温の徴しい変動を想定した場
合や、構造上の問題等から別個に外気温検出をfiう方
が動作を安定さけるのに好ましいと考えられる。
However, in reality, it is considered preferable to separately detect the outside temperature in order to avoid stabilizing the operation when assuming a significant change in the outside temperature or due to structural problems.

こうして熱雷対10から出力電圧vou−Lのパルス1
05が発生し、比較器15が信号を制御部18へ出力し
た時点で(S T 4のYES) 、制御部18 G、
Lカウンタ21をストップサl!ル(S−1−5)。
In this way, a pulse 1 of output voltage vou-L is generated from the thermal lightning pair 10.
05 occurs and the comparator 15 outputs a signal to the control unit 18 (YES in ST4), the control unit 18G,
Stop L counter 21! (S-1-5).

この時、カウンタ21のカウント値は、第6図にJ5 
Lノる印加電圧Vinのパルス104と出ノJ電圧Vo
utのパルス105との時間差△Tに対応した値を示し
ているはずである。制御部18はこのカラン1−値を演
粋部22へ入力して風速v=1/Δ丁を線用する( S
 T 6 )。まlこ同時に、制御部18は車外検出部
24aから車輌の走行による相対風速を人力し、これを
前記風速Vから差し引いて絶対的な風速をも算出する(
ST(3)。
At this time, the count value of the counter 21 is J5 as shown in FIG.
Pulse 104 of L applied voltage Vin and output J voltage Vo
It should indicate a value corresponding to the time difference ΔT from the pulse 105 of ut. The control unit 18 inputs this Curran 1-value to the calculation unit 22 and calculates the wind speed v=1/Δt (S
T6). At the same time, the control unit 18 manually calculates the relative wind speed due to the vehicle running from the outside detection unit 24a, and subtracts this from the wind speed V to calculate the absolute wind speed (
ST(3).

続いて、制御部18は比較器15からの信号によってど
の位置にある熱雷対10が出力したかを識別して相対的
風向を算出するとともに、方角検出部24. l)から
のデータと合わせて絶対的な風向を針幹りる(ST7)
。これら風向及び風速は、第7図に示されるインパネ表
示部に表示される(ST8)。まためられlこ風向およ
び風速に基づいで、アクチュエータ26を制御し車輌の
進行方向補正を行う(ST9)。これによって横風等に
J、る車輌の不安定性をなくすことができ、特に^迷走
行中の安全性を高めることができる。
Next, the control unit 18 identifies the position of the thermal lightning pair 10 outputting from the signal from the comparator 15 and calculates the relative wind direction, and also calculates the relative wind direction. Determine the absolute wind direction in conjunction with the data from l) (ST7)
. These wind direction and wind speed are displayed on the instrument panel display section shown in FIG. 7 (ST8). Based on the determined wind direction and wind speed, the actuator 26 is controlled to correct the traveling direction of the vehicle (ST9). This can eliminate the instability of the vehicle due to crosswinds, etc., and can improve safety especially when driving in a erratic manner.

第8図1よ第2実施例のセンサ部の構成図である。FIG. 8 is a configuration diagram of the sensor section of the second embodiment from FIG. 1.

同図は、位置が90°づつずれた4つの流入口27〜3
0の各々から、ざらに直角方向に2つの流路を説【ノ、
該4つの流入口27へ・30を4つの流路31〜34で
連絡Jる場合である。
The figure shows four inlets 27 to 3 whose positions are shifted by 90 degrees.
From each of 0, two flow paths are roughly perpendicular to the
This is a case where the four inlets 27 and 30 are connected through four channels 31 to 34.

流入口27〜330には、それぞれ発熱体35〜38が
配設され、流路31〜34の各中央に(よ熱電変換素子
(たとえば熱雷対)39〜42が配設されている。
Heat generating elements 35 to 38 are disposed at the inlets 27 to 330, respectively, and thermoelectric conversion elements (for example, thermoelectric pairs) 39 to 42 are disposed at the centers of the flow paths 31 to 34, respectively.

このような(14成では、風(矢印V)が(−45°≦
θ≦+45°の範囲にある時、流路31と34どに流れ
込む空気1■の割合によって流路内Cの流速が異なり、
発熱体35ににって加熱された空気が熱電変換素子39
および42に到達りる時間が異イ「る。したがって第1
実施例と同様の検出手段によって、両到達時間と該両到
達時間の差をめることで1虱向と風速を検出することが
できる。
In such a (14 formation), the wind (arrow V) is (-45°≦
When θ≦+45°, the flow velocity in the flow path C varies depending on the proportion of air 1 that flows into the flow paths 31 and 34.
The air heated by the heating element 35 is transferred to the thermoelectric conversion element 39
and 42 are different. Therefore, the first
By using the same detection means as in the embodiment, the direction and wind speed can be detected by calculating the difference between the two arrival times and the two arrival times.

以下同様にして全方位の風向および風速がめられる。Thereafter, wind directions and wind speeds in all directions can be determined in the same manner.

第9図は第3実施例のレンサ部の構成図である。FIG. 9 is a configuration diagram of the sensor section of the third embodiment.

木実jM Ir1Iは、流路43〜46を十字路状に形
成し、各流路の流入口側に発熱体47〜50を配置する
In the nut jM Ir1I, channels 43 to 46 are formed in the shape of a cross, and heating elements 47 to 50 are arranged on the inlet side of each channel.

さらに各発熱体から所定距離下流に熱雷変換素子51 
=−54を配置する場合ぐある。
Furthermore, a thermal lightning conversion element 51 is provided a predetermined distance downstream from each heating element.
There are cases where =-54 is placed.

本実施例では、風(矢印V)の向きが0°≦θ≦90°
の範囲の時、流路43および44に流れ込む空気量の違
いによっで流路内の流速が異なり、加熱された空気が熱
電変換素子51および52に到)ヱづる時間が異なる。
In this example, the direction of the wind (arrow V) is 0°≦θ≦90°
When the amount of air flowing into the flow paths 43 and 44 is different, the flow velocity in the flow paths differs, and the time it takes for the heated air to reach the thermoelectric conversion elements 51 and 52 differs.

これらの到達時間およびその時間差によって風向と風速
を算出することができる1、以下同様にして全方位の風
向おJ、び風速がめられる。
The wind direction and wind speed can be calculated from these arrival times and the time difference 1, and the wind direction and wind speed in all directions can be determined in the same manner.

第2 J3よび第3実施例では、構造がより簡単となり
それだり耐久性が向上Jるとどしに、発熱体と熱雷変換
素子の総数が少なくとも全方位の風速d3よび風向をめ
ることができる。
In the second and third embodiments, the structure is simpler and the durability is improved, and the total number of heating elements and thermal lightning conversion elements can at least accommodate the wind speed d3 and wind direction in all directions. I can do it.

なd3、第1実施例において、熱雷対1oを16個用い
たが、これに限定されるものではなく、加熱されIこ空
気を確実に検知できるように距離りおよび個数を決定す
ればよい。
d3. In the first embodiment, 16 thermal lightning pairs were used, but the number is not limited to this, and the distance and number may be determined so that heated air can be reliably detected. .

[発明の効果J 以上要するに本発明は、空気流路の上流において加熱さ
れた空気が所定距離進む時間を測定することで、風向お
よび風速を検出覆ることを特徴とする。
[Effect of the Invention J] In short, the present invention is characterized in that the wind direction and wind speed are detected by measuring the time taken for heated air to travel a predetermined distance upstream of the air flow path.

前記のごとく本発明の装置は、時間測定によって風速J
5よび風向を検出するために、外気温の変化切の外乱に
影響されずに、刻々と変動する風向、風速にも精瓜良く
即応できる。
As mentioned above, the device of the present invention measures the wind speed J by time measurement.
5 and wind direction, it is not affected by external disturbances such as changes in outside temperature, and can quickly and accurately respond to ever-changing wind direction and wind speed.

またjり動要素が皆無であり構造が簡単であるために、
耐久性に優れ、コンバク1〜でを牢な装置を作製(き、
自動車等に搭載づるに好都合である。
Also, since there are no sliding elements and the structure is simple,
We have created a device that is highly durable and durable.
It is convenient for mounting on automobiles, etc.

さらに、風向風速の検出信号が電気信号どして1r、1
られるために、以後の1を号処理が容易であり、たどえ
ぽ自動車の進行方向補正のためのステアリング制御等に
容易に使用できる。
Furthermore, the wind direction and wind speed detection signals are electrical signals 1r, 1
Therefore, it is easy to carry out the subsequent processing of the number 1, and it can be easily used for steering control, etc. for correcting the traveling direction of the Trace Point automobile.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による風向風速検出装置の一実施例にお
1シる空気流路部の一部破砕平面図、第2図は十記空気
流路部の断面図、第3図は上記空気流路部にお【プる空
気の流れを示J−概略的断面図、第4図は本実施例のブ
ロック回路図、第5図は本実施例の動作を承りフローヂ
ャート、第6図は本実施例における発熱体印加電圧と熱
雷対出力電圧の波形図、第7図tまインパネ表示部の構
成図、第8図(よ本発明の第2実施例における空気流路
部の(jIX成図、第9図は第3実施例におりる空気流
路部の構成図である。 9、:35〜38、/17〜50・・・発熱体10.3
9〜42.51〜54・・・熱雷変換素子20・・・パ
ルス発生器 21・・・カウンタ 22・・・演算部 qI訂出出願人 口木電装株式会社 代理人 弁理士 大川 宏 同 弁理士 藤谷 修 同 弁理士 丸山明夫 第1図 、I、i’、−,3図 循54図 第5図 ぎ56図 T□ ζ:: 71=j+
Fig. 1 is a partially fragmented plan view of an air passage section of an embodiment of the wind direction/wind speed detection device according to the present invention, Fig. 2 is a sectional view of the air passage section, and Fig. 3 is a sectional view of the above-mentioned air passage section. Figure 4 is a block circuit diagram of this embodiment, Figure 5 is a flowchart showing the operation of this embodiment, and Figure 6 is a schematic cross-sectional view showing the flow of air flowing into the air flow path. Waveform diagrams of the heating element applied voltage and thermal lightning output voltage in this embodiment, Figure 7 is a configuration diagram of the instrument panel display section, and Figure 8 is a diagram of the air flow path section in the second embodiment of the invention. Figure 9 is a configuration diagram of the air flow path section in the third embodiment. 9.: 35-38, /17-50...Heating element 10.3
9-42.51-54...Thermal lightning conversion element 20...Pulse generator 21...Counter 22...Arithmetic unit qI revision applicant Kuchiki Denso Co., Ltd. agent Patent attorney Hirodo Okawa Patent attorney Shudo Fujitani Patent Attorney Akio Maruyama Figure 1, I, i', -, Figure 3, Circular Figure 54, Figure 5, Figure 56 T□ ζ:: 71=j+

Claims (2)

【特許請求の範囲】[Claims] (1)パルス電圧供給部と、 空気流路内に配設され前記パルス電圧によって発熱Jる
発熱体と、 m配流路内であって前記発熱体から所定距離下流に配設
された熱電変換素子と、 前記パルス電圧の印加時刻と、前記熱電変換素子から信
号が発生ずる時刻との時間差を検出する時間差検出部と
、 前記熱電変換素子から発生する信号および前記時間差と
から、空気流の速度および方向を鋒出する演算部と。 からなることを特徴とする風向風速検出装置。
(1) A pulse voltage supply section, a heating element disposed in an air flow path that generates heat due to the pulse voltage, and a thermoelectric conversion element disposed within the flow path a predetermined distance downstream from the heating element. a time difference detection unit that detects a time difference between the time when the pulse voltage is applied and the time when a signal is generated from the thermoelectric conversion element; and a time difference detection unit that detects the speed of the air flow and the time difference from the signal generated from the thermoelectric conversion element and the time difference. A calculation unit that determines the direction. A wind direction/wind speed detection device comprising:
(2)上記熱電変換素子から発生ずる信号は、周囲温度
によって定められたしきい値以上のレベルである特許請
求の範囲第1項記載の風向風速検出装置。
(2) The wind direction/wind speed detection device according to claim 1, wherein the signal generated from the thermoelectric conversion element is at a level equal to or higher than a threshold value determined by the ambient temperature.
JP2240884A 1984-02-09 1984-02-09 Apparatus for measuring wind direction and velocity Pending JPS60166868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2240884A JPS60166868A (en) 1984-02-09 1984-02-09 Apparatus for measuring wind direction and velocity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2240884A JPS60166868A (en) 1984-02-09 1984-02-09 Apparatus for measuring wind direction and velocity

Publications (1)

Publication Number Publication Date
JPS60166868A true JPS60166868A (en) 1985-08-30

Family

ID=12081835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2240884A Pending JPS60166868A (en) 1984-02-09 1984-02-09 Apparatus for measuring wind direction and velocity

Country Status (1)

Country Link
JP (1) JPS60166868A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296862A (en) * 1985-10-23 1987-05-06 Rion Co Ltd Fluid detector
JPH01153965A (en) * 1987-12-11 1989-06-16 Jdc Corp Method and instrument for measuring flow direction and flow velocity of underground water
WO2009013095A2 (en) * 2007-07-24 2009-01-29 Robert Bosch Gmbh Device for sensing the wind conditions on a vehicle
WO2013133048A1 (en) * 2012-03-07 2013-09-12 オムロン株式会社 Fluid measurement apparatus
WO2015186476A1 (en) * 2014-06-03 2015-12-10 株式会社デンソー Wind direction meter, wind direction and flow meter, and movement direction meter
CN107907707A (en) * 2017-12-28 2018-04-13 东南大学 A kind of wind speed wind direction sensor and detection method based on double-deck thermopile structure
CN108169509A (en) * 2017-12-20 2018-06-15 东南大学 Wind speed wind direction sensor based on octagon thermopile structure and preparation method thereof
CN108226568A (en) * 2017-12-20 2018-06-29 东南大学 Wind speed wind direction sensor based on octagon thermistor structure and preparation method thereof
CN112088312A (en) * 2018-05-03 2020-12-15 普美康过程测量控制有限公司 Wind turbine
CN113466488A (en) * 2021-07-19 2021-10-01 东南大学 Two-dimensional temperature balance mode MEMS wind speed and direction sensor and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54109482A (en) * 1978-02-15 1979-08-28 Osaka Gas Co Ltd Flow meter
JPS58154667A (en) * 1982-03-10 1983-09-14 Nippon Soken Inc Anemoscope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54109482A (en) * 1978-02-15 1979-08-28 Osaka Gas Co Ltd Flow meter
JPS58154667A (en) * 1982-03-10 1983-09-14 Nippon Soken Inc Anemoscope

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296862A (en) * 1985-10-23 1987-05-06 Rion Co Ltd Fluid detector
JPH01153965A (en) * 1987-12-11 1989-06-16 Jdc Corp Method and instrument for measuring flow direction and flow velocity of underground water
WO2009013095A2 (en) * 2007-07-24 2009-01-29 Robert Bosch Gmbh Device for sensing the wind conditions on a vehicle
WO2009013095A3 (en) * 2007-07-24 2009-04-02 Bosch Gmbh Robert Device for sensing the wind conditions on a vehicle
WO2013133048A1 (en) * 2012-03-07 2013-09-12 オムロン株式会社 Fluid measurement apparatus
JP2013185937A (en) * 2012-03-07 2013-09-19 Omron Corp Fluid measurement apparatus
TWI576587B (en) * 2014-06-03 2017-04-01 Denso Corp Wind direction meter, wind direction wind speed meter and moving direction meter
JP2016011948A (en) * 2014-06-03 2016-01-21 株式会社デンソー Wind vane, wind vane-airflow meter, and moving direction measuring instrument
WO2015186476A1 (en) * 2014-06-03 2015-12-10 株式会社デンソー Wind direction meter, wind direction and flow meter, and movement direction meter
CN108169509A (en) * 2017-12-20 2018-06-15 东南大学 Wind speed wind direction sensor based on octagon thermopile structure and preparation method thereof
CN108226568A (en) * 2017-12-20 2018-06-29 东南大学 Wind speed wind direction sensor based on octagon thermistor structure and preparation method thereof
CN107907707A (en) * 2017-12-28 2018-04-13 东南大学 A kind of wind speed wind direction sensor and detection method based on double-deck thermopile structure
CN112088312A (en) * 2018-05-03 2020-12-15 普美康过程测量控制有限公司 Wind turbine
CN112088312B (en) * 2018-05-03 2022-09-16 普美康过程测量控制有限公司 Wind turbine
CN113466488A (en) * 2021-07-19 2021-10-01 东南大学 Two-dimensional temperature balance mode MEMS wind speed and direction sensor and preparation method thereof
CN113466488B (en) * 2021-07-19 2022-05-27 东南大学 Two-dimensional temperature balance mode MEMS wind speed and direction sensor and preparation method thereof

Similar Documents

Publication Publication Date Title
US4433576A (en) Mass airflow sensor
US6421617B2 (en) Interface including fluid flow measurement for use in determining an intention of, or an effect produced by, an animate object
US4637253A (en) Semiconductor flow detector for detecting the flow rate and flowing direction of fluid
JPS60166868A (en) Apparatus for measuring wind direction and velocity
US20090025473A1 (en) Flow Rate Detection Method and Flow Rate Detection Apparatus Using a Heat Signal
JP5153996B2 (en) Thermal flow meter
US7137298B2 (en) Thermal air flowmeter
JP4157034B2 (en) Thermal flow meter
JPS6135311A (en) Hot wire type flow velocity detecting device
JPS6150028A (en) Solid-state type temperature measuring device for fluid and device utilizing said temperature measuring device
JP3193872B2 (en) Thermal air flow meter
JP3920848B2 (en) Heating resistance type flow measuring device
JP3527657B2 (en) Flow sensor failure determination apparatus and method
JP3267513B2 (en) Flow velocity detector
JP3739084B2 (en) Fire heat detector
JPH102773A (en) Thermal air flowmeter
JP2939122B2 (en) Mounting structure of hot wire wind sensor
RU2105267C1 (en) Thermal anemometric transducer of flow rate of medium
EP0088827B1 (en) Flow velocity measuring apparatus
EP0161906A2 (en) Improvements relating to solid-state anemometers and temperature gauges
JPH06265565A (en) Current speed detector for gas
JP3258484B2 (en) Gas rate sensor
JPS5849811B2 (en) heat detection alarm device
JPH05196485A (en) Air flow rate measuring device
JPH05126609A (en) Air flow measuring device