JPS6016598B2 - nuclear fuel assembly - Google Patents

nuclear fuel assembly

Info

Publication number
JPS6016598B2
JPS6016598B2 JP53019090A JP1909078A JPS6016598B2 JP S6016598 B2 JPS6016598 B2 JP S6016598B2 JP 53019090 A JP53019090 A JP 53019090A JP 1909078 A JP1909078 A JP 1909078A JP S6016598 B2 JPS6016598 B2 JP S6016598B2
Authority
JP
Japan
Prior art keywords
nuclear fuel
fuel assembly
cladding tube
spacer
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53019090A
Other languages
Japanese (ja)
Other versions
JPS54112478A (en
Inventor
博之 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP53019090A priority Critical patent/JPS6016598B2/en
Publication of JPS54112478A publication Critical patent/JPS54112478A/en
Publication of JPS6016598B2 publication Critical patent/JPS6016598B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明は核燃料集合体に係り、特に熱的余裕の大きい改
良された核燃料集合体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nuclear fuel assembly, and more particularly to an improved nuclear fuel assembly with a large thermal margin.

核燃料集合体は、多数の円柱状の濃縮ウランベレットを
装填した被覆管の両端部を端栓で水密に密封して、前記
濃縮ウランベレットおよびウランが燃焼して生成された
核分裂生成物が直接原子炉冷却材と接触しないように構
成された複数本の核燃料棒をスベーサーで格子状(軽水
炉においては通常正方格子)に束ねたものである。
Nuclear fuel assemblies are constructed by watertightly sealing both ends of a cladding tube loaded with a large number of cylindrical enriched uranium pellets with end plugs, so that the enriched uranium pellets and fission products produced by the combustion of uranium are directly atomically A nuclear fuel rod is made up of multiple nuclear fuel rods that are configured so that they do not come into contact with the reactor coolant, and are bundled together in a lattice shape (usually a square lattice in light water reactors) using spacers.

ところで、核燃料棒は、通常運転中および単一過度変化
においても濃縮ウランベレットおよび核分裂生成物を被
覆管の内部に完全に保持するため、被覆管の熱的損失限
界から一定の余裕を保って運転するように考慮されてい
る。
By the way, nuclear fuel rods must be operated with a certain margin from the thermal loss limit of the cladding in order to completely retain the enriched uranium pellets and fission products inside the cladding during normal operation and during single transient changes. is being considered.

核燃料集合体の熱的損失限界は第1図に示すバーンアウ
ト点Aと呼ばれ、沸騰曲線Lで核沸騰領域日,から遷移
沸騰領域比に移行する時の熱流東を限界熱流東と定義す
る。
The thermal loss limit of a nuclear fuel assembly is called the burnout point A shown in Figure 1, and the heat flow east when the boiling curve L transitions from the nucleate boiling region to the transition boiling region ratio is defined as the limit heat flow east. .

通常運転中の沸騰モードは核沸騰領域日,であり、この
領域は安定した状態であり、被覆管表面温度は冷却材の
飽和温度付近で一定に保たれる。
The boiling mode during normal operation is in the nucleate boiling region, which is a stable state, and the cladding tube surface temperature is kept constant near the saturation temperature of the coolant.

一方、バーンアウト点Aを越えると被覆管表面温度と冷
却材飽和温度との差が次第に大きくなり不安定な沸騰状
態になる。このバーンアウト点Aは被覆管の破損に直接
結びつく限界点ではない。しかし、核燃料榛としては通
常運転および単一過渡変化においても許容されない沸騰
領域である。各国において、このバーンアウト点Aを求
めるため数多〈の実験が行われ、圧力、冷却材流量、冷
却材入口温度、核燃料集合体の形状、軸方向の出力分布
、各核燃料棒の出力分布等のパラメータに依存すること
が判明している。さらに、実験からバーンアウトの起る
位置はスベーサーの下側近傍であることが判明している
。この原因は、核燃料棒を支持するスベーサーが流路抵
抗となり、スベーサーの下側に流れの停滞が発生して被
覆管からの除熱防果が悪化するからである。従来の核燃
料設計において、運転中の核燃料集合体に一定以上の熱
的余裕を確保するため、バーンアウト出力向上の方策と
して、出力分布の平坦化に多くの努力がなされてきた。
On the other hand, when the burnout point A is exceeded, the difference between the cladding tube surface temperature and the coolant saturation temperature gradually increases, resulting in an unstable boiling state. This burnout point A is not a critical point that directly leads to breakage of the cladding tube. However, this is a boiling region that is not permissible for nuclear fuel even during normal operation and single transient changes. In order to determine this burnout point A, numerous experiments have been conducted in various countries, and various factors such as pressure, coolant flow rate, coolant inlet temperature, shape of nuclear fuel assembly, axial power distribution, power distribution of each nuclear fuel rod, etc. have been conducted in various countries. It has been found that it depends on the parameters of Furthermore, experiments have shown that the location where burnout occurs is near the bottom of the spacer. The reason for this is that the spacer that supports the nuclear fuel rods becomes a flow path resistance, and flow stagnation occurs below the spacer, deteriorating the effectiveness of heat removal from the cladding tube. In conventional nuclear fuel design, many efforts have been made to flatten the power distribution as a measure to improve burnout output in order to ensure a certain level of thermal margin for nuclear fuel assemblies during operation.

たとえば、核燃料棒のび35の濃縮度に段階をつけるこ
とによる原子炉半径方向出力分布の平坦化、および可燃
毒物混入による軸万向出力分布の平坦化が代表的例であ
る。従来の核燃料集合体の場合、スベーサー下側近傍の
ように局所的に熱的条件の悪い部分によって、運転上の
制約を受けるために、核燃料集合体全体としての出力が
低下するということになる。本発明は、上述の事情を考
慮してなされたもので、スベーサーの下側近傍に低出力
部分を持つ核燃料棒を1本または複数本設けることによ
って熱的余裕の大きな核燃料集合体を得ることにある。
For example, typical examples include flattening the power distribution in the radial direction of the nuclear reactor by grading the enrichment of the nuclear fuel rods 35, and flattening the power distribution in all axial directions by mixing burnable poisons. In the case of conventional nuclear fuel assemblies, the output of the nuclear fuel assembly as a whole is reduced due to operating constraints due to locally poor thermal conditions, such as the vicinity of the lower side of the spacer. The present invention has been made in consideration of the above-mentioned circumstances, and aims to obtain a nuclear fuel assembly with a large thermal margin by providing one or more nuclear fuel rods having a low-power portion near the lower side of the spacer. be.

以下図面を参照して本発明の一実施例を説明する。第2
図は本発明による核燃料集合体10である。核燃料集合
体10は複数本の燃料榛1をスベーサー2で格子状に束
ねて構成したものである。核燃料棒1は被覆管に多数の
円筒状の濃縮ウランベレツトを装填し、その被覆管の両
端を端栓で水密に密封して核分裂生成物が直接原子炉冷
却材と接触しないように構成されている。第3図は、本
発明の核燃料集合体10の一実施例を示す要部断面図で
ある。第3図において、前記スベーサ−2の下側近傍(
スベーサー濃縮ウランベレット3個分)の被覆管7の内
または外面には中性子吸収体8が設けられている。以上
の構成によって、この核燃料集合体ではスベーサー下側
近傍の中性子吸収体8が設けられている部分が低出力と
なる。核燃料集合体の平均出力分布を従来と比較すると
、第4図に示すように、スべrサー位置S付近で低出力
部Bが現われ、その結果バーンアウト点からの熱的余裕
は第5図に示すようにスベーサー位置S付近で従来より
大きくなる。第4図、第5図において、破線は従来の核
燃料集合体、実線は本発明の核燃料集合体を示す。第5
図に示すように、本発明の核燃料集合体は熱的余裕が増
大することにより、過渡変化時に核燃料棒が遷移沸騰を
起す確率は従来の核燃料集合体に比較して10%以下と
なり、また、原子炉運転時における熱的制限値を容易に
満足し得る。上述のように、本発明の核燃料集合体は、
熱的余裕が大きいから、本発明の核燃料集合体を用いた
原子炉では次の効果がある。
An embodiment of the present invention will be described below with reference to the drawings. Second
The figure shows a nuclear fuel assembly 10 according to the invention. The nuclear fuel assembly 10 is constructed by bundling a plurality of fuel rods 1 into a lattice shape using spacers 2. Nuclear fuel rod 1 has a cladding tube loaded with a large number of cylindrical enriched uranium pellets, and both ends of the cladding tube are watertightly sealed with end plugs to prevent fission products from coming into direct contact with the reactor coolant. . FIG. 3 is a sectional view of a main part showing an embodiment of the nuclear fuel assembly 10 of the present invention. In FIG. 3, the vicinity of the lower side of the spacer 2 (
A neutron absorber 8 is provided on the inner or outer surface of the cladding tube 7 of three (3) enriched uranium pellets. With the above configuration, in this nuclear fuel assembly, the portion where the neutron absorber 8 is provided near the lower side of the spacer has a low output. Comparing the average power distribution of a nuclear fuel assembly with the conventional one, as shown in Figure 4, a low power part B appears near the smoother position S, and as a result, the thermal margin from the burnout point is as shown in Figure 5. As shown in FIG. 2, the width becomes larger near the baser position S than before. In FIGS. 4 and 5, the broken line shows the conventional nuclear fuel assembly, and the solid line shows the nuclear fuel assembly of the present invention. Fifth
As shown in the figure, the nuclear fuel assembly of the present invention has an increased thermal margin, so that the probability that a nuclear fuel rod will undergo transition boiling during a transient change is less than 10% compared to the conventional nuclear fuel assembly. Thermal limit values during reactor operation can be easily met. As mentioned above, the nuclear fuel assembly of the present invention includes:
Since the thermal margin is large, a nuclear reactor using the nuclear fuel assembly of the present invention has the following effects.

すなわち熱的制限値を容易に満し得ることにより、原子
炉稼動率が年間数%向上する。さらに、出力密度が高く
効率よい原子炉が実現でき、従来の沸騰水型原子炉の出
力密度約50KW′そから約55KW/その高出力密度
の原子炉が可能になる。以上のように、本発明によれば
、熱除去効果が悪いスベーサー下側近傍の出力降下によ
り熱的余裕が損ねれやすし、領域が減少し熱的余裕が大
きくなる。
That is, by being able to easily meet the thermal limit value, the operating rate of the reactor increases by several percent per year. Furthermore, a highly efficient nuclear reactor with a high power density can be realized, and a reactor with a power density as high as about 55 KW from the power density of a conventional boiling water reactor of about 50 KW' can be realized. As described above, according to the present invention, the thermal margin is likely to be impaired due to the output drop near the lower side of the spacer where the heat removal effect is poor, and the area is reduced and the thermal margin is increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は沸騰曲線を示す説明図、第2図は本発明の核燃
料集合体を示す斜視図、第3図は本発明の一実施例を示
す要部断面図、第4図は核燃料集合体の麹方向出力分布
を示す説明図、第5図は核燃料集合体の鞠方向位置にお
ける熱的余裕を示す説明図である。 1・・・・・・燃料棒、2・・・・・・スベーサー、7
…・・・被覆管、8・・・・・・中性子吸収体。 第1図 第5図 第2図 第3図 第4図
Fig. 1 is an explanatory diagram showing a boiling curve, Fig. 2 is a perspective view showing a nuclear fuel assembly of the present invention, Fig. 3 is a sectional view of essential parts showing an embodiment of the invention, and Fig. 4 is a nuclear fuel assembly. FIG. 5 is an explanatory diagram showing the thermal margin at the position of the nuclear fuel assembly in the mar direction. 1... fuel rod, 2... baser, 7
......Claying tube, 8...Neutron absorber. Figure 1 Figure 5 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 多数の濃縮ウランペレツトを装填した被覆管の両端
部を端栓で密封して成る複数本の核燃料棒をスペーサー
で格子状に配列支持した核燃料集合体において、前記ス
ペーサー下端から濃縮ウランペレツト3個分下部までの
被覆管の内面又は外面の少なくとも一面に中性子吸収体
が設けられていることを特徴とする核燃料集合体。
1. In a nuclear fuel assembly in which a plurality of nuclear fuel rods are arranged and supported in a lattice shape with spacers, each of which is formed by sealing both ends of a cladding tube loaded with a large number of enriched uranium pellets with end plugs, a portion of three enriched uranium pellets below the lower end of the spacer is used. A nuclear fuel assembly characterized in that a neutron absorber is provided on at least one of the inner or outer surfaces of the cladding tube.
JP53019090A 1978-02-23 1978-02-23 nuclear fuel assembly Expired JPS6016598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53019090A JPS6016598B2 (en) 1978-02-23 1978-02-23 nuclear fuel assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53019090A JPS6016598B2 (en) 1978-02-23 1978-02-23 nuclear fuel assembly

Publications (2)

Publication Number Publication Date
JPS54112478A JPS54112478A (en) 1979-09-03
JPS6016598B2 true JPS6016598B2 (en) 1985-04-26

Family

ID=11989751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53019090A Expired JPS6016598B2 (en) 1978-02-23 1978-02-23 nuclear fuel assembly

Country Status (1)

Country Link
JP (1) JPS6016598B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718939B2 (en) * 1986-04-15 1995-03-06 株式会社東芝 Reactor fuel assembly

Also Published As

Publication number Publication date
JPS54112478A (en) 1979-09-03

Similar Documents

Publication Publication Date Title
US3238108A (en) Bundle-type nuclear fuel element having novel arrangement of fissionable and fertile material
US5787140A (en) Handle assembly and channel for a nuclear reactor fuel bundle assembly
JP2510565B2 (en) Reactor fuel assembly
JPS6016598B2 (en) nuclear fuel assembly
JPH04303799A (en) Fuel assembly
JP3402142B2 (en) Fuel assembly
JP4161486B2 (en) Initial loading core of boiling water reactor
JPH10170674A (en) Fuel assembly
JP2798926B2 (en) Fuel assembly for boiling water reactor
JPH1082879A (en) Nuclear reactor core
JP2510559B2 (en) Reactor core
JP3075749B2 (en) Boiling water reactor
JPH0816711B2 (en) Fuel assembly
JPH0631744B2 (en) Boiling water reactor
JP3212744B2 (en) Fuel assembly
JPS5816157B2 (en) Nenriyousyuugoutai
JPS5913981A (en) Fuel assembly
JP3115392B2 (en) Fuel assembly for boiling water reactor
JP3572048B2 (en) Fuel assemblies and reactor cores
JPS62259088A (en) Fuel aggregate
JPS5814080A (en) Fuel assembly
JPS6247115Y2 (en)
JP3063247B2 (en) Fuel assembly
JPH05107377A (en) Fuel assembly
JP3199814B2 (en) Fuel assembly