JP4161486B2 - Initial loading core of boiling water reactor - Google Patents

Initial loading core of boiling water reactor Download PDF

Info

Publication number
JP4161486B2
JP4161486B2 JP30351399A JP30351399A JP4161486B2 JP 4161486 B2 JP4161486 B2 JP 4161486B2 JP 30351399 A JP30351399 A JP 30351399A JP 30351399 A JP30351399 A JP 30351399A JP 4161486 B2 JP4161486 B2 JP 4161486B2
Authority
JP
Japan
Prior art keywords
fuel
enrichment
core
boiling water
water reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30351399A
Other languages
Japanese (ja)
Other versions
JP2001124884A (en
Inventor
裕子 原口
亮司 桝見
勝正 配川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30351399A priority Critical patent/JP4161486B2/en
Publication of JP2001124884A publication Critical patent/JP2001124884A/en
Application granted granted Critical
Publication of JP4161486B2 publication Critical patent/JP4161486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【0001】
【発明の属する技術分野】
本発明は、沸騰水型原子炉の初装荷炉心及びその構成に用いる燃料集合体に関するものである。
【0002】
【従来の技術】
近年、沸騰水型原子炉では発電コストの低減が重要な課題となっている。この課題への対応策として、燃料サイクルコストの低減、増出力化、運転期間の長期化等が検討されている。燃料サイクルコストを低減するためには、燃料集合体の平均取出燃焼度を高くすること(高燃焼度化)が有効である。高燃焼度化には、燃料集合体のウラン濃縮度を高める必要がある。また、増出力化、運転期間の長期化を図る上でも、燃料集合体のウラン濃縮度は高める必要がある。
【0003】
初装荷炉心においては、炉心平均濃縮度を高めて炉内滞在期間を長くすることで、初装荷燃料の平均取出燃焼度を高くすることが検討されている。
【0004】
一方、原子炉は一定期間ごとに燃え尽きた燃料を取り出して新しい燃料と交換する必要があるが、初装荷炉心では早期に取り出される燃料は燃焼度が進まないため、取り出される時期に見合った低い濃縮度にし、取出時期の遅い燃料は燃料集合体の平均濃縮度をあげ、取出燃焼度を高くすることによって、平均取出燃焼度を向上させている。このように燃料集合体の濃縮度を取出時期に見合ったものにするために、初装荷炉心は異なる平均濃縮度からなる燃料集合体によって構成されることが一般的である。
【0005】
高燃焼度化による燃料集合体のウラン濃縮度の増加や、増出力化による炉心平均ボイド率の増加に起因して、炉心の冷温時と出力運転時の反応度差が増大する。また、熱中性子がウラン−235に吸収される割合が大きくなり、制御棒の制御材に吸収される割合が小さくなるため、制御棒価値が減少する。つまり、燃料集合体の濃縮度をあげることにより原子炉の炉停止余裕は減少する傾向にある。
特に濃縮度の異なる複数種類の燃料集合体から構成される初装荷炉心においては、制御セルに比較的濃縮度の低い低濃縮度燃料を装荷することが一般的である。炉心最外周を除くその他の領域には比較的濃縮度の高い高濃縮度燃料が装荷されるが、高濃縮度燃料には可燃性毒物としてガドリニア等が混合されるため、サイクル初期の無限増倍率としてはむしろ低濃縮度燃料の方が、高濃縮燃料よりも高くなる。このような場合には、低濃縮度燃料からなる制御セルに挿入される制御棒の反応度価値が大きくなりやすく、この制御棒の引き抜きを想定した場合に炉停止余裕が減少する傾向にある。
【0006】
また、濃縮度の異なる燃料集合体を炉内に装荷することから、燃料集合体間の出力差が大きくなるため、熱的余裕が減少する傾向がある。
【0007】
以上述べたように、初装荷炉心における高燃焼度化の課題としては、1)炉停止余裕の減少、2)熱的余裕の減少があげられる。
【0008】
2)の対策として、例えば、特開平9−90077号公報では、4体の燃料集合体の真ん中に十字形の制御棒で構成された制御セルを備えた初装荷炉心において、制御セルを構成する燃料集合体の制御棒側のコーナーにウラン235の同位体存在比が天然ウランよりも低いウラン燃料を含む燃料棒を装荷することが述べられている。これは、高燃焼度化時に制御棒を長期間にわたって挿入した後で、制御棒を引抜いた時に制御棒側の出力が過大にならないようにする技術である。
しかしながら、上記1)の炉停止余裕の減少についての対策は、前記従来技術では考慮されていない。
【0009】
【発明が解決しようとする課題】
本発明の目的は、高燃焼度化により燃料集合体の平均濃縮度が増加した初装荷炉心において、炉停止余裕及び熱的余裕を同時に改善できる燃料集合体及びこれを装荷した初装荷炉心を提供することである。
【0010】
【課題を解決するための手段】
上記目的を達成するため、(1)本発明の沸騰水型原子炉の初装荷炉心では、上下端を除く軸方向の少なくとも一部の断面において、燃料要素束の最外周に位置する全ての燃料棒の濃縮度を天然ウランと同等かまたはそれ以下とし、前記一部の断面における最外周以外に位置する全ての燃料棒の濃縮度は、前記最外周に位置する燃料棒の濃縮度よりも高くし、前記最外周に位置する燃料棒の濃縮度が天然ウランと同等かまたはそれ以下の部分を、燃料有効長の少なくとも上部1/2に設ける燃料集合体である第1の燃料を少なくとも複数体装荷した構成とする。
【0011】
(2)沸騰水型原子炉の初装荷炉心において、前記第1の燃料を装荷する位置を、炉心の最外周または運転中に炉心に挿入される制御棒の周囲として構成する。
【0012】
本発明の燃料集合体では、(3)上記(1),(2)に記載の沸騰水型原子炉の初装荷炉心を構成する前記燃料集合体のうち、平均濃縮度の異なる複数種類の燃料集合体から構成するとともに、濃縮度が最高のもの以外の少なくとも一種類の燃料集合体を前記第1の燃料として構成する。
【0013】
(4)上記(3)記載の沸騰水型原子炉の初装荷炉心において、濃縮度が最低の燃料集合体を、前記第1の燃料として構成する
【0017】
上記の構成は、以下のように作用する。
【0018】
冷温時−出力運転時反応度差等の核特性は、燃料の濃縮度に依存し、濃縮度が高くなるほど増大する傾向にある。
【0019】
燃料要素束の最外周は、熱中性子束が高くなる燃料集合体間の水ギャップに面しているため、中性子インポータンスが高く、この領域の核特性が燃料集合体の核特性に重要な影響を及ぼす。すなわち、平均濃縮度が一定であれば、最外周の燃料棒の濃縮度が低いほど、冷温時―出力運転時反応度差が低減される。
【0020】
図2は、後述する実施例の沸騰水型原子炉の初装荷炉心を構成する燃料集合体のうち、最も平均濃縮度が低い1.7%の燃料集合体を対象に、燃料要素束のうち、最外周に位置する燃料棒の平均濃縮度とそれ以外の燃料棒の平均濃縮度の比を横軸にとり、縦軸に冷温時−出力運転時の反応度差の差分を示したものである。
【0021】
図2から、前記濃縮度比を0.8よりも小さくすれば、濃縮度が一様の場合(前記濃縮度比1.0)に比べて、冷温時−出力運転時反応度差が低減されることがわかる。
【0022】
前記従来技術(特開平9−90077号公報)では燃料要素束のコーナーに位置する燃料棒を劣化ウランとしているが、前記濃縮度比としては0.8程度であり、冷温時−出力運転時反応度差の低減に関して十分な効果は得られない。
【0023】
また、沸騰水型原子炉の燃料集合体において、最外周の燃料棒の濃縮度を低減する技術は一般的である。これは、熱的余裕確保の観点から、局所出力ピーキングの低減を目的としている。本発明の構成のように、天然ウランあるいは劣化ウランを大半の燃料棒に使用して前記濃縮度比を低減することが従来技術で考慮されていないのは、逆に局所出力ピーキングが増大すること(図2参照)から明らかである。
【0024】
上記のように本発明の構成では、局所出力ピーキング係数については必ずしも最小とならないが、燃料要素束の最外周の濃縮度を低くする断面の軸方向位置を比較的出力が高くなりにくい軸方向上部に設けることや、本発明を適用する燃料集合体を平均濃縮度が比較的低いもの、または、装荷位置が最外周や制御セルなどの比較的出力が高くならない位置に限定しているため、熱的余裕としては十分に確保することができる。
【0025】
【発明の実施の形態】
以下、本発明の実施例を図面を用いて説明する。
【0026】
図1は、本発明の実施例を示すものである。図1の燃料集合体において、燃料棒1〜3の上下端には天然ウランが装荷される。これはその他の実施例についても同様であるので、以下では、上下端を除いた領域の濃縮度分布についてのみ説明する。
【0027】
燃料棒1の濃縮度は2.8%、燃料棒2の濃縮度は1.7%の燃料ペレットを使用し、燃料集合体最外周に位置する燃料棒3の濃縮度は天然ウラン(約0.7%)となっている。
【0028】
燃料要素束の中心付近にはウォータロッド11が配置され、燃料要素束はチャンネルボックス21で覆われている。その外周には制御棒22が挿入される。
【0029】
本実施例では、最外周に位置する燃料棒の平均濃縮度と、それ以外の燃料棒の平均濃縮度との比は約0.22であり、冷温時―出力運転時反応度差は、一様な濃縮度分布のものに比べ、約3%Δk低減される(図2参照)。
【0030】
図3は、第2の実施例の燃料集合体を示すものである。
【0031】
図3では、燃料棒1の濃縮度分布は2.4%で一様、燃料棒2の濃縮度は下部で2.0%、上部で1.6%、燃料棒3の濃縮度分布は下部で1.6%、上部で天然ウラン、燃料4の濃縮度分布は下部で1.4%、上部で天然ウランとなっている。ここで、燃料棒タイプPは、燃料有効長が他の燃料棒よりも短い部分長燃料棒で、その濃縮度は1.6%である。
【0032】
本実施例は、燃料上部のみに燃料要素束の最外周に位置する燃料棒3、4に天然ウランを装荷することによって、実施例1と同様の効果を得られるとともに、燃料下部では、下部断面の局所出力ピーキング係数を低減するため、熱的余裕を減少させることなく冷温時―出力運転時反応度差を低減できる。
【0033】
本実施例では、最外周に位置する燃料棒の平均濃縮度と、それ以外の燃料棒の平均濃縮度の比は燃料集合体上部において約0.32であり、冷温時−出力運転時反応度差に関して約2%Δkの低減効果がある(図2参照)。
【0034】
図4は、可燃性毒物と組み合わせた第3の本発明の実施例を示すものである。図4の燃料集合体は、燃料棒1の濃縮度分布は2.8%、燃料棒2の濃縮度分布は2.4%の燃料ペレットを使用し、燃料集合体最外周に位置する燃料棒3の濃縮度分布は天然ウランとなっている。ここで、燃料棒タイプPは短尺燃料棒で濃縮度分布は2.2%、Gは可燃性毒物含有燃料棒で燃料棒の濃縮度は2.8%、可燃性毒物であるガドリニアの濃縮度は8.0%である。また、11はウォータロッド、21はチャンネルボックス、22は制御棒である。本実施例は、実施例1と同様の効果を得られるとともに、可燃性毒物含有燃料棒を制御棒挿入側の反対側に配置することにより制御棒価値の減少を抑制する効果も得られる。本実施例では、最外周に位置する燃料棒の平均濃縮度と、それ以外の燃料棒の平均濃縮度の比は燃料集合体上部において約0.21、燃料集合体下部において約0.23であり、冷温時―出力運転時反応度差は、一様な濃縮度分布のものに比べ、約3%Δk低減される(図2参照)。
【0035】
図5は、第4の本発明の実施例を示すものである。図5の燃料集合体は、燃料棒1の濃縮度分布は2.8%の燃料ペレットを使用し、燃料集合体最外周に位置する燃料棒2の濃縮度分布は天然ウランとなっている。ここで、燃料棒タイプPは短尺燃料棒で濃縮度分布は1.7%である。また、12はウォータボックス、21はチャンネルボックス、22は制御棒である。本実施例では実施例1と同様の効果が得られる。本実施例では、最外周に位置する燃料棒の平均濃縮度と、それ以外の燃料棒の平均濃縮度の比は燃料集合体上部において約0.20、燃料集合体下部において約0.22であり、冷温時―出力運転時反応度差は、一様な濃縮度分布のものに比べ、約3%Δk低減される(図2参照)。
【0036】
図6は、第5の本発明の実施例を示すものである。図6の燃料集合体は、燃料棒1の濃縮度分布は2.8%の燃料ペレットを使用し、燃料集合体最外周に位置する燃料棒2の濃縮度分布は天然ウランとなっている。また、13はウォータクロス、21はチャンネルボックス、22は制御棒である。本実施例では実施例1と同様の効果が得られる。本実施例では、最外周に位置する燃料棒の平均濃縮度と、それ以外の燃料棒の平均濃縮度の比は約0.20であり、冷温時―出力運転時反応度差は、一様な濃縮度分布のものに比べ、約3%Δk低減される(図2参照)。
【0037】
上記の燃料集合体を装荷した初装荷炉心の実施例も考えられる。以下では初装荷炉心の実施例について説明する。
【0038】
図7は、図1に示した燃料集合体を、炉心外周を除く低濃縮度燃料23として、炉心に装荷した初装荷炉心の燃料装荷パターン例を示すものである。低濃縮度燃料23は、制御セル26と呼ばれる原子炉運転中に制御棒を挿入して反応度調整を行うことが多い場所に装荷してある。残りの領域のうち炉心外周を除く領域には、図9に濃縮度分布を示す高濃縮度燃料25を装荷している。炉心外周には、図10に濃縮度分布を示す低濃縮度燃料(最外周装荷用)24が装荷される。
【0039】
制御セル26は、図7に示した燃料装荷パターン例では37個であるが、運転条件に応じて増減させる場合もある。
【0040】
本実施例では、図1に示した燃料集合体を低濃縮度燃料(制御セル装荷用)23として装荷することにより、炉停止余裕の改善を図ることができる。
【0041】
図8は、図7に示した炉心の実施例において、最外周に装荷する燃料を平均濃縮度が約2.3%の中濃縮度燃料27としたものである。中濃縮度燃料27の濃縮度分布は図11に示すように、低濃縮度燃料と同様、外周に天然ウランを配置している。本実施例の炉心では、上記の炉心の実施例に比べて最外周の濃縮度を増加しても炉停止余裕を確保できる。したがって、より高燃焼度化が可能となる。
【0042】
【発明の効果】
本発明によれば、初装荷炉心の高燃焼度化にともない平均濃縮度が増加した燃料集合体において、炉停止余裕を確保することができる。
【図面の簡単な説明】
【図1】第1の実施例による燃料濃縮度及びガドリニア分布の例を示す図。
【図2】最外周に位置する燃料棒の平均濃縮度と、それ以外の燃料棒の平均濃縮度の比と冷温時−出力運転時の反応度差の差分と、局所出力ピーキング係数の関係を示す図。
【図3】第2の実施例による燃料濃縮度及びガドリニア分布の例を示す図。
【図4】第3の実施例による燃料濃縮度及びガドリニア分布の例を示す図。
【図5】第4の実施例による燃料濃縮度及びガドリニア分布の例を示す図。
【図6】第5の実施例による燃料濃縮度及びガドリニア分布の例を示す図。
【図7】第1の実施例の燃料を低濃縮度燃料として炉心に装荷した初装荷炉心の燃料装荷パターン例を示す図。
【図8】第1の実施例の燃料を低濃縮度燃料として炉心に装荷した初装荷炉心の燃料装荷パターン例(最外周の中濃縮度燃料27にも本発明を適用した例)を示す図。
【図9】図7に示した初装荷炉心を構成する高濃縮度燃料の例を示す図。
【図10】図7に示した初装荷炉心を構成する炉心外周用低濃縮度燃料の例を示す図。
【図11】図8に示した初装荷炉心を構成する中濃縮度燃料の例を示す図。
【符号の説明】
1〜5燃料棒タイプ、11…ウォータロッド、12…ウォータクロス、21…チャンネルボックス、22…制御棒、23…低濃縮度燃料、24…低濃縮度燃料(炉心外周用)、25…高濃縮度燃料、26…制御セル、P…短尺燃料棒、G…可燃性毒物含有燃料棒。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an initially loaded core of a boiling water reactor and a fuel assembly used for the configuration.
[0002]
[Prior art]
In recent years, reduction of power generation cost has become an important issue in boiling water reactors. As countermeasures to this problem, reduction of fuel cycle cost, increase of output, and extension of operation period are being studied. In order to reduce the fuel cycle cost, it is effective to increase the average take-off burnup of the fuel assembly (high burnup). To increase the burnup, it is necessary to increase the uranium enrichment of the fuel assembly. Further, in order to increase the output and extend the operation period, it is necessary to increase the uranium enrichment of the fuel assembly.
[0003]
In the initial loading core, it has been studied to increase the average take-off burnup of the initially loaded fuel by increasing the average enrichment of the core and extending the period of stay in the reactor.
[0004]
On the other hand, it is necessary for the nuclear reactor to take out the burned-out fuel at regular intervals and replace it with new fuel. However, in the initial loading core, the early removal of the fuel does not advance the burnup, so the concentration is low enough to match the time of removal. However, the fuel with a later extraction time increases the average enrichment of the fuel assembly and increases the extraction burnup, thereby improving the average extraction burnup. Thus, in order to make the enrichment of the fuel assembly suitable for the extraction time, the initial loading core is generally constituted by fuel assemblies having different average enrichments.
[0005]
Due to the increase in the uranium enrichment of the fuel assembly due to the high burnup and the increase in the core average void ratio due to the increase in output, the reactivity difference between the cold core temperature and the power operation increases. In addition, the rate at which thermal neutrons are absorbed by uranium-235 increases, and the rate at which the control rod is absorbed by the control material decreases, thereby reducing the value of the control rod. That is, the reactor shutdown margin tends to decrease by increasing the enrichment of the fuel assembly.
In particular, in an initial loading core composed of a plurality of types of fuel assemblies having different enrichments, it is common to load a low enrichment fuel having a relatively low enrichment to a control cell. Highly enriched fuel with relatively high enrichment is loaded in other areas except for the outermost periphery of the core, but high enriched fuel is mixed with gadolinia etc. as a flammable poison. Rather, the low enrichment fuel is higher than the highly enriched fuel. In such a case, the reactivity value of the control rod inserted into the control cell made of low enriched fuel tends to increase, and the furnace shutdown margin tends to decrease when the control rod is pulled out.
[0006]
In addition, since fuel assemblies having different enrichments are loaded in the furnace, the output difference between the fuel assemblies becomes large, so that the thermal margin tends to decrease.
[0007]
As described above, the problems of increasing the burnup in the initially loaded core include 1) reduction of reactor shutdown margin and 2) reduction of thermal margin.
[0008]
As a countermeasure for 2), for example, in Japanese Patent Laid-Open No. 9-90077, a control cell is configured in an initial loading core having a control cell composed of a cross-shaped control rod in the middle of four fuel assemblies. It is stated that fuel rods containing uranium fuel having a lower isotope abundance ratio of uranium 235 than natural uranium are loaded at the control rod side corner of the fuel assembly. This is a technique for preventing the output on the control rod side from becoming excessive when the control rod is pulled out after the control rod is inserted for a long period of time when the burnup is high.
However, the countermeasure for reducing the furnace stop margin of 1) is not considered in the conventional technology.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a fuel assembly capable of simultaneously improving the reactor shutdown margin and the thermal margin in an initially loaded core in which the average enrichment of the fuel assembly has increased due to high burnup, and an initially loaded core loaded with the same. It is to be.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, (1) in the initial loading core of the boiling water reactor of the present invention, all the fuels positioned on the outermost periphery of the fuel element bundle in at least a partial cross section in the axial direction excluding the upper and lower ends The enrichment of rods is equal to or less than that of natural uranium, and the enrichment of all fuel rods located outside the outermost periphery in the partial cross section is higher than the enrichment of fuel rods located at the outermost periphery. And at least a plurality of first fuels, each of which is a fuel assembly in which the enrichment of the fuel rods located on the outermost periphery is equal to or less than that of natural uranium, at least in the upper half of the effective fuel length. Loaded configuration.
[0011]
(2) In the initially loaded core of the boiling water reactor, the position where the first fuel is loaded is configured as the outermost periphery of the core or the periphery of a control rod inserted into the core during operation.
[0012]
In the fuel assembly of the present invention, (3) a plurality of types of fuels having different average enrichments among the fuel assemblies constituting the initial loading core of the boiling water reactor described in (1) and (2) above In addition to the assembly, at least one fuel assembly other than the highest enrichment is configured as the first fuel.
[0013]
(4) In the initial loading core of the boiling water reactor described in (3) above, the fuel assembly having the lowest enrichment is configured as the first fuel .
[0017]
The above configuration operates as follows.
[0018]
Nuclear characteristics such as the reactivity difference during cold operation and output operation depend on the enrichment of the fuel and tend to increase as the enrichment increases.
[0019]
The outermost circumference of the fuel element bundle faces the water gap between the fuel assemblies where the thermal neutron flux increases, so the neutron importance is high, and the nuclear characteristics in this region have an important effect on the nuclear characteristics of the fuel assembly. Effect. That is, if the average enrichment is constant, the lower the enrichment of the outermost fuel rod, the lower the difference in reactivity during cold operation and output operation.
[0020]
FIG. 2 shows a fuel element bundle in a fuel assembly of 1.7% having the lowest average enrichment among the fuel assemblies constituting the initial loading core of the boiling water reactor of the embodiment described later. The horizontal axis represents the ratio between the average enrichment of the fuel rods located at the outermost periphery and the average enrichment of the other fuel rods, and the vertical axis represents the difference in reactivity difference during cold-power operation. .
[0021]
From FIG. 2, it can be seen that if the enrichment ratio is less than 0.8, the difference in reactivity during cold operation and output operation is reduced compared to the case where the enrichment is uniform (concentration ratio 1.0). .
[0022]
In the prior art (Japanese Patent Laid-Open No. 9-90077), the fuel rods located at the corners of the fuel element bundle are depleted uranium. However, the enrichment ratio is about 0.8, and the reaction at the time of cold-output operation is performed. A sufficient effect cannot be obtained with respect to reduction of the degree difference.
[0023]
Further, in a boiling water reactor fuel assembly, a technique for reducing the enrichment of the outermost fuel rod is common. This is intended to reduce local output peaking from the viewpoint of securing thermal margin. The reason why the conventional technology does not consider reducing the enrichment ratio by using natural uranium or deteriorated uranium for most fuel rods as in the configuration of the present invention is that the local output peaking increases. (See FIG. 2).
[0024]
As described above, in the configuration of the present invention, the local output peaking coefficient is not necessarily minimized, but the axial position of the cross-section where the enrichment of the outermost periphery of the fuel element bundle is lowered is relatively high in the output in the axial direction. Or the fuel assembly to which the present invention is applied has a relatively low average enrichment, or the loading position is limited to a position where the output is not relatively high such as the outermost periphery or the control cell. A sufficient margin can be secured.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0026]
FIG. 1 shows an embodiment of the present invention. In the fuel assembly of FIG. 1, natural uranium is loaded on the upper and lower ends of the fuel rods 1 to 3. Since this is the same for the other embodiments, only the concentration distribution in the region excluding the upper and lower ends will be described below.
[0027]
The fuel rod 1 has a concentration of 2.8% and the fuel rod 2 has a concentration of 1.7%. The fuel rod 3 located at the outermost periphery of the fuel assembly has a concentration of natural uranium (about 0%). 0.7%).
[0028]
A water rod 11 is disposed near the center of the fuel element bundle, and the fuel element bundle is covered with a channel box 21. A control rod 22 is inserted on the outer periphery.
[0029]
In this embodiment, the ratio of the average enrichment of the fuel rods located on the outermost periphery to the average enrichment of the other fuel rods is about 0.22, and the difference in reactivity during cold operation / output operation is one. It is reduced by about 3% Δk compared to that of such a concentration distribution (see FIG. 2).
[0030]
FIG. 3 shows the fuel assembly of the second embodiment.
[0031]
In FIG. 3, the enrichment distribution of fuel rod 1 is uniform at 2.4%, the enrichment of fuel rod 2 is 2.0% at the bottom, 1.6% at the top, and the enrichment distribution of fuel rod 3 is at the bottom. 1.6% at the top, natural uranium at the top, and the enrichment distribution of fuel 4 is 1.4% at the bottom and natural uranium at the top. Here, the fuel rod type P is a partial-length fuel rod whose effective fuel length is shorter than other fuel rods, and its enrichment is 1.6%.
[0032]
In the present embodiment, natural uranium is loaded on the fuel rods 3 and 4 positioned on the outermost periphery of the fuel element bundle only in the upper portion of the fuel, and the same effect as in the first embodiment can be obtained. Because the local output peaking coefficient is reduced, the reactivity difference during cold operation and output operation can be reduced without reducing the thermal margin.
[0033]
In this embodiment, the ratio of the average enrichment of the fuel rods located on the outermost periphery to the average enrichment of the other fuel rods is about 0.32 at the upper portion of the fuel assembly, and the reactivity at the time of cold-power operation There is a reduction effect of about 2% Δk with respect to the difference (see FIG. 2).
[0034]
FIG. 4 shows a third embodiment of the present invention in combination with a flammable poison. The fuel assembly shown in FIG. 4 uses fuel pellets in which the enrichment distribution of the fuel rod 1 is 2.8% and the enrichment distribution of the fuel rod 2 is 2.4%. The enrichment distribution of 3 is natural uranium. Here, fuel rod type P is a short fuel rod with a concentration distribution of 2.2%, G is a fuel rod containing a flammable poison, the concentration of the fuel rod is 2.8%, and the concentration of gadolinia which is a flammable poison Is 8.0%. Further, 11 is a water rod, 21 is a channel box, and 22 is a control rod. The present embodiment can obtain the same effect as that of the first embodiment and also can suppress the decrease in the value of the control rod by arranging the combustible poison-containing fuel rod on the side opposite to the control rod insertion side. In this embodiment, the ratio of the average enrichment of the fuel rods located at the outermost periphery to the average enrichment of the other fuel rods is about 0.21 at the upper part of the fuel assembly and about 0.23 at the lower part of the fuel assembly. Yes, the difference in reactivity during cold operation and output operation is reduced by about 3% Δk compared to that with a uniform concentration distribution (see FIG. 2).
[0035]
FIG. 5 shows a fourth embodiment of the present invention. The fuel assembly in FIG. 5 uses 2.8% fuel pellets for the enrichment distribution of the fuel rod 1, and the enrichment distribution of the fuel rod 2 located on the outermost periphery of the fuel assembly is natural uranium. Here, the fuel rod type P is a short fuel rod and the enrichment distribution is 1.7%. Further, 12 is a water box, 21 is a channel box, and 22 is a control rod. In the present embodiment, the same effect as in the first embodiment can be obtained. In this embodiment, the ratio of the average enrichment of the fuel rods located at the outermost periphery to the average enrichment of the other fuel rods is about 0.20 at the upper part of the fuel assembly and about 0.22 at the lower part of the fuel assembly. Yes, the difference in reactivity during cold operation and output operation is reduced by about 3% Δk compared to that with a uniform concentration distribution (see FIG. 2).
[0036]
FIG. 6 shows a fifth embodiment of the present invention. The fuel assembly in FIG. 6 uses 2.8% fuel pellets for the enrichment distribution of the fuel rod 1, and the enrichment distribution of the fuel rod 2 located on the outermost periphery of the fuel assembly is natural uranium. Further, 13 is a water cross, 21 is a channel box, and 22 is a control rod. In the present embodiment, the same effect as in the first embodiment can be obtained. In this embodiment, the ratio of the average enrichment of the fuel rods located on the outermost periphery to the average enrichment of the other fuel rods is about 0.20, and the difference in reactivity during cold-power operation is uniform. It is reduced by about 3% Δk compared to that of a high concentration distribution (see FIG. 2).
[0037]
An example of an initial loading core loaded with the above fuel assembly is also conceivable. Hereinafter, an embodiment of the initial loading core will be described.
[0038]
FIG. 7 shows an example of the fuel loading pattern of the initial loading core in which the fuel assembly shown in FIG. 1 is loaded on the core as the low enrichment fuel 23 excluding the outer periphery of the core. The low enrichment fuel 23 is loaded in a place called a control cell 26 where control rods are often inserted to adjust the reactivity during reactor operation. Of the remaining region, the region other than the outer periphery of the core is loaded with highly enriched fuel 25 whose enrichment distribution is shown in FIG. On the outer periphery of the core, a low enrichment fuel (for outermost periphery loading) 24 whose enrichment distribution is shown in FIG. 10 is loaded.
[0039]
The number of control cells 26 is 37 in the example of the fuel loading pattern shown in FIG. 7, but may be increased or decreased depending on the operating conditions.
[0040]
In this embodiment, the furnace stop margin can be improved by loading the fuel assembly shown in FIG. 1 as the low enrichment fuel (for control cell loading) 23.
[0041]
FIG. 8 shows an embodiment of the core shown in FIG. 7 in which the fuel loaded on the outermost periphery is a medium enrichment fuel 27 having an average enrichment of about 2.3%. As shown in FIG. 11, the enrichment distribution of the intermediate enrichment fuel 27 has natural uranium arranged on the outer periphery in the same manner as the low enrichment fuel. In the core of the present embodiment, a margin for stopping the reactor can be ensured even if the enrichment on the outermost periphery is increased as compared with the core embodiment described above. Therefore, higher burnup can be achieved.
[0042]
【The invention's effect】
According to the present invention, it is possible to ensure a reactor stop margin in a fuel assembly whose average enrichment has increased with an increase in burnup of the initially loaded core.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of fuel enrichment and gadolinia distribution according to a first embodiment.
FIG. 2 shows the relationship between the average enrichment of the fuel rods located on the outermost periphery, the ratio of the mean enrichment of the other fuel rods, the difference in reactivity difference during cold-power operation, and the local output peaking coefficient. FIG.
FIG. 3 is a diagram showing an example of fuel enrichment and gadolinia distribution according to the second embodiment.
FIG. 4 is a diagram showing an example of fuel enrichment and gadolinia distribution according to a third embodiment.
FIG. 5 is a diagram showing an example of fuel enrichment and gadolinia distribution according to a fourth embodiment.
FIG. 6 is a diagram showing an example of fuel enrichment and gadolinia distribution according to a fifth embodiment.
FIG. 7 is a diagram showing an example of a fuel loading pattern of an initial loading core in which the fuel of the first embodiment is loaded on the core as a low enrichment fuel.
FIG. 8 is a diagram showing a fuel loading pattern example of an initial loading core in which the fuel of the first embodiment is loaded as a low enrichment fuel (an example in which the present invention is applied to the middle enrichment fuel 27 at the outermost periphery); .
9 is a view showing an example of highly enriched fuel constituting the initially loaded core shown in FIG. 7. FIG.
10 is a view showing an example of a low-concentration fuel for the outer periphery of the core that constitutes the initially loaded core shown in FIG. 7;
11 is a view showing an example of a medium enrichment fuel constituting the initially loaded core shown in FIG. 8. FIG.
[Explanation of symbols]
1-5 fuel rod type, 11 ... water rod, 12 ... water cross, 21 ... channel box, 22 ... control rod, 23 ... low enrichment fuel, 24 ... low enrichment fuel (for core periphery), 25 ... highly enriched Fuel, 26 ... control cell, P ... short fuel rod, G ... fuel rod containing flammable poison.

Claims (4)

核分裂性物質を含む燃料を被覆管に充填した複数本の燃料棒を正方格子状に束ねた燃料要素束を角筒状のチャンネルボックスで覆ってなる沸騰水型原子炉の燃料集合体において、上下端を除く軸方向の少なくとも一部の断面において、燃料要素束の最外周に位置する全ての燃料棒の濃縮度を天然ウランと同等かまたはそれ以下とし、前記一部の断面における最外周以外に位置する全ての燃料棒の濃縮度は、前記最外周に位置する燃料棒の濃縮度よりも高くし、前記最外周に位置する燃料棒の濃縮度が天然ウランと同等かまたはそれ以下の部分を、燃料有効長の少なくとも上部1/2に設ける燃料集合体である第1の燃料を少なくとも複数体装荷してなることを特徴とする沸騰水型原子炉の初装荷炉心。In a fuel assembly of a boiling water reactor in which a fuel element bundle in which a plurality of fuel rods filled with a fuel containing a fissile material are bundled in a square lattice is covered with a rectangular tube box, In at least a part of the cross section in the axial direction excluding the end, the enrichment of all fuel rods located at the outermost periphery of the fuel element bundle is equal to or less than that of natural uranium, and other than the outermost periphery in the partial cross section. The enrichment of all the fuel rods located is higher than the enrichment of the fuel rods located at the outermost periphery, and the enrichment of the fuel rods located at the outermost periphery is equal to or less than that of natural uranium. An initial loading core of a boiling water reactor, wherein at least a plurality of first fuels, which are fuel assemblies provided at least at the upper half of the effective fuel length, are loaded. 請求項1に記載の沸騰水型原子炉の初装荷炉心において、前記第1の燃料を装荷する位置を、炉心の最外周または運転中に炉心に挿入される制御棒の周囲とすることを特徴とする沸騰水型原子炉の初装荷炉心。  The initial loading core of the boiling water reactor according to claim 1, wherein a position where the first fuel is loaded is an outermost periphery of the core or a periphery of a control rod inserted into the core during operation. The first loaded core of a boiling water reactor. 請求項1または2に記載の沸騰水型原子炉の初装荷炉心において、平均濃縮度の異なる複数種類の燃料集合体から構成するとともに、濃縮度が最高のもの以外の少なくとも一種類の燃料集合体を前記第1の燃料とすることを特徴とする沸騰水型原子炉の初装荷炉心。  The initial loading core of the boiling water reactor according to claim 1 or 2, wherein the core is composed of a plurality of types of fuel assemblies having different average enrichments, and at least one fuel assembly other than the one having the highest enrichment. Is a first loaded core of a boiling water nuclear reactor, characterized in that the first fuel is used. 請求項3に記載の沸騰水型原子炉の初装荷炉心において、濃縮度が最低の燃料集合体を、前記第1の燃料とすることを特徴とする沸騰水型原子炉の初装荷炉心。  4. The initial loading core of a boiling water reactor according to claim 3, wherein the first fuel is a fuel assembly having the lowest enrichment.
JP30351399A 1999-10-26 1999-10-26 Initial loading core of boiling water reactor Expired - Fee Related JP4161486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30351399A JP4161486B2 (en) 1999-10-26 1999-10-26 Initial loading core of boiling water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30351399A JP4161486B2 (en) 1999-10-26 1999-10-26 Initial loading core of boiling water reactor

Publications (2)

Publication Number Publication Date
JP2001124884A JP2001124884A (en) 2001-05-11
JP4161486B2 true JP4161486B2 (en) 2008-10-08

Family

ID=17921895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30351399A Expired - Fee Related JP4161486B2 (en) 1999-10-26 1999-10-26 Initial loading core of boiling water reactor

Country Status (1)

Country Link
JP (1) JP4161486B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE525701C2 (en) * 2003-08-28 2005-04-05 Westinghouse Electric Sweden Procedure for operation of a nuclear reactor
CN1760990B (en) 2004-10-15 2011-11-30 西屋电气有限责任公司 Improved first core fuel assembly configuration and method of implementing same
CN102332315B (en) * 2007-09-26 2014-02-26 大亚湾核电运营管理有限责任公司 Refueling method for fuel assemblies of reactor core of PWR (pressurized water reactor) nuclear power plant
JP2011169858A (en) * 2010-02-22 2011-09-01 Global Nuclear Fuel-Japan Co Ltd Initial loading core of boiling water reactor
JP6670133B2 (en) * 2016-03-04 2020-03-18 日立Geニュークリア・エナジー株式会社 Fuel assemblies and reactor cores

Also Published As

Publication number Publication date
JP2001124884A (en) 2001-05-11

Similar Documents

Publication Publication Date Title
JP3531011B2 (en) Fuel assemblies and reactors
JP4161486B2 (en) Initial loading core of boiling water reactor
JP3788045B2 (en) Fuel assembly
JP3874466B2 (en) Fuel assembly
JP4098002B2 (en) Fuel assemblies and reactor cores
JP4088735B2 (en) Nuclear fuel assemblies and boiling water reactor cores
JP3075749B2 (en) Boiling water reactor
JP2966877B2 (en) Fuel assembly
JP4198397B2 (en) Nuclear reactor core
JP2610254B2 (en) Boiling water reactor
JPS63127190A (en) Nuclear reactor fuel aggregate
JP3916807B2 (en) MOX fuel assembly
JP4351798B2 (en) Fuel assemblies and reactors
JP3070756B2 (en) Fuel assembly
JP3943624B2 (en) Fuel assembly
JP3894784B2 (en) Fuel loading method for boiling water reactor
JP3596831B2 (en) Boiling water reactor core
JP3788170B2 (en) Fuel assemblies and reactor cores
JP2988731B2 (en) Reactor fuel assembly
JPH0816711B2 (en) Fuel assembly
JPH067182B2 (en) Fuel assembly
JP3314382B2 (en) Fuel assembly
JP3212744B2 (en) Fuel assembly
JP2739515B2 (en) Boiling water reactor
JP2001318181A (en) Fuel assembly for boiling water reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees