JPS6247115Y2 - - Google Patents

Info

Publication number
JPS6247115Y2
JPS6247115Y2 JP1986125314U JP12531486U JPS6247115Y2 JP S6247115 Y2 JPS6247115 Y2 JP S6247115Y2 JP 1986125314 U JP1986125314 U JP 1986125314U JP 12531486 U JP12531486 U JP 12531486U JP S6247115 Y2 JPS6247115 Y2 JP S6247115Y2
Authority
JP
Japan
Prior art keywords
fuel
hollow rod
rod
core
fuel assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986125314U
Other languages
Japanese (ja)
Other versions
JPS6279196U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986125314U priority Critical patent/JPS6247115Y2/ja
Publication of JPS6279196U publication Critical patent/JPS6279196U/ja
Application granted granted Critical
Publication of JPS6247115Y2 publication Critical patent/JPS6247115Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は沸騰水型原子炉用の燃料集合体に関
し、特に炉心軸方向の出力分布の平坦化と同時に
反応のボイド係数の絶対値を減少傾向にするため
の改良されたウオーターロツドを備えた燃料集合
体に関する。
[Detailed explanation of the invention] [Industrial application field] This invention relates to a fuel assembly for boiling water reactors, and is particularly aimed at flattening the power distribution in the axial direction of the reactor core and at the same time reducing the absolute value of the reaction void coefficient. FUEL ASSEMBLY WITH IMPROVED WATERROOD FOR TENDING.

〔従来の技術) 周知のように一般的な原子炉においては、炉心
温度の上昇によつて燃料集合体の核燃料棒周囲の
減速材の密度低下や気泡の発生、即ちボイドスペ
ースの生成ないし増加が生じた場合、中性子減速
度合が低下して熱中性子レベルが低くなるように
ボイド係数および温度係数を負にした減速不足形
の炉心設計が施され、これによつて炉心温度上昇
に対する炉の反応度が低下する固有の安全性が与
えられている。
[Prior art] As is well known, in a typical nuclear reactor, an increase in the core temperature causes a decrease in the density of the moderator around the nuclear fuel rods of the fuel assembly and the generation of bubbles, that is, the creation or increase of void spaces. If this occurs, an under-moderated core design with negative void coefficients and negative temperature coefficients is implemented to reduce the neutron deceleration rate and lower the thermal neutron level, thereby reducing the reactor's reactivity to core temperature increases. given the inherent safety that is reduced.

ところで沸騰水型原子炉においては燃料集合体
の下部から流入して上部へ流れ出る冷却材が上方
へ行くほどボイドとなり、第1図に曲線Aで示す
ように運転中のボイド率は炉心高さの40%程度の
位置で0.5を越え、炉頂近くでは0.75にも達す
る。このため従来より沸騰水型原子炉では燃料集
合体の核燃料棒のうちの1ないし2本分を内部に
中性子減速材が流通される中空ロツド、すなわち
ウオーターロツドに替え、運転中に周囲がボイド
を含む二相流となつてもウオーターロツド内は未
沸騰の冷却材で満ちているようにし、これによつ
てボイドによる中性子減速作用の低下を補ぎなつ
て炉の反応度を稼ぐことが行われている。しかし
ながら従来のウオーターロツドは燃料集合体の上
下タイプレートやスペーサなどの関連構造上の制
限もあつて核燃料棒と置換され得る同等寸法形状
のものであるため、その内部に炉の運転中におい
て保有できる水の体積が充分でなく、その結果、
様々な問題点を残している。すなわち炉の運転中
の炉心内圧中の増加時など、炉心内のボイドが圧
縮されるような過渡状態においては、このボイド
率の変化を補償すべきウオーターロツド内の冷却
材体積が小さいため減速材対燃料体積比H/Uの
増加を抑制する効果が少なく、従つてボイド係数
絶対値の低下には効果が期待できず、炉の反応度
の急激な増加を防ぐことができない。またウオー
ターロツドによる中性子減速作用の改善効果は本
来あまり大きくないが、ウオーターロツド内の冷
却材体積の制限はこの改善効果をますます小さな
ものとしており、そのため特にボイドが大量に発
生している炉心上半部での出力低下の補償作用が
大きくなく、この結果炉心軸方向の出力分布は第
1図に曲線Bで示す如く下方部分にピークを生
じ、その平坦化は望むべくもなかつた。
By the way, in a boiling water reactor, the coolant flowing from the lower part of the fuel assembly and flowing out to the upper part becomes void as it goes upwards, and as shown by curve A in Figure 1, the void ratio during operation is proportional to the height of the reactor core. It exceeds 0.5 at about 40% position and reaches 0.75 near the top of the furnace. For this reason, in conventional boiling water reactors, one or two of the nuclear fuel rods in the fuel assembly are replaced with hollow rods, in other words, water rods, through which neutron moderators flow, and the surrounding area is voided during operation. Even if the flow becomes a two-phase flow including It is being done. However, conventional water rods have the same size and shape as nuclear fuel rods and can be replaced with nuclear fuel rods due to structural limitations such as the upper and lower tie plates of fuel assemblies and spacers. The volume of water produced is not sufficient, and as a result,
Various problems remain. In other words, in transient conditions where the voids in the core are compressed, such as when the core internal pressure increases during reactor operation, deceleration occurs because the volume of coolant in the water rods that must compensate for this change in void ratio is small. It is less effective in suppressing an increase in the material-to-fuel volume ratio H/U, and therefore cannot be expected to be effective in reducing the absolute value of the void coefficient, making it impossible to prevent a rapid increase in the reactivity of the furnace. Furthermore, although the improvement effect of the water rod on the neutron moderation effect is originally not very large, the limitation of the coolant volume within the water rod makes this improvement effect smaller and smaller, and as a result, a particularly large number of voids are generated. The compensating effect for the power drop in the upper half of the core was not large enough, and as a result, the power distribution in the axial direction of the core had a peak in the lower part, as shown by curve B in FIG. 1, and its flattening was undesirable.

上述のウオーターロツドの効果を上げるため、
従来ではひとつの燃料集合体内にウオーターロツ
ドを二本用いることも行なわれているが、その分
だけ核燃料棒が減るため炉心の全出力が低下する
か、或いは全出力を同じに維持するなら残りの核
燃料棒一本当りの出力を増す必要があるかのいず
れかである。
In order to increase the effect of the water rod mentioned above,
Conventionally, two water rods have been used in one fuel assembly, but this reduces the number of nuclear fuel rods and reduces the total power of the reactor core, or if the total power is kept the same, the remaining water rods are reduced. Either it is necessary to increase the output per nuclear fuel rod.

また軸方向出力分布の平坦化のために燃料棒の
上半部の燃料濃縮度を下半部のそれより高くして
ボイド率の高い炉心上半部での反応度低下を補償
したり、逆に出力が相対的に高くなる炉心下半部
において燃料中にガドリニアなどの中性子吸収物
質を添加することにより下半部の反応度を吸収す
るなども行なわれているが、これらの方策は軸方
向出力分布の平坦化にはそれなりの効果があるも
のの、一本の燃料棒に装填する燃料ペレツトの濃
縮度やガドリニア添加濃物が異なるため誤装填の
恐れが常に伴ない、また装填後のペレツトの種類
の非破壊検査では濃縮度やガドリニア添加濃度の
差が小さい場合など識別が困難であり、燃料ペレ
ツトおよび燃料棒の製造保管の管理面で多くの問
題を抱えたままである。
In addition, in order to flatten the axial power distribution, the fuel enrichment in the upper half of the fuel rod is made higher than that in the lower half to compensate for the decrease in reactivity in the upper half of the core, which has a high void ratio, and vice versa. In the lower half of the reactor core, where the output is relatively high, neutron-absorbing substances such as gadolinia are added to the fuel to absorb the reactivity in the lower half. Although flattening the power distribution has some effect, the concentration of fuel pellets loaded into a single fuel rod and the concentration of gadolinia added are different, so there is always a risk of incorrect loading, and the pellets after loading are Different types of fuel pellets are difficult to identify through non-destructive testing when there is a small difference in enrichment or gadolinia additive concentration, and many problems remain in the management of manufacturing and storage of fuel pellets and fuel rods.

さらに別の方策として制御棒を出力の高い下半
部に一部挿入して出力を下げる方式もあるが、こ
の方式では制御棒を抜いたときに制御棒の先端が
位置していた部分の出力増加がプルトニウムの蓄
積の進んでいることから大きくなり過ぎ、燃料に
損傷を与え易いので、制御棒の操作などに対して
速度、方法など、制約を大きくしなければなら
ず、運転上の裕度が小さくなる欠点がある。
Another method is to lower the output by partially inserting the control rod into the lower half, where the output is higher, but in this method, the output is lower than where the tip of the control rod was located when the control rod was removed. Because the increase in plutonium is progressing, it becomes too large and can easily damage the fuel. Therefore, restrictions on control rod operation, such as speed and method, must be increased, and operational margins must be increased. The disadvantage is that it becomes smaller.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

この考案は前述の問題点に鑑みなされたもの
で、一燃料集合体当りのボイド係数絶対値の低下
の効果を大きくできると同時に、従前の燃料集合
体の構造部分にさほどの設計変更を施さずに、そ
して核燃料棒の量を減らさずに、減速材対燃料体
積比(H/U)の増加と炉心軸方向出力分布の平
坦化を効果的に達成し得る改良されたウオーター
ロツドを備えた沸騰水型原子炉用燃料集合体を提
供することを目的としている。
This idea was devised in view of the above-mentioned problems, and it is possible to increase the effect of reducing the absolute value of the void coefficient per fuel assembly, and at the same time, it can be done without major design changes to the structural parts of the conventional fuel assembly. , and boiling with improved water rods that can effectively achieve an increase in the moderator-to-fuel volume ratio (H/U) and flatten the core axial power distribution without reducing the amount of nuclear fuel rods. The purpose is to provide fuel assemblies for water reactors.

〔問題点の解決手段〕[Means for solving problems]

すなわちこの考案の燃料集合体においては、複
数の核燃料棒と内部に中性子減速材が流通される
1本の中空ロツドとを互いに間隔をあけて正方配
列し、該中空ロツドの炉心長の炉底から20%まで
の下方部分の内部流路断面積を前記炉心長の70%
以上の上方部分の内部流路断面積より小さく、且
つ前記上方部分の内部流路断面積を前記核燃料棒
の配列ピツチの90%に相当する直径の円の面積よ
り大きく、さらに前記中空ロツドの外形寸法を上
方部分と下方部分とにわたつて一定に形成してい
る。ここにおいて前記炉心長なる語は燃料集合体
の有効長に相当するものであつてその炉底端を0
%、炉頂端を100%として長さ割合で示してあ
り、中空ロツドの前記炉心長20〜70%の範囲は、
前記大径流路とするか小径流路とするか炉心設計
に応じて変えられるものである。
In other words, in the fuel assembly of this invention, a plurality of nuclear fuel rods and one hollow rod through which a neutron moderator is circulated are arranged in a square manner with an interval between them, and the rods are arranged in a square manner with a space between them. The internal flow cross-sectional area of the lower part up to 20% of the core length is 70%
The cross-sectional area of the internal flow path of the upper portion is smaller than the cross-sectional area of the internal flow path of the upper portion, and the cross-sectional area of the internal flow path of the upper portion is larger than the area of a circle having a diameter corresponding to 90% of the arrangement pitch of the nuclear fuel rods, and the outer shape of the hollow rod is The dimensions are constant across the upper and lower parts. Here, the term "core length" corresponds to the effective length of the fuel assembly, and the bottom end of the core corresponds to the effective length of the fuel assembly.
%, is shown as a length percentage with the furnace top as 100%, and the range of the core length of the hollow rod from 20 to 70% is
Whether the large-diameter flow path or the small-diameter flow path is used can be changed depending on the core design.

〔作 用〕[Effect]

沸騰水型原子炉において炉心軸方向の出力分布
が第1図の曲線Bのように下部でピークを生じる
のは前述したように上半部のボイド発生が多くて
減速材密度が低下し、中性子の漏洩や減速作用の
低下が起きるためである。
In a boiling water reactor, the power distribution in the axial direction of the core peaks at the bottom, as shown by curve B in Figure 1, because, as mentioned above, there are many voids in the upper half, and the moderator density decreases, causing neutrons to This is because leakage and reduction in deceleration effect occur.

本考案ではこのようなボイド率の高い炉心上半
部での減速材密度の低下を補償するようにウオー
ターロツドとしての中空管の内径を上下で変え、
上半部にてウオーターロツド内の減速材が集中的
に保持できるようにし、且つ下方部分ではウオー
ターロツド体積で減速材を排除するようにしたも
のであるから、同時にボイド係数絶対値の減少効
果も大きいものが期待できる。従つて本考案によ
れば先ずボイドによる炉心上半部の出力低下の補
償が効果的に行なわれ、その結果軸方向出力分布
の平坦化が達成される。
In this invention, in order to compensate for the decrease in moderator density in the upper half of the core where the void ratio is high, the inner diameter of the hollow tube serving as the water rod is changed at the top and bottom.
Since the moderator in the water rod can be concentratedly retained in the upper half, and the moderator is removed by the water rod volume in the lower half, the absolute value of the void coefficient can be reduced at the same time. We can expect great effects. Therefore, according to the present invention, first, the power reduction in the upper half of the core due to voids is effectively compensated for, and as a result, the axial power distribution is flattened.

〔実施例〕〔Example〕

この考案を図面と共に詳述すれば以下の通りで
ある。
This idea will be explained in detail with reference to the drawings as follows.

第2図は一般例としてひとつの燃料集合体を概
念的に示す横断面図であり、この例では8×8の
燃料棒正方配列をもち、1は核燃料棒、2は外
被、3は中空ロツド(ウオーターロツド)、4は
制御棒を示し、核燃料棒1のうち(G)で示された5
本は毒物としてのガドリニアを含有するものであ
る。さて、中空ロツド3の部分をスペーサレベル
で拡大して示したのが第3図と第4図であり、第
3図が従来例、第4図がこの考案の実施例に係る
ものである。第3および4図において5はスペー
サ、30はこの考案の要部の中空ロツドである。
第5図は第4図の中空ロツド30の縦断面図で、
この考案に係る燃料集合体では、第3図と第4図
および第5図の比較から明らかなように、ウオー
ターロツドとしての中空ロツド30が燃料棒1よ
りも太く、中空ロツド30内の上部の流路断面積
は燃料棒1の横断面積よりも大きく、下部の流路
断面積は単なる通孔程度に小さい。具体的には中
空ロツド30の上方部分は円筒パイプからなり、
この円筒パイプはその外径が通常のスペーサ5の
均一寸法のセルの内径(対辺間隔寸法)以上であ
つて、中空ロツド挿入用のセル6を第4図のよう
に大径に拡げて、一層大径のセル部分としてもよ
い。最も一般的な8×8配列の燃料集合体におい
て核燃料棒の配列ピツチ寸法の代表値は16.256
mm、中空ロツド上方部分の肉厚は0.6〜0.8mm、ス
ペーサ5の格子帯板肉厚は約0.7mm以下であり、
これら数値から通常の均一寸法のセル内に入らな
いほどに大径のウオーターロツドの上方部分は上
記配列ピツチ寸法の90%以上の内径を有するもの
である。中空ロツド30の上方部分は後述のよう
に方形パイプであつてもよく、第4図の円筒パイ
プの例に限るものではない。円筒パイプも方形パ
イプも含めて中空ロツド上方部分の内部流路断面
積の大きさの限定を表現すれば、中空ロツド上方
部分の内部流路断面積は、前記核燃料棒の配列ピ
ツチの90%に相当する直径の円の面積よりも大き
いことになる。従つてこの考案では中空ロツド3
0が太いこと、それに合わせてスペーサ5の中空
ロツド挿入部セル6の形状および中空ロツド30
にセル6において弾圧係合するブロツクスペーサ
7の形状が従来のものと変るだけで、その他の構
造部材、例えば中空ロツド30の上下端栓、上下
タイプレート、およびこれらの取付部構造などで
は従来の燃料集合体と同様で良い。
Figure 2 is a cross-sectional view conceptually showing one fuel assembly as a general example. In this example, it has a square array of 8 x 8 fuel rods, where 1 is a nuclear fuel rod, 2 is a jacket, and 3 is a hollow. Rod (water rod), 4 indicates the control rod, 5 of the nuclear fuel rods 1 indicated by (G)
The book contains gadolinia, which is a poisonous substance. Now, FIGS. 3 and 4 are enlarged views of the hollow rod 3 at the spacer level, with FIG. 3 showing the conventional example and FIG. 4 showing the embodiment of this invention. In FIGS. 3 and 4, 5 is a spacer, and 30 is a hollow rod that is the main part of this invention.
FIG. 5 is a longitudinal cross-sectional view of the hollow rod 30 in FIG.
In the fuel assembly according to this invention, as is clear from a comparison between FIG. 3, FIG. 4, and FIG. 5, the hollow rod 30 as a water rod is thicker than the fuel rod 1, and the The cross-sectional area of the flow passage is larger than the cross-sectional area of the fuel rod 1, and the cross-sectional area of the lower flow passage is as small as a simple hole. Specifically, the upper part of the hollow rod 30 consists of a cylindrical pipe,
The outer diameter of this cylindrical pipe is larger than the inner diameter (distance between opposite sides) of the uniformly sized cells of the normal spacer 5, and the cell 6 for inserting the hollow rod is expanded to a larger diameter as shown in FIG. It may also be a large diameter cell portion. In the most common 8x8 fuel assembly, the typical value of the nuclear fuel rod arrangement pitch is 16.256.
mm, the wall thickness of the upper part of the hollow rod is 0.6 to 0.8 mm, and the wall thickness of the lattice strip of the spacer 5 is about 0.7 mm or less,
Based on these values, the upper portion of the water rod, which has a diameter so large that it cannot fit within a cell of normal uniform size, has an inner diameter that is 90% or more of the above-mentioned arrangement pitch size. The upper portion of the hollow rod 30 may be a rectangular pipe, as will be described later, and is not limited to the cylindrical pipe example shown in FIG. Expressing the limitation on the size of the internal flow passage cross-sectional area of the upper part of the hollow rod, including both cylindrical pipes and rectangular pipes, the internal flow cross-sectional area of the upper part of the hollow rod is 90% of the arrangement pitch of the nuclear fuel rods. This is larger than the area of a circle with the corresponding diameter. Therefore, in this design, hollow rod 3
0 is thick, and the shape of the hollow rod insertion portion cell 6 of the spacer 5 and the hollow rod 30 are adjusted accordingly.
The only difference is that the shape of the block spacer 7, which is elastically engaged in the cell 6, is different from the conventional one, and other structural members, such as the upper and lower end plugs of the hollow rod 30, the upper and lower tie plates, and the structure of their attachment parts, are the same as the conventional one. It may be the same as a fuel assembly.

従来の中空ロツド3は第3図のようにセル内で
周囲に大きな隙間を有し、かなりスペースの余裕
があつたが、中空ロツド自体は運転中に発熱しな
いから中空ロツド周囲のセル内空間に冷却材を流
す必要はなく、従つて第4図に示す本考案の例の
ようにセル6内に一杯に挿し込んでも問題が生じ
ることはない。また本考案ではセル6を構成する
スペーサ5の壁面がその外側の隣接燃料棒に接触
しているが、燃料棒1にはもともとスペーサ5の
固定突起8やブロツクスペーサ7が係合接触して
いるわけで、従つてセル6の壁面が隣接燃料棒に
接触することによつて支障が生じることは無い。
As shown in Figure 3, the conventional hollow rod 3 has a large gap around the cell inside the cell, and there is quite a lot of space, but since the hollow rod itself does not generate heat during operation, the space inside the cell around the hollow rod is There is no need to flow a coolant, and therefore no problem will arise even if the cell 6 is fully inserted, as in the example of the present invention shown in FIG. Furthermore, in the present invention, the wall surface of the spacer 5 constituting the cell 6 is in contact with the adjacent fuel rod on the outside thereof, but the fixing protrusion 8 of the spacer 5 and the block spacer 7 are originally in engagement contact with the fuel rod 1. Therefore, there is no problem caused by the wall surface of the cell 6 coming into contact with the adjacent fuel rod.

第4図および第5図において、31は上部端
栓、32は下部端栓であり、中空ロツド30は上
部から下部にわたり外径は燃料棒外径より大径で
均一となつているが、内径は上部が大径、下部が
小径となつている。上部大径流路33は燃料棒1
の横断面積よりも大きな流路断面積をもち、下部
小径流路34は単なる通孔程度の細い流路であ
る。この例では上部35と下部36とを継いで1
本の大径中空ロツドとしており、両部分35,3
6は例えばジルカロイなどの材質で形成される
が、上部35を炉心上方部での出力低下を補償す
るため中性子反射効果の大きいベリリウム等の材
料で形成し、或いは炉心下方部での出力ピークを
抑えるために下部36をステンレス鋼、ニツケル
基合金、ボロン添加ステンレス鋼などの中性子吸
収効果の大きい材料で形成してもよい。
In FIGS. 4 and 5, 31 is an upper end plug, and 32 is a lower end plug. The hollow rod 30 has a uniform outer diameter larger than the fuel rod outer diameter from the upper part to the lower part, but the inner diameter has a large diameter at the top and a small diameter at the bottom. The upper large diameter channel 33 is the fuel rod 1
The lower small-diameter flow path 34 is a narrow flow path similar to that of a simple through hole. In this example, the upper part 35 and the lower part 36 are joined to form a
It is a large diameter hollow rod of a book, and both parts are 35,3
6 is made of a material such as Zircaloy, for example, but the upper part 35 is made of a material such as beryllium, which has a large neutron reflecting effect, in order to compensate for the power drop in the upper part of the core, or to suppress the power peak in the lower part of the core. For this reason, the lower portion 36 may be formed of a material with a high neutron absorption effect, such as stainless steel, nickel-based alloy, or boron-added stainless steel.

〔考案の効果〕[Effect of idea]

以上に述べたように本考案によれば、中空ロツ
ドの下半部は内部流路断面積が単なる通孔並みに
小さいため、減速材(水)をあまり保有できず、
むしろ下半部の水を従来例と比べて排除している
ので低いボイド率のわりには中性子の減速効果が
抑えられ、この結果熱中性子化の抑制によつて炉
下半部での出力ピークを小さくする効果が期待で
きる。
As described above, according to the present invention, the lower half of the hollow rod has an internal flow passage cross-sectional area as small as that of a simple hole, so it cannot hold much moderator (water).
In fact, since the water in the lower half of the reactor is eliminated compared to the conventional example, the moderation effect of neutrons is suppressed despite the low void ratio, and as a result, the power peak in the lower half of the reactor is suppressed by suppressing thermal neutronization. The effect of reducing the size can be expected.

さらに燃料棒束部分の上半部に集中的に大きな
体積の減速材が確保されることは燃料集合体同士
の間の制御棒ギヤツプ部の減速材体積に対する燃
料集合体内の減速材体積比が従来より増加傾向と
なり、従つて炉心上半部での径方向の出力分布の
平坦化も果され、同時に炉心上半部でのH/Uが
増加することから燃料集合体の核的寿命も延長さ
れるものである。
Furthermore, the fact that a large volume of moderator is secured in a concentrated manner in the upper half of the fuel rod bundle section means that the ratio of the moderator volume in the fuel assembly to the moderator volume in the control rod gap between fuel assemblies is As a result, the radial power distribution in the upper half of the core is flattened, and at the same time, the nuclear life of the fuel assembly is extended because H/U increases in the upper half of the core. It is something that

【図面の簡単な説明】[Brief explanation of drawings]

第1図は沸騰水型原子炉の炉心における高さ位
置とボイド率の変化の関係の一例を示す線図、第
2図は沸騰水型原子炉用の一般的な燃料集合体を
概念的に示す横断面図、第3図は従来例に係る中
空ロツド部分のスペーサレベルにおける拡大横断
面図、第4図は本考案の一実施例に係る中空ロツ
ド上方部分のスペーサレベルにおける拡大横断面
図、第5図は第4図の中空ロツドの縦断面図であ
る。 1:燃料棒、2:外被、30:中空ロツド、3
1:上部端栓、32:下部端栓、33:大径流
路、34:小径流路、4:制御棒、5:スペー
サ。
Figure 1 is a diagram showing an example of the relationship between the height position and void fraction change in the core of a boiling water reactor, and Figure 2 is a conceptual diagram of a general fuel assembly for a boiling water reactor. FIG. 3 is an enlarged cross-sectional view at the spacer level of a hollow rod portion according to a conventional example; FIG. 4 is an enlarged cross-sectional view at the spacer level of an upper portion of a hollow rod according to an embodiment of the present invention; FIG. 5 is a longitudinal sectional view of the hollow rod of FIG. 4. 1: fuel rod, 2: jacket, 30: hollow rod, 3
1: Upper end plug, 32: Lower end plug, 33: Large diameter channel, 34: Small diameter channel, 4: Control rod, 5: Spacer.

Claims (1)

【実用新案登録請求の範囲】 (1) 複数の核燃料棒と内部に中性子減速材が流通
される少なくとも1本の中空ロツドとを互いに
間隔をあけて正方配列してなる沸騰水型原子炉
用燃料集合体において、前記中空ロツドの炉心
長の炉底から20%までの下方部分の内部流路断
面積が前記炉心長の70%以上の上方部分の内部
流路断面積より小さく、且つ前記上方部分の内
部流路断面積が前記核燃料棒の配列ピツチの90
%に相当する直径の円の面積より大きく、さら
に前記中空ロツドの外形寸法が上方部分と下方
部分とにわたつて一定に形成されていることを
特徴とする沸騰水型原子炉用の燃料集合体。 (2) 中空ロツドの前記上方部分が円筒パイプから
なることを特徴とする実用新案登録請求の範囲
第1項に記載の燃料集合体。 (3) 中空ロツドの前記上方部分が方形パイプから
なることを特徴とする実用新案登録請求の範囲
第1項に記載の燃料集合体。
[Claims for Utility Model Registration] (1) A boiling water reactor fuel comprising a plurality of nuclear fuel rods and at least one hollow rod through which a neutron moderator is circulated, spaced apart from each other in a square arrangement. In the assembly, an internal passage cross-sectional area of a lower part of the hollow rod up to 20% from the bottom of the core length is smaller than an internal passage cross-sectional area of an upper part of 70% or more of the core length, and the upper part The cross-sectional area of the internal flow path is 90% of the arrangement pitch of the nuclear fuel rods.
A fuel assembly for a boiling water reactor, characterized in that the area of the hollow rod is larger than the area of a circle with a diameter corresponding to . (2) The fuel assembly according to claim 1, wherein the upper portion of the hollow rod is comprised of a cylindrical pipe. (3) The fuel assembly according to claim 1, wherein the upper portion of the hollow rod is made of a rectangular pipe.
JP1986125314U 1986-08-18 1986-08-18 Expired JPS6247115Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986125314U JPS6247115Y2 (en) 1986-08-18 1986-08-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986125314U JPS6247115Y2 (en) 1986-08-18 1986-08-18

Publications (2)

Publication Number Publication Date
JPS6279196U JPS6279196U (en) 1987-05-20
JPS6247115Y2 true JPS6247115Y2 (en) 1987-12-24

Family

ID=31018106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986125314U Expired JPS6247115Y2 (en) 1986-08-18 1986-08-18

Country Status (1)

Country Link
JP (1) JPS6247115Y2 (en)

Also Published As

Publication number Publication date
JPS6279196U (en) 1987-05-20

Similar Documents

Publication Publication Date Title
US4777016A (en) Fuel assembly
US5416813A (en) Moderator rod containing burnable poison and fuel assembly utilizing same
US5198186A (en) Fuel assembly for nuclear reactor
JP2008045874A (en) Boiling water type light water reactor core
EP0196655A1 (en) Fuel assembly for nuclear reactor
US6885722B2 (en) Fuel assembly
JPS6247115Y2 (en)
JP2510565B2 (en) Reactor fuel assembly
JP2972177B2 (en) Fuel element and fuel assembly for thermal neutron reactor
JPS62194494A (en) Fuel aggregate
JP4351798B2 (en) Fuel assemblies and reactors
JPS60127489A (en) Fuel aggregate
JPH0342438B2 (en)
JP3036129B2 (en) Fuel assembly
JP3884192B2 (en) MOX fuel assembly, reactor core, and operating method of reactor
JP3788170B2 (en) Fuel assemblies and reactor cores
JP2003262692A (en) Boiling water reactor fuel assembly and determination method for fuel arrangement in the fuel assembly
JPH0816711B2 (en) Fuel assembly
JP3597596B2 (en) Fuel assembly
JP2711342B2 (en) Fuel assembly for boiling water reactor
EP1049105A1 (en) Fuel assembly
JP2953789B2 (en) Nuclear fuel assembly
JPH07111468B2 (en) Fuel assembly for nuclear reactor
JPH0342437B2 (en)
JPS636490A (en) Nuclear-reactor fuel aggregate