JPS60165622A - Transmission type display element - Google Patents

Transmission type display element

Info

Publication number
JPS60165622A
JPS60165622A JP59021120A JP2112084A JPS60165622A JP S60165622 A JPS60165622 A JP S60165622A JP 59021120 A JP59021120 A JP 59021120A JP 2112084 A JP2112084 A JP 2112084A JP S60165622 A JPS60165622 A JP S60165622A
Authority
JP
Japan
Prior art keywords
display
light
substrate
electrode
display element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59021120A
Other languages
Japanese (ja)
Inventor
Shohei Naemura
省平 苗村
Toshihiko Ueno
上野 敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59021120A priority Critical patent/JPS60165622A/en
Publication of JPS60165622A publication Critical patent/JPS60165622A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses

Abstract

PURPOSE:To obtain a display of a bright image plane by providing a light condensing body having a micro-arrangement on the rear of a supporting substrate of a transmission type and photodetection type display element and condensing the incident light from the rear of the substrate to each picture element. CONSTITUTION:A light condensing body made of acrylic, etc. having a semicircular cylindrical micro-lens array 11 is provided on the surface of an element of a photodetection type and transmission type such as liquid crystal display, electrochromic display or the like on the side opposite to the surface provided with a thin film transistor 2, a drain electrode 3 and a gate electrode (display electrode) 5 on one transparent substrate 1. The rays 20, 21, 22 made incident on the lens array body 11 are concentrated through the substrate 1 on a display aperture part 12, i.e., display electrode 5. The display image of, for example, the display element which is provided with a common electrode 7 and a color filter 8 on a counter substrate 6 and is sealed therein with a liquid crystal 10 is displayed brightly. The lens arrangement may be an array consisting of spherical lenses or a lens array made into a V-shaped groove type or trapezoidal shape.

Description

【発明の詳細な説明】 (技術分野) 本発明は透過型で明るい画面の表示が可能な受光型の表
示素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a transmissive type light-receiving display element capable of displaying a bright screen.

(従来技術) 現在、文字図形およびテレビ画像等を表示する表示装置
としてはCRT (Cgthod Ray Tube 
、 陰極線管)が主に用いられているが、CRTは体積
が太きいという欠点を有し、これにかわる薄型の表示素
子として種々のものが提案されて一部は実用化されてい
る。これらの表示素子は発光型と受光型とに分類するこ
とができ、発光型釦はプラズマディスプレイ、蛍光表示
管、エレクトロルミネセンスディスプレイ、発光ダイオ
ードディスプレイ等が、また受光型には液晶表示、エレ
クトロクロミックディスプレイ、電気泳動ディスプレイ
、電気光学結晶ディスプレイ等がある。これらの薄型表
示素子はそれぞれ長所短所を有しているが、一般に発光
型表示素子は明るい表示が得られるが駆動電圧が高い、
あるいは消費電力が大きいという欠点を有しており、一
方、受光型表示素子は一般に消費電力は小さいが、自ら
は発光しない受光型であるために暗い所では表示が見難
いという欠点を有している。このために、受光型表示素
子においては反射型構造として周囲光を多く取り込む工
夫等がなされているが、それでも微弱な周囲光の下では
はとんど表示が見えない。従って、受光型表示素子にお
いては多くの場合、背後に照明用光源が設けられる。し
かしながら、照明用光源を設けた場合にはその消費電力
が大きく、受光型表示素子の消費電力が小さいという長
所が損なわれてしまう。従って、消費電力をできる限り
小さくして発光型表示素子に劣らない表示の明るさを得
るためKは、透過型の表示素子において照明用光源から
の入射光を出来る限り有効に表示に利用することが肝要
である。その手段として、従来は例えば液晶表示素子の
透明基板の端面から蛍光燈を照射し、蛍光燈からの入射
光が透明基板の内部で反射を繰返しながら表示面の全面
に有効に照射するような構造がとられていた。(第3回
液晶討論会講演予稿集24頁、1977年)しかしなが
ら、このような工夫をもってしても受光型の表示素子に
おいては未だに低消費電力で充分な明るさの表示が得ら
れないのが現状である。例えば、CRTK対抗し得る大
表示容量でカラー表示の可能性を有する薄型表示素子と
して注目されているアクティブマトリクス方式カラーフ
ィルタ内蔵液晶表示素(3) 子においては、4Wで400ニツトの輝度を有する照明
用光源を用いても表示画面においては20ニツトの輝度
しか得られず、4Wの消費電力10ニツトの輝度の得ら
れる1、5インチカラーCRTと比べても画面の明るさ
で劣っている。しかるに本発明者は、周囲光あるいは照
明用光源からの入射光を有効に表示に利用し得る新規な
構造の受光型の表示素子を創案し、本発明に至ったもの
である。
(Prior Art) Currently, the CRT (CGTHOD Ray Tube) is used as a display device for displaying characters, graphics, television images, etc.
, cathode ray tubes) are mainly used, but CRTs have the disadvantage of being bulky, and various thin display devices have been proposed to replace them, and some have been put into practical use. These display elements can be classified into light-emitting and light-receiving types. Light-emitting buttons include plasma displays, fluorescent display tubes, electroluminescent displays, light-emitting diode displays, etc., and light-receiving buttons include liquid crystal displays and electrochromic buttons. Displays, electrophoretic displays, electro-optic crystal displays, etc. Each of these thin display elements has its own advantages and disadvantages, but in general, light-emitting display elements provide a bright display but require a high driving voltage.
On the other hand, although light-receiving display elements generally consume less power, they have the disadvantage that the display is difficult to see in dark places because they are light-receiving types that do not emit light themselves. There is. For this reason, light-receiving display elements are designed to incorporate a reflective structure to capture a large amount of ambient light, but even so, the display is hardly visible under weak ambient light. Therefore, in many cases, a light-receiving display element is provided with an illumination light source behind it. However, when a light source for illumination is provided, its power consumption is large, and the advantage of low power consumption of the light-receiving display element is lost. Therefore, in order to reduce power consumption as much as possible and obtain display brightness comparable to that of light-emitting display elements, K is to use the incident light from the illumination light source as effectively as possible for display in transmissive display elements. is essential. Conventionally, as a means of achieving this, for example, a fluorescent light is irradiated from the edge of a transparent substrate of a liquid crystal display element, and the incident light from the fluorescent light is repeatedly reflected inside the transparent substrate and effectively illuminates the entire display surface. was taken. (Proceedings of the 3rd Liquid Crystal Symposium, p. 24, 1977) However, even with these efforts, light-receiving display elements still cannot provide sufficiently bright displays with low power consumption. This is the current situation. For example, an active matrix type liquid crystal display element (3) with a built-in color filter, which is attracting attention as a thin display element with a large display capacity comparable to CRTKs and the possibility of color display, has a luminance of 400 nits at 4W. Even with a standard light source, only 20 nits of brightness can be obtained on the display screen, which is inferior to a 1.5-inch color CRT that consumes 4W and has a power consumption of 10 nits. However, the present inventors have devised a light-receiving type display element with a novel structure that can effectively utilize ambient light or incident light from an illumination light source for display, resulting in the present invention.

(発明の目的) 本発明の目的は明るい画面の表示が可能な受光型の表示
素子を提供することにある。
(Object of the Invention) An object of the present invention is to provide a light-receiving display element capable of displaying a bright screen.

(発明の構成) 本発明の透過型表示素子は、少なくとも1枚の透明体を
表示物質の支持基板として用い、該支持基板の背後から
の入射光を前記表示物質によって制御して表示を行なう
方式の透過型表示素子であり、前記支持基板の背面に微
小レンズ配列を有する集光体を併置した点に特徴がある
(Structure of the Invention) The transmissive display element of the present invention uses at least one transparent body as a support substrate for a display substance, and performs display by controlling incident light from behind the support substrate by the display substance. It is a transmission type display element, and is characterized in that a light condenser having a microlens array is placed on the back side of the support substrate.

(4)− (実施例1) 以下に図面を参照して本発明の詳細な説明する。(4)- (Example 1) The present invention will be described in detail below with reference to the drawings.

第1図は本発明の透過型表示素子の一実施例KK用いら
れる1枚の支持基板の構造を示す模式図である。第1図
において、1は厚さ1.1mmのガラス基板、2はアモ
ルファスシリコンで形成したTPT(Th1n Fit
m Transistor+薄膜トランジスタ)、3は
Moドレイン電極、4はMOゲート電極、5は酸化イン
ジウム画素電極(透明電極)である。
FIG. 1 is a schematic diagram showing the structure of one supporting substrate used in an embodiment KK of a transmissive display element of the present invention. In Fig. 1, 1 is a glass substrate with a thickness of 1.1 mm, and 2 is a TPT (Th1n Fit) made of amorphous silicon.
3 is an Mo drain electrode, 4 is an MO gate electrode, and 5 is an indium oxide pixel electrode (transparent electrode).

図では明示していないが、3のドレイン電極と4のゲー
ト電極の交差点はチツ化シリコン絶縁膜で隔離されてい
る。第2図は第1図の支持基板を用いて形成した本発明
の透過型表示素子の一実施例の構造を示す模式図であり
、第1図の支持基板のAA’の位置に対応する場所での
断面図である。第2図において1は第1図のガラス基板
、2.3.5はそれぞれガラス基板1の上に形成された
TPT 。
Although not clearly shown in the figure, the intersection of the drain electrode 3 and the gate electrode 4 is isolated by a silicon dioxide insulating film. FIG. 2 is a schematic diagram showing the structure of an embodiment of the transmissive display element of the present invention formed using the support substrate shown in FIG. FIG. In FIG. 2, 1 is the glass substrate of FIG. 1, and 2, 3, and 5 are TPTs formed on the glass substrate 1, respectively.

ドレイン電極、画素電極である。6は1と同様の厚さ1
.1mm のガラス基板であり、その上には全面に形成
された酸化インジウム共通電極7および画素電極5と対
応する位置に形成されたドツト状のカラーフィルタ8が
設けられている。なおりラーフィルタ8は赤、青、緑の
3種類が交互に配置されている。2枚のガラス基板1お
よび6はエポキシ接着剤9で周囲を接着固定されており
、その間隙には黒色の二色性色素を含む液晶物質10が
充填されており、いわゆるゲストホスト型のアクティブ
マトリクス方式カラーフィルタ内蔵液晶表示素子を構成
している。更に、ガラス基板1の背面には「かまぼこ型
」の微小レンズ配列を有するアクリル製の集光体11が
併置されている。
These are the drain electrode and the pixel electrode. 6 is the same thickness as 1
.. It is a 1 mm 2 glass substrate, on which are provided an indium oxide common electrode 7 formed over the entire surface and a dot-shaped color filter 8 formed at a position corresponding to the pixel electrode 5. Three types of color filters 8, red, blue, and green, are arranged alternately. Two glass substrates 1 and 6 are adhesively fixed around the periphery with an epoxy adhesive 9, and the gap between them is filled with a liquid crystal material 10 containing a black dichroic dye, forming a so-called guest-host active matrix. It constitutes a liquid crystal display element with a built-in color filter. Further, on the back side of the glass substrate 1, an acrylic light condenser 11 having a "cylindrical-shaped" microlens array is placed side by side.

本実施例においては液晶物質が表示物質であり、この表
示物質の支持基板としての透明体が2枚のガラス基板で
ある。液晶物質はゲート電極4.ドレイン電極3.共通
電極7に選択的に印加される電圧波形に応じて、よく知
られているゲストホスト型の電気光学効果を示す。すな
わち、「オン画素」上ではガラス基板1の背後からの入
射光をほとんど透過し、「オフ画素」上ではガラス基板
1の背後からの入射光をほとんど吸収l−て透過させな
い。
In this embodiment, the liquid crystal material is the display material, and the transparent bodies serving as supporting substrates for the display material are two glass substrates. The liquid crystal material is the gate electrode 4. Drain electrode 3. Depending on the voltage waveform selectively applied to the common electrode 7, a well-known guest-host type electro-optic effect is exhibited. That is, on the "on pixel" almost all incident light from behind the glass substrate 1 is transmitted, and on the "off pixel" almost all incident light from behind the glass substrate 1 is absorbed and not transmitted.

透過光は各画素電極に対応して形成されたカラーフィル
タによって着色して見えるので、結局、黒色背景に赤、
青、緑およびそれらの混色によるカラー表示が実現され
る。
The transmitted light appears to be colored by the color filter formed corresponding to each pixel electrode, so in the end, red and red on a black background appear.
Color display using blue, green, and a mixture thereof is realized.

(発明の作用効果) ここで微小レンズ配列を有する集光体11の効果を第3
図を用いて説明する。第3図は第2図のガラス基板1お
よび集光体11の一部をほぼ正確な縮尺で描いた図であ
り、12は「オン画素」上で液晶物質が入射光を透過す
る状態にある、いわゆる開口部の領域を示すものである
。すなわち、第1図かられかるようにゲストホスト型の
液晶物質の電気光学効果によって入射光が制御される、
いわゆる画素領域は第1図の画素電極5の領域だけであ
り、それ以外の領域は常に入射光を遮断する状態にある
。本実施例においては、第1図における画素電極が占め
る面積は全体の約60%であり、第3図において開口部
12の長さは180μm開口部の間隔は70μmである
。第3図において、ガラス基板1の背後からの入射光の
うち20の光(7) 路をとるものは直進して開口部12を通り、表示に有効
に寄与する。また、21または22の光路をとる入射光
はいずれも集光体11の背面に形成された微小レンズ配
列により屈折されて、やはり開口部12を通り表示に有
効に寄与する。すなわち、本実施例の透過型表示素子に
おいては第3図の面内においてはすべての入射光が開口
部12を通り、表示に有効に寄与する。しかしながら、
集光体11のない従来構造においては、第3図に破線で
示した如く、入射光21.22も31.32のように直
進し、非開口部に到達して表示には寄与しなくなる。本
実施例においては、集光体11の背後に400ニツトの
輝度を有する照明光源を設置した場合28ニツトの表示
輝度が得られ、集光体を設置しない場合の表示輝度2o
ニツトに比べて顕著な改善が見られ、明るい画面の表示
が実現された。もちろん格別の照明光源を設置しない場
合にも、本実施例の透過型表示素子は従来構造のものに
比べて明るい画面の表示が得られた。なお本実施例にお
いては半円柱状の微小レンズ配列の集(相 光体な用いたために、半円柱レンズと平行な方向(第1
図の紙面内でAA’に垂直な方向)での開口率に対する
集光効果が得られなかったが、微小レンズ配列を半球状
の微小レンズの配列とすることにより更に効果が上がり
、本実施例における表示輝度28ニツトが33ニット程
度I/C1で改善される。
(Actions and Effects of the Invention) Here, the effect of the condenser 11 having a microlens array will be described as a third effect.
This will be explained using figures. FIG. 3 is a diagram depicting a portion of the glass substrate 1 and the condenser 11 in FIG. 2 to approximately exact scale, and 12 is a state in which the liquid crystal material transmits incident light on the "on pixel". , which indicates the area of the so-called opening. That is, as shown in FIG. 1, the incident light is controlled by the electro-optic effect of the guest-host type liquid crystal material.
The so-called pixel region is only the region of the pixel electrode 5 in FIG. 1, and the other regions are always in a state of blocking incident light. In this embodiment, the area occupied by the pixel electrode in FIG. 1 is about 60% of the total area, and the length of the opening 12 in FIG. 3 is 180 μm, and the interval between the openings is 70 μm. In FIG. 3, of the incident light from behind the glass substrate 1, 20 light beams (7) travel straight through the opening 12 and effectively contribute to the display. Further, the incident light that takes the optical path 21 or 22 is refracted by the microlens array formed on the back surface of the condenser 11, passes through the aperture 12, and effectively contributes to display. That is, in the transmissive display element of this embodiment, all incident light passes through the aperture 12 within the plane of FIG. 3 and effectively contributes to display. however,
In the conventional structure without the condenser 11, as shown by the broken line in FIG. 3, the incident light 21.22 also travels straight as 31.32, reaches the non-aperture, and does not contribute to the display. In this example, when an illumination light source with a brightness of 400 nits is installed behind the light condenser 11, a display brightness of 28 nits is obtained, and when no light condenser is installed, the display brightness is 200 nits.
A noticeable improvement was seen compared to the Nitsuto, and a brighter screen display was realized. Of course, even when no special illumination light source was installed, the transmissive display element of this example provided a brighter screen display than that of the conventional structure. In addition, in this example, since a collection of semi-cylindrical microlens arrays (phase light body) was used, the direction parallel to the semi-cylindrical lenses (the first
Although the light focusing effect on the aperture ratio in the direction perpendicular to AA' within the plane of the figure could not be obtained, the effect was further improved by making the microlens array a hemispherical microlens arrangement, and this example The display brightness of 28 nits is improved by I/C1 by about 33 nits.

(実施例2及び3) 第4図および第5図はそれぞれ本発明の他の実施例にお
ける微小レンズ配列を有する集光体の形状を示す断面図
であり、第4図のものは「V溝形状」、第5図のもの1
台形形状」の微小レンズとしたものである。これらの実
施例忙おいても、第2図の「半円柱状」の微小レンズと
した場合と全く同等の効果が得られ、従来構造の透過型
表示素子に比べて明るい画面の表示が得られた。なお、
以上の実施例においては、いわゆるアクティブマトリク
ス方式カラーフィルタ内蔵の液晶表示素子の場合につい
て述べたが本発明の効果はカラーフィルタ内蔵方式ある
いはアクティブマトリクス方%I’l:二 IWVE〒
← n 4 % vノ −epニ ア−1= 鴫ζ、 
、1ノミ フ一’−W & Wノ’J Uノ」曙−ノノ
作モードもゲストホスト型に限定されるものではない0
但し、各画素にスイッチング素子を接続して液晶物質等
の表示物質を動作させるアクティブマトリクス方式にお
いては、スイッチング素子が表示画面の開口率を著しく
低下させるので本発明の効果が極めて顕著に発揮される
。また、各画素に対応する位置にカラーフィルタ配列を
設置した構造の液晶表示素子に−おいてもカラーフィル
タによって入射光が波長的に選択されて透過光量すなわ
ち輝度を著しく低下させるので本発明の効果が極めて顕
著に発揮される。
(Embodiments 2 and 3) FIGS. 4 and 5 are cross-sectional views showing the shape of a condenser having a microlens array in other embodiments of the present invention, and the one in FIG. "Shape", Figure 5 1
It is a trapezoidal microlens. Even in these embodiments, the same effect as the "semi-cylindrical" microlens shown in Fig. 2 can be obtained, and a brighter screen display can be obtained than with the conventionally structured transmissive display element. Ta. In addition,
In the above embodiments, the case of a so-called active matrix type liquid crystal display element with a built-in color filter has been described.
← n 4 % v no -ep near-1= 紫ζ,
, 1 Nomi Fuichi'-W & W no'J Uno' Akebono-Nonosaku mode is not limited to the guest host type.
However, in an active matrix method in which a switching element is connected to each pixel to operate a display material such as a liquid crystal material, the effect of the present invention is extremely pronounced because the switching element significantly reduces the aperture ratio of the display screen. . Furthermore, even in a liquid crystal display element having a structure in which a color filter array is installed at a position corresponding to each pixel, the color filter selects the incident light in terms of wavelength and significantly reduces the amount of transmitted light, that is, the brightness, so the present invention is effective. is extremely pronounced.

(実施例4) 表示物質としてエレク)Rりμミック材を用いた場合の
実施例を第6図に示す。この場合は、支持基板は1枚で
もよい。図は1例であり、41はガラス基板、42はポ
リシリコンで形成したTぬ−43はMoドレイン電極、
45は酸化スズ画素電極、50は表示物質の酸イヒタン
グステン層、52はイオン伝導層としてのフッ化マグネ
シウムm、47は酸化スズ共通電極、51はガラス基板
41の背後に設けられた「かまぼこ型」の微小レンズ配
列を有するアクリル製の集光体である。この実施例でも
前述の実施例と同様の効果が得られた。
(Example 4) FIG. 6 shows an example in which an ELECTRIC μmic material is used as the display material. In this case, only one support substrate may be used. The figure shows one example, 41 is a glass substrate, 42 is a polysilicon T-43 is a Mo drain electrode,
45 is a tin oxide pixel electrode, 50 is an ichtungsten oxide layer as a display material, 52 is magnesium fluoride m as an ion conductive layer, 47 is a tin oxide common electrode, and 51 is a "semi-cylindrical shape" provided behind the glass substrate 41. This is an acrylic light condenser with a microlens array. In this example, the same effects as in the above-mentioned example were obtained.

尚、表示物質としては、上記各実施例で示したもの以外
の材料、例えば、表示物質として、公知のエレクトロク
ロミック物質やPLZTの名称で知られる物質で代表さ
れる電気光学結晶、あるいはガーネット等の磁気光学結
晶等を用いた場合にも本発明が有効であることは言うま
でもない。
The display material may be a material other than those shown in the above examples, for example, a known electrochromic material, an electro-optic crystal represented by a material known by the name PLZT, or a material such as garnet. It goes without saying that the present invention is also effective when a magneto-optic crystal or the like is used.

以上述べたように、本発明によれば明るい画面の表示が
可能な受光型の表示素子が得られる。
As described above, according to the present invention, a light-receiving display element capable of displaying a bright screen can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における1枚の支持基板の構
造を示す図で、1はガラス基板、2は薄膜トランジスタ
、3はドレイン電極、4はゲート電極、5は画素電極で
ある。第2図は、第1図の支持基板を用いた本発明の一
実施例の構造を示す断面図であり、1.2.3.5は第
1図と同じ、6はガラス基板、7は対向電極、8はカラ
ーフィルタ、9は接着剤、10ト表示物質、11は微小
レンズ配列を有する集光体である。第3図は第2図の実
夕 施例の効果を説明するたjの図であり、1.11は第2
図と同じ、12は表示の開口部、20.21.22は入
射光の光路、31.32は比較のために示した集光体1
1がない従来構造における入射光の光路である。第4図
、第5図は本発明の他の実施例に用いた微小レンズ配列
を有する集光体の断面図である。第6図は表示物質とし
てエレクトロクμミック材を用いた場合の実施例を示す
図である。 閃胃人弁理士 向見 晋 才 1 区 才3図 千 6 閏 1ワワ
FIG. 1 is a diagram showing the structure of one supporting substrate in an embodiment of the present invention, in which 1 is a glass substrate, 2 is a thin film transistor, 3 is a drain electrode, 4 is a gate electrode, and 5 is a pixel electrode. FIG. 2 is a cross-sectional view showing the structure of an embodiment of the present invention using the support substrate shown in FIG. 1, in which 1, 2, 3, and 5 are the same as in FIG. A counter electrode, 8 a color filter, 9 an adhesive, 10 a display material, and 11 a light condenser having a microlens array. FIG. 3 is a diagram for explaining the effect of the embodiment of FIG. 2, and 1.11 is a diagram of the second embodiment.
Same as the figure, 12 is the display aperture, 20.21.22 is the optical path of the incident light, 31.32 is the condenser 1 shown for comparison.
1 is the optical path of the incident light in a conventional structure without 1. 4 and 5 are cross-sectional views of a condenser having a microlens array used in another embodiment of the present invention. FIG. 6 is a diagram showing an example in which an electrochromic material is used as the display material. Sengo Patent Attorney Shinsai Mukami 1 Kusai 3 Zusen 6 Leap 1 Wawa

Claims (1)

【特許請求の範囲】[Claims] 少なくとも1枚f又は複数の透明体から成る支持基板と
この支持基板に支持される底示物質とを備え、該支持基
板の背彼からの入射光を前記表示物質によって制御して
表示を行なう方式の透過型表示素子において、前記支持
基板の背面に微小レンズ配列を有する集光体を設置した
ことを特徴とする透過型表示素子。
A system comprising a supporting substrate made of at least one transparent body or a plurality of transparent bodies and a bottom indicator material supported by the supporting substrate, and displaying by controlling incident light from the back of the supporting substrate with the display material. 1. A transmissive display element characterized in that a light condenser having a microlens array is disposed on the back surface of the support substrate.
JP59021120A 1984-02-08 1984-02-08 Transmission type display element Pending JPS60165622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59021120A JPS60165622A (en) 1984-02-08 1984-02-08 Transmission type display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59021120A JPS60165622A (en) 1984-02-08 1984-02-08 Transmission type display element

Publications (1)

Publication Number Publication Date
JPS60165622A true JPS60165622A (en) 1985-08-28

Family

ID=12046017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59021120A Pending JPS60165622A (en) 1984-02-08 1984-02-08 Transmission type display element

Country Status (1)

Country Link
JP (1) JPS60165622A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124028A (en) * 1986-11-13 1988-05-27 Fuji Photo Film Co Ltd Liquid crystal shutter array
JPH021816A (en) * 1988-06-11 1990-01-08 Sharp Corp Liquid crystal display device
JPH0212224A (en) * 1988-06-30 1990-01-17 Sharp Corp Liquid crystal display device
JPH02209093A (en) * 1989-02-09 1990-08-20 Sony Corp Liquid crystal display device
EP0425251A2 (en) * 1989-10-23 1991-05-02 Sharp Kabushiki Kaisha Image display apparatus
JPH03140920A (en) * 1989-10-26 1991-06-14 Matsushita Electric Ind Co Ltd Projection type display device and liquid crystal display device used for this projection type display device
US5052783A (en) * 1988-10-26 1991-10-01 Sharp Kabushiki Kaisha Projection type image display apparatus
US5161042A (en) * 1990-06-28 1992-11-03 Sharp Kabushiki Kaisha Color liquid crystal display device using dichroic mirrors for focusing different colors in different directions
US5337186A (en) * 1991-06-03 1994-08-09 Nippon Sheet Glass, Inc. Transmissive image display device
US5359440A (en) * 1989-10-23 1994-10-25 Sharp Kabushiki Kaisha Image display apparatus with microlens plate having mutually fused together lenses resulting in hexagonal shaped microlenses
US5381187A (en) * 1989-07-19 1995-01-10 Sharp Kabushiki Kaisha Image display apparatus
US5455694A (en) * 1991-03-14 1995-10-03 Hitachi, Ltd. Liquid crystal display with pixel shape same as image of light source through microlens
US5459592A (en) * 1992-04-24 1995-10-17 Sharp Kabushiki Kaisha Projection display system including a collimating tapered waveguide or lens with the normal to optical axis angle increasing toward the lens center
US5481385A (en) * 1993-07-01 1996-01-02 Alliedsignal Inc. Direct view display device with array of tapered waveguide on viewer side
US5521726A (en) * 1994-08-26 1996-05-28 Alliedsignal Inc. Polarizer with an array of tapered waveguides
US5543942A (en) * 1993-12-16 1996-08-06 Sharp Kabushiki Kaisha LCD microlens substrate with a lens array and a uniform material bonding member, each having a thermal resistance not lower than 150°C
US5554251A (en) * 1991-04-03 1996-09-10 Sharp Kabushiki Kaisha Optical device assemble apparatus
US5680186A (en) * 1990-02-26 1997-10-21 Sharp Kabushiki Kaisha Liquid crystal display device with microlenses having a focal point between a cover layer and the liquid crystal layer's center
US6137555A (en) * 1997-03-26 2000-10-24 Matsushita Electronics Corporation Liquid crystal panel with uniform adhesive layer and method of manufacturing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974438A (en) * 1972-10-10 1974-07-18
JPS57157215A (en) * 1981-03-24 1982-09-28 Citizen Watch Co Ltd Matrix display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974438A (en) * 1972-10-10 1974-07-18
JPS57157215A (en) * 1981-03-24 1982-09-28 Citizen Watch Co Ltd Matrix display device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124028A (en) * 1986-11-13 1988-05-27 Fuji Photo Film Co Ltd Liquid crystal shutter array
JPH021816A (en) * 1988-06-11 1990-01-08 Sharp Corp Liquid crystal display device
JPH0212224A (en) * 1988-06-30 1990-01-17 Sharp Corp Liquid crystal display device
US5052783A (en) * 1988-10-26 1991-10-01 Sharp Kabushiki Kaisha Projection type image display apparatus
JPH02209093A (en) * 1989-02-09 1990-08-20 Sony Corp Liquid crystal display device
US5715022A (en) * 1989-07-19 1998-02-03 Sharp Kabushiki Kaisha Image display apparatus
US5381187A (en) * 1989-07-19 1995-01-10 Sharp Kabushiki Kaisha Image display apparatus
US5359440A (en) * 1989-10-23 1994-10-25 Sharp Kabushiki Kaisha Image display apparatus with microlens plate having mutually fused together lenses resulting in hexagonal shaped microlenses
EP0425251A2 (en) * 1989-10-23 1991-05-02 Sharp Kabushiki Kaisha Image display apparatus
JPH03140920A (en) * 1989-10-26 1991-06-14 Matsushita Electric Ind Co Ltd Projection type display device and liquid crystal display device used for this projection type display device
US5680186A (en) * 1990-02-26 1997-10-21 Sharp Kabushiki Kaisha Liquid crystal display device with microlenses having a focal point between a cover layer and the liquid crystal layer's center
US5161042A (en) * 1990-06-28 1992-11-03 Sharp Kabushiki Kaisha Color liquid crystal display device using dichroic mirrors for focusing different colors in different directions
US5455694A (en) * 1991-03-14 1995-10-03 Hitachi, Ltd. Liquid crystal display with pixel shape same as image of light source through microlens
US5684548A (en) * 1991-03-14 1997-11-04 Hitachi, Ltd. Liquid crystal display element and micro-lens arrangement and a display using the same
USRE38175E1 (en) * 1991-03-14 2003-07-08 Hitachi, Ltd. Liquid crystal display element and micro-lens arrangement and a display using the same
US5554251A (en) * 1991-04-03 1996-09-10 Sharp Kabushiki Kaisha Optical device assemble apparatus
US5337186A (en) * 1991-06-03 1994-08-09 Nippon Sheet Glass, Inc. Transmissive image display device
US5459592A (en) * 1992-04-24 1995-10-17 Sharp Kabushiki Kaisha Projection display system including a collimating tapered waveguide or lens with the normal to optical axis angle increasing toward the lens center
US5481385A (en) * 1993-07-01 1996-01-02 Alliedsignal Inc. Direct view display device with array of tapered waveguide on viewer side
US5543942A (en) * 1993-12-16 1996-08-06 Sharp Kabushiki Kaisha LCD microlens substrate with a lens array and a uniform material bonding member, each having a thermal resistance not lower than 150°C
US5521726A (en) * 1994-08-26 1996-05-28 Alliedsignal Inc. Polarizer with an array of tapered waveguides
US6137555A (en) * 1997-03-26 2000-10-24 Matsushita Electronics Corporation Liquid crystal panel with uniform adhesive layer and method of manufacturing

Similar Documents

Publication Publication Date Title
JPH0756547B2 (en) Transmissive display element
JPS60165622A (en) Transmission type display element
JPS60165621A (en) Transmission type display element
KR100575452B1 (en) electroretic display and transflective liquid crystal display device using electroretic display
JP4924393B2 (en) Display device
JPS60165624A (en) Transmission type display element
KR100688230B1 (en) Transflective liquid crystal display device
KR100760938B1 (en) Reflection type Liquid Crystal Display Device
US5666175A (en) Optical systems for displays
WO2006075564A1 (en) Liquid crystal display unit
JPH06342146A (en) Picture display device, semiconductor device and optical instrument
JP2000019563A5 (en)
JPH043856B2 (en)
KR100656695B1 (en) transflective liquid crystal display device
CN109786418A (en) Micro- LED display panel and display device
JP2000298267A (en) Liquid crystal display device
TWI241435B (en) Liquid crystal display device
JPH021816A (en) Liquid crystal display device
KR100613437B1 (en) transflective liquid crystal display device
JPH0212224A (en) Liquid crystal display device
US6330099B1 (en) Liquid crystal apron and skirt isolation for silicon micro displays
KR20080041853A (en) Apparatus for getting/displaying image using ultra small size lens and lcd array
JPH11326929A (en) Liquid crystal display element
JPH02230126A (en) Reflection type liquid crystal display device
KR100323659B1 (en) Structure of device having optical system mounted therein according to hybrid method