JPH0756547B2 - Transmissive display element - Google Patents

Transmissive display element

Info

Publication number
JPH0756547B2
JPH0756547B2 JP59021121A JP2112184A JPH0756547B2 JP H0756547 B2 JPH0756547 B2 JP H0756547B2 JP 59021121 A JP59021121 A JP 59021121A JP 2112184 A JP2112184 A JP 2112184A JP H0756547 B2 JPH0756547 B2 JP H0756547B2
Authority
JP
Japan
Prior art keywords
display
display element
light
liquid crystal
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59021121A
Other languages
Japanese (ja)
Other versions
JPS60165623A (en
Inventor
省平 苗村
敏彦 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59021121A priority Critical patent/JPH0756547B2/en
Publication of JPS60165623A publication Critical patent/JPS60165623A/en
Publication of JPH0756547B2 publication Critical patent/JPH0756547B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は透過型で明るい画面の表示が可能な受光型の表
示素子に関する。
TECHNICAL FIELD The present invention relates to a transmissive light-receiving display element capable of displaying a bright screen.

(従来技術) 現在、文字図形およびテレビ画像等を表示する表示装置
としてはCRT(Cathod Ray Tube、陰極線管)が主に用い
られているが、CRTは体積が大きいという欠点を有し、
これにかわる薄型の表示素子として種々のものが提案さ
れて一部は実用化されている。これらの表示素子は発光
型と受光型とに分類することができ、発光型にはプラズ
マディスプレイ、螢光表示管、エレクトロルミネセンス
ディスプレイ、発光ダイオードディスプレイ等が、また
受光型には液晶表示、エレクトロクロミックディスプレ
イ、電気泳動ディスプレイ、電気光学結晶ディスプレイ
等がある。これらの薄型表示素子はそれぞれ長所短所を
有しているが、一般に発光型表示素子は明るい表示が得
られるが駆動電圧が高い、あるいは消費電力が大きいと
いう欠点を有しており、一方、受光型表示素子は一般に
消費電力は小さいが、自らは発光しない受光型であるた
めに暗い所では表示が見難いという欠点を有している。
このために、受光型表示素子においては反射型構造とし
て周囲光を多く取り込む工夫等がなされているが、それ
でも微弱な周囲光の下ではほとんど表示が見えない。従
って、受光型表示素子においては多くの場合、背後に照
明用光源が設けられる。しかしながら、照明用光源を設
けた場合にはその消費電力が大きく、受光型表示素子の
消費電力が小さいという長所が損なわれてしまう。従っ
て、消費電力をできる限り小さくして発光型表示素子に
劣らない表示の明るさを得るためには、透過型の表示素
子において照明用光源からの入射光を出来る限り有効に
表示に利用することが肝要である。その手段として、従
来は例えば液晶表示素子の透明基板の端面から螢光灯を
照射し、螢光灯からの入射光が透明基板の内部で反射を
繰返しながら表示面の全面に有効に照射するような構造
がとられていた。(第3回液晶討論会講演予稿集24頁、
1977年)しかしながら、このような工夫をもってしても
受光型の表示素子においては未だに低消費電力で充分な
明るさの表示が得られないのが現状である。例えば、CR
Tに対抗し得る大表示容量でカラー表示の可能性を有す
る薄型表示素子として注目されているアクティブマトリ
クス方式カラーフィルタ内蔵液晶表示素子においては、
4Wで400ニットの輝度を有する照明用光源を用いても表
示画面においては20ニットの輝度しか得られず、4Wの消
費電力で40ニットの輝度の得られる1.5インチカラーCRT
と比べても画面の明るさで劣っている。しかるに本発明
者は、周囲光あるいは照明用光源からの入射光を有効に
表示に利用し得る新規な構造の受光型の表示素子を創案
し、本発明に至ったものである。
(Prior Art) Currently, a CRT (Cathod Ray Tube, cathode ray tube) is mainly used as a display device for displaying a character graphic, a television image, and the like, but the CRT has a disadvantage of large volume,
Various thin display elements have been proposed as alternatives, and some have been put to practical use. These display elements can be classified into a light-emitting type and a light-receiving type. The light-emitting type includes a plasma display, a fluorescent display tube, an electroluminescence display, a light-emitting diode display, and the light-receiving type includes a liquid crystal display and an electro-luminescent display. There are chromic displays, electrophoretic displays, electro-optic crystal displays and the like. Although each of these thin display elements has advantages and disadvantages, in general, a light-emitting display element has a drawback in that a bright display can be obtained, but a driving voltage is high or power consumption is large. Although the display element generally consumes less power, it has a drawback that the display is difficult to see in a dark place because it is a light receiving type that does not emit light by itself.
For this reason, the light-receiving display element has been devised as a reflection type structure to take in a large amount of ambient light, but still the display is barely visible under weak ambient light. Therefore, in many cases, a light source for illumination is provided behind the light receiving display element. However, when the illumination light source is provided, the power consumption thereof is large, and the advantage that the power consumption of the light receiving display element is small is impaired. Therefore, in order to reduce the power consumption as much as possible and obtain a display brightness comparable to that of the light emitting display element, the incident light from the illumination light source should be used for the display as effectively as possible in the transmissive display element. Is essential. As a means for this, conventionally, for example, a fluorescent lamp is irradiated from an end surface of a transparent substrate of a liquid crystal display element, and incident light from the fluorescent lamp is repeatedly reflected inside the transparent substrate to effectively irradiate the entire display surface. It had a unique structure. (Proceedings of the 3rd Liquid Crystal Conference, page 24,
(1977) However, even with such a device, it is the current situation that a light-receiving display element still cannot obtain a display of sufficient brightness with low power consumption. For example, CR
In the active matrix type color filter built-in liquid crystal display element, which is attracting attention as a thin display element having a large display capacity capable of countering T and the possibility of color display,
A 1.5-inch color CRT that can obtain a brightness of 20 nits on the display screen even if a light source for illumination having a brightness of 400 nits at 4 W is obtained, and a brightness of 40 nits can be obtained at a power consumption of 4 W.
The screen brightness is inferior to that of. Therefore, the present inventor has arrived at the present invention by creating a light-receiving display element having a novel structure that can effectively use ambient light or incident light from an illumination light source for display.

(発明の目的) 本発明の目的は明るい画面の表示が可能な受光型の表示
素子を提供することにある。
(Object of the Invention) An object of the present invention is to provide a light-receiving display element capable of displaying a bright screen.

(発明の構成) 本発明の透過型表示素子は、少なくとも1枚の透明体を
表示物質の支持基板として用い、該支持基板の背後から
の入射光を前記表示物質によって制御して表示を行なう
方式の透過型表示素子であり、前記支持基板の背面に透
明樹脂層をパターン形成し、該パターン化透明樹脂層を
レンズ形状に加工して微小レンズ配列を構成した点に特
徴がある。
(Structure of the Invention) In the transmissive display element of the present invention, at least one transparent body is used as a support substrate for a display material, and the incident light from behind the support substrate is controlled by the display material to perform display. The transparent type display element is characterized in that a transparent resin layer is patterned on the back surface of the support substrate, and the patterned transparent resin layer is processed into a lens shape to form a minute lens array.

実施例 以下に図面を参照して本発明を詳細に説明する。第1図
は本発明の透過型表示素子の一実施例に用いられる1枚
の支持基板の構造を示す模式図である。第1図におい
て、1は厚さ1.1mmのガラス基板、2はアモルファスシ
リコンで形成したTFT(Thin Film Transistor、薄膜ト
ランジスタ)、3はMoドレイン電極、4はMoゲート電
極、5は酸化インジウム画素電極(透明電極)である。
図では明示していないが、3のドレイン電極と4のゲー
ト電極の交差点はチッ化シリコン絶縁膜で隔離されてい
る。第2図は第1図の支持基板を用いて形成した本発明
の透過型表示素子の一実施例の構造を示す模式図であ
り、第1図の支持基板のAA′の位置に対応する場所での
断面図である。第2図において1は第1図のガラス基
板、2,3,5はそれぞれガラス基板1の上に形成されたTF
T、ドレイン電極、画素電極である。6は1と同様の厚
さ1.1mmのガラス基板であり、その上には全面に形成さ
れた酸化インジウム共通電極7および画素電極5と対応
する位置に形成されたドット状のカラーフィルタ8が設
けられている。なおカラーフィルタ8は赤、青、緑の3
種類が交互に配置されている。2枚のガラス基板1およ
び6はエポキシ接着剤9で周囲を接着固定されており、
その間隙には黒色の二色性色素を含む液晶物質10が充填
されており、いわゆるゲストホスト型のアクティブマト
リクス方式カラーフィルタ内蔵液晶表示素子を構成して
いる。また、ガラス基板1の背面には半円柱状の微小レ
ンズ配列が形成されている。これは以下のような方法で
形成した。まず、ガラス基板1の背面に透明なフェノー
ル系の感光性樹脂を200μmの厚さにスピナー塗布し、
通常のディープUV露光の手法で硬化させるとともに、ガ
ラス転移温度以上に加熱して樹脂表面を平滑化し更にガ
ラス基板との強固な接着状態を実現した。次に、この樹
脂層の上に同じ感光性樹脂を20μmの厚さにスピナー塗
布し、通常のディープUV リソグラフィの手法を用いて
ストライプ状にパターン化した。更に、この状態のパタ
ーン化透明樹脂層をガラス転移温度以上に加熱してスト
ライプ形状のエッジ部に「だれ」を生ぜしめて半円柱レ
ンズ形状に加工した。本実施例においては液晶物質が表
示物質であり、この表示物質の支持基板としての透明体
が2枚のガラス基板である。液晶物質はゲート電極4、
ドレイン電極3、共通電極7に選択的に印加される電圧
波形に応じて、よく知られているゲストホスト型の電気
光学効果を示す。すなわち「オン画素」上ではガラス基
板1の背後からの入射光をほとんど透過し、「オフ画
素」上ではガラス基板1の背後からの入射光をほとんど
吸収して透過させない。透過光は各画素電極に対応して
形成されたカラーフィルタによって着色して見えるの
で、結局、黒色背景に赤、青、緑およびそれらの混色に
よるカラー表示が実現されるわけである。ここで微小レ
ンズ配列11の効果を第3図を用いて説明する。第3図は
第2図のガラス基板1および微小レンズ配列11の一部を
ほぼ正確な縮尺で描いた図であり、12は「オン画素」上
で液晶物質が入射光を透過する状態にある、いわゆる開
口部の領域を示すものである。すなわち第1図からわか
るようにゲストホスト型の液晶物質の電気光学効果によ
って入射光が制御される、いわゆる画素領域は第1図の
画素電極5の領域だけであり、それ以外の領域は常に入
射光を遮断する状態にある。本実施例においては、第1
図における画素電極が占める面積は全体の約60%であ
り、第3図において開口部12の長さは180μm、開口部
の間隔は70μmである。第3図において、ガラス基板1
の背後からの入射光のうち20の光路をとるものは直進し
て開口部12を通り、表示に有効に寄与する。また、21ま
たは22の光路をとる入射光はいずれも微小レンズ配列11
により屈折されて、やはり開口部12を通り表示に有効に
寄与する。すなわち、本実施例の透過型表示素子におい
ては第3図の面内においてはすべての入射光が開口部12
を通り、表示に有効に寄与する。しかしながら、微小レ
ンズ配列11のない従来構造においては、第3図破線で示
した如く、入射光21,22も31,32のように直進し、非開口
部に到達して表示には寄与しなくなる。本実施例におい
ては、微小レンズ配列11の背後に400ニットの輝度を有
する照明光源を設置した場合28ニットの表示輝度が得ら
れ、微小レンズ配列を有しない場合の表示輝度20ニット
に比べて顕著な改善が見られ、明るい画面の表示が実現
された。もちろん格別の照明光源を設置しない場合に
も、本実施例の透過型表示素子は従来構造のものに比べ
て明るい画面の表示が得られた。なお本実施例において
は半円柱状の微小レンズ配列を用いたために、半円柱レ
ンズと平行な方向(第1図の紙面内でAA′に垂直な方
向)での開口率に対する集光効果が得られなかったが、
微小レンズ配列を半球状の微小レンズの配列とすること
により更に効果が上がり、本実施例における表示輝度28
ニットが33ニット程度にまで改善されることは容易に推
定できる。なお、以上の実施例においては、いわゆるア
クティブマトリクス方式カラーフィルタ内蔵の液晶表示
素子の場合について述べたが本発明の効果はカラーフィ
ルタ内蔵方式あるいはアクティブマトリクス方式に限定
されるものではなく、また液晶物質の動作モードもゲス
トホスト型に限定されるものではない。但し、各画素に
スイッチング素子を接続して液晶物質等の表示物質を動
作させるアクティブマトリクス方式においては、スイッ
チング素子が表示画面の開口率を著しく低下させるので
本発明の効果が極めて顕著に発揮される。また、各画素
に対応する位置にカラーフィルタ配列を設置した構造の
液晶表示素子においてもカラーフィルタによって入射光
が波長的に選択されて透過光量すなわち輝度を著しく低
下させるので本発明の効果が極めて顕著に発揮される。
なお、表示物質について、以上の実施例で述べた液晶物
質は何ら本発明を制限するものではなく、例えば表示物
質として、公知のエレクトロクロミック物質やPLZTの名
称で知られる物質で代表される電気光学結晶、あるいは
ガーネット等の磁気光学結晶等を用いた場合にも本発明
が有効であることは言うまでもない。例えば表示物質と
してエレクトロクロミック物質を用いる場合等は支持基
板は1枚でもよい。第4図はその一例であり、41はガラ
ス基板、42はポリシリコンで形成したTFT、43はMoドレ
イン電極、45は酸化スズ画素電極、50は表示物質の酸化
タングステン層、52はイオン伝導層としてのフッ化マグ
ネシウム層、47は酸化スズ共通電極、51はガラス基板41
の背後に設けられた「かまぼこ型」の微小レンズ配列を
有するアクリル製の集光体である。
Examples The present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic view showing the structure of one support substrate used in one embodiment of the transmissive display element of the present invention. In FIG. 1, 1 is a 1.1 mm thick glass substrate, 2 is a TFT (Thin Film Transistor) formed of amorphous silicon, 3 is a Mo drain electrode, 4 is a Mo gate electrode, 5 is an indium oxide pixel electrode ( Transparent electrode).
Although not shown in the figure, the intersection of the drain electrode 3 and the gate electrode 4 is isolated by a silicon nitride insulating film. FIG. 2 is a schematic view showing the structure of an embodiment of the transmissive display element of the present invention formed by using the supporting substrate of FIG. 1, and a place corresponding to the position AA ′ of the supporting substrate of FIG. FIG. In FIG. 2, 1 is the glass substrate of FIG. 1, and 2, 3, 5 are TFs formed on the glass substrate 1, respectively.
T, a drain electrode, and a pixel electrode. 6 is a 1.1 mm thick glass substrate similar to 1, on which a dot-shaped color filter 8 formed at a position corresponding to the indium oxide common electrode 7 and the pixel electrode 5 formed on the entire surface is provided. Has been. The color filter 8 has three colors of red, blue and green.
The types are arranged alternately. The two glass substrates 1 and 6 have their peripheries bonded and fixed with an epoxy adhesive 9.
The gap is filled with a liquid crystal substance 10 containing a black dichroic dye, and constitutes a so-called guest-host type active matrix type color filter built-in liquid crystal display element. Further, a semi-cylindrical microlens array is formed on the back surface of the glass substrate 1. This was formed by the following method. First, a transparent phenolic photosensitive resin is applied to the back surface of the glass substrate 1 by a spinner to a thickness of 200 μm,
In addition to curing by the usual deep UV exposure method, it was heated above the glass transition temperature to smooth the resin surface and achieve a strong adhesive state with the glass substrate. Next, the same photosensitive resin was spinner-coated on this resin layer to a thickness of 20 μm, and patterned into stripes by the usual deep UV lithography technique. Further, the patterned transparent resin layer in this state was heated to a temperature not lower than the glass transition temperature to cause "drip" at the edge portion of the stripe shape and processed into a semi-cylindrical lens shape. In this embodiment, the liquid crystal substance is a display substance, and the transparent body as a supporting substrate of this display substance is two glass substrates. The liquid crystal material is the gate electrode 4,
The well-known guest-host type electro-optical effect is shown according to the voltage waveform selectively applied to the drain electrode 3 and the common electrode 7. That is, most of the incident light from the back of the glass substrate 1 is transmitted on the “on pixel”, and almost no incident light from the back of the glass substrate 1 is absorbed and transmitted on the “off pixel”. The transmitted light appears to be colored by the color filter formed corresponding to each pixel electrode, so that a color display by red, blue, green and a mixture thereof is eventually realized on a black background. Here, the effect of the minute lens array 11 will be described with reference to FIG. FIG. 3 is a diagram in which a part of the glass substrate 1 and the minute lens array 11 of FIG. 2 is drawn at a substantially accurate scale, and 12 is a state in which the liquid crystal substance transmits the incident light on the “on pixel”. , A so-called opening region. That is, as can be seen from FIG. 1, the incident light is controlled by the electro-optical effect of the guest-host type liquid crystal substance, the so-called pixel region is only the region of the pixel electrode 5 in FIG. 1, and the other regions are always incident. The light is blocked. In this embodiment, the first
The area occupied by the pixel electrodes in the figure is about 60% of the whole, and in FIG. 3, the length of the opening 12 is 180 μm and the interval between the openings is 70 μm. In FIG. 3, the glass substrate 1
Of the incident light from the back of, the light that takes the optical path of 20 goes straight through the opening 12 and effectively contributes to the display. In addition, the incident light taking the optical path of 21 or 22 is small lens array 11
It is refracted by and passes through the opening 12 and contributes effectively to the display. That is, in the transmissive display element of the present embodiment, all the incident light within the plane of FIG.
And effectively contribute to the display. However, in the conventional structure without the minute lens array 11, as shown by the broken line in FIG. 3, the incident lights 21 and 22 also go straight like 31 and 32 and reach the non-aperture portion and do not contribute to the display. . In this embodiment, a display brightness of 28 nits is obtained when an illumination light source having a brightness of 400 nits is installed behind the microlens array 11, which is more remarkable than the display brightness of 20 nits without the microlens array. There were many improvements, and a bright screen display was realized. Of course, even when no special illumination light source is installed, the transmissive display element of this embodiment can display a brighter screen than that of the conventional structure. Since a semicylindrical microlens array is used in this embodiment, a condensing effect on the aperture ratio in the direction parallel to the semicylindrical lens (the direction perpendicular to AA ′ in the plane of FIG. 1) is obtained. I wasn't able to
The effect is further improved by using a hemispherical micro lens array as the micro lens array, and the display brightness in the present embodiment is 28
It can be easily estimated that the knit will be improved to about 33 knits. In the above embodiments, the case of a liquid crystal display element having a so-called active matrix color filter built-in has been described, but the effect of the present invention is not limited to the color filter built-in method or the active matrix method, and a liquid crystal material The operation mode of is not limited to the guest host type. However, in the active matrix system in which a switching element is connected to each pixel to operate a display material such as a liquid crystal material, the switching element significantly reduces the aperture ratio of the display screen, and therefore the effect of the present invention is extremely remarkably exhibited. . Further, also in a liquid crystal display element having a structure in which a color filter array is installed at a position corresponding to each pixel, the color filter filters the incident light in terms of wavelength to significantly reduce the amount of transmitted light, that is, the brightness, so that the effect of the present invention is extremely remarkable. To be demonstrated.
Regarding the display substance, the liquid crystal substances described in the above examples do not limit the present invention at all, and for example, as a display substance, an electro-optical material represented by a known electrochromic substance or a substance known by the name of PLZT. It goes without saying that the present invention is also effective when a crystal or a magneto-optical crystal such as garnet is used. For example, when an electrochromic substance is used as the display substance, the number of supporting substrates may be one. Fig. 4 shows an example of this, 41 is a glass substrate, 42 is a TFT formed of polysilicon, 43 is a Mo drain electrode, 45 is a tin oxide pixel electrode, 50 is a tungsten oxide layer of a display material, and 52 is an ion conductive layer. Magnesium fluoride layer as, 47 is a tin oxide common electrode, 51 is a glass substrate 41
It is an acrylic light collector having a "kamaboko-shaped" microlens array provided behind.

以上述べたように、本発明によれば明るい画面の表示が
可能な受光型の表示素子が得られる。
As described above, according to the present invention, it is possible to obtain a light receiving display element capable of displaying a bright screen.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例における1枚の支持基板の構
造を示す図で、1はガラス基板、2は薄膜トランジス
タ、3はドレイン電極、4はゲート電極、5は画素電極
である。第2図は、第1図の支持基板を用いた本発明の
一実施例の構造を示す断面図であり、1,2,3,5は第1図
と同じ、6はガラス基板、7は対向電極、8はカラーフ
ィルタ、9は接着剤、10は表示物質、11は微小レンズ配
列である。第3図は第2図の実施例の効果を説明するた
めの図であり、1,11は第2図と同じ、12は表示の開口
部、20,21,22は入射光の光路、31,32は比較のために示
した微小レンズ配列11がない従来構造における入射光の
光路である。第4図は本発明の別の実施例を示す図であ
る。
FIG. 1 is a diagram showing the structure of one support substrate in one embodiment of the present invention, in which 1 is a glass substrate, 2 is a thin film transistor, 3 is a drain electrode, 4 is a gate electrode, and 5 is a pixel electrode. FIG. 2 is a sectional view showing the structure of an embodiment of the present invention using the supporting substrate of FIG. 1, 1, 2, 3, 5 are the same as in FIG. 1, 6 is a glass substrate, and 7 is The counter electrode, 8 is a color filter, 9 is an adhesive, 10 is a display material, and 11 is a microlens array. FIG. 3 is a diagram for explaining the effect of the embodiment of FIG. 2, where 1 and 11 are the same as in FIG. 2, 12 is the display aperture, 20, 21 and 22 are the optical paths of incident light, and 31 Reference numerals 32 denote the optical paths of incident light in the conventional structure without the microlens array 11 shown for comparison. FIG. 4 is a diagram showing another embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】少なくとも1枚の透明体を表示物質の支持
基板として用い、該支持基板の背後からの入射光を前記
表示物質によって制御して表示を行なう方式の透過型表
示素子において、前記支持基板の背面に透明樹脂層をパ
ターン形成し、該パターン化透明樹脂層をレンズ形状に
加工して微小レンズ配列を構成したことを特徴とする透
過型表示素子。
1. A transmissive display element of a system in which at least one transparent body is used as a support substrate for a display material, and incident light from the back of the support substrate is controlled by the display material to perform display. A transmissive display element, characterized in that a transparent resin layer is patterned on the back surface of a substrate, and the patterned transparent resin layer is processed into a lens shape to form a minute lens array.
JP59021121A 1984-02-08 1984-02-08 Transmissive display element Expired - Lifetime JPH0756547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59021121A JPH0756547B2 (en) 1984-02-08 1984-02-08 Transmissive display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59021121A JPH0756547B2 (en) 1984-02-08 1984-02-08 Transmissive display element

Publications (2)

Publication Number Publication Date
JPS60165623A JPS60165623A (en) 1985-08-28
JPH0756547B2 true JPH0756547B2 (en) 1995-06-14

Family

ID=12046045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59021121A Expired - Lifetime JPH0756547B2 (en) 1984-02-08 1984-02-08 Transmissive display element

Country Status (1)

Country Link
JP (1) JPH0756547B2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118125A (en) * 1986-11-06 1988-05-23 Hitachi Ltd Liquid crystal display device
JPH0642126B2 (en) * 1988-10-26 1994-06-01 シャープ株式会社 Projection type image display device
JPH02209093A (en) * 1989-02-09 1990-08-20 Sony Corp Liquid crystal display device
ES2122151T3 (en) * 1989-07-19 1998-12-16 Sharp Kk VISUAL IMAGE PRESENTATION DEVICE.
DE69029366T2 (en) * 1989-10-30 1997-05-15 Sharp Kk Optical device with microlens and method for producing microlenses
JPH03233417A (en) * 1989-10-30 1991-10-17 Sharp Corp Optical device
JPH03248125A (en) * 1990-02-26 1991-11-06 Sharp Corp Liquid crystal display element
US5191358A (en) * 1990-03-16 1993-03-02 Brother Kogyo Kabushiki Kaisha Light scanning device with microlenses having a same power density distribution as a power density distribution of a photosetting light beam
EP0450780A3 (en) * 1990-04-05 1992-04-15 Matsushita Electric Industrial Co., Ltd. Optical microelement array and its production method
JP2622185B2 (en) * 1990-06-28 1997-06-18 シャープ株式会社 Color liquid crystal display
US5666175A (en) * 1990-12-31 1997-09-09 Kopin Corporation Optical systems for displays
KR960011399B1 (en) * 1991-04-03 1996-08-22 샤프 가부시끼가이샤 Apparatus for assembling an optical device
JP2760915B2 (en) * 1991-06-03 1998-06-04 日本板硝子株式会社 Image display device
JP3213977B2 (en) * 1991-08-23 2001-10-02 ソニー株式会社 Liquid crystal display device and manufacturing method thereof
US5459592A (en) * 1992-04-24 1995-10-17 Sharp Kabushiki Kaisha Projection display system including a collimating tapered waveguide or lens with the normal to optical axis angle increasing toward the lens center
JPH07225303A (en) * 1993-12-16 1995-08-22 Sharp Corp Microlens substrate, liquid crystal display element using the same, and liquid crystal projector device
US5793600A (en) * 1994-05-16 1998-08-11 Texas Instruments Incorporated Method for forming high dielectric capacitor electrode structure and semiconductor memory devices
US6392806B2 (en) * 1994-10-27 2002-05-21 Kopin Corporation Efficient illumination system for color projection displays
US6417967B1 (en) * 1994-10-27 2002-07-09 Massachusetts Institute Of Technology System and method for efficient illumination in color projection displays
US6560018B1 (en) 1994-10-27 2003-05-06 Massachusetts Institute Of Technology Illumination system for transmissive light valve displays
JPH0990337A (en) * 1995-09-28 1997-04-04 Sharp Corp Transmission type liquid crystal display device
US6137555A (en) * 1997-03-26 2000-10-24 Matsushita Electronics Corporation Liquid crystal panel with uniform adhesive layer and method of manufacturing
EP2116527A4 (en) 2007-01-23 2011-09-14 Fujifilm Corp Oxime compound, photosensitive composition, color filter, method for production of the color filter, and liquid crystal display element
CN101679394B (en) 2007-05-11 2013-10-16 巴斯夫欧洲公司 Oxime ester photoinitiators
WO2008138724A1 (en) 2007-05-11 2008-11-20 Basf Se Oxime ester photoinitiators
CN103153952B (en) 2010-10-05 2016-07-13 巴斯夫欧洲公司 The oxime ester derivative of benzo carbazole compound and in photopolymerisable compositions as the purposes of photoinitiator
US9051397B2 (en) 2010-10-05 2015-06-09 Basf Se Oxime ester
KR102006041B1 (en) 2011-12-07 2019-07-31 바스프 에스이 Oxime ester photoinitiators
EP3354641B1 (en) 2012-05-09 2019-07-17 Basf Se Oxime ester photoinitiators
WO2015004565A1 (en) 2013-07-08 2015-01-15 Basf Se Oxime ester photoinitiators
EP3044208B1 (en) 2013-09-10 2021-12-22 Basf Se Oxime ester photoinitiators
US20220121113A1 (en) 2019-01-23 2022-04-21 Basf Se Oxime ester photoinitiators having a special aroyl chromophore
CN115210219A (en) 2020-03-04 2022-10-18 巴斯夫欧洲公司 Oxime ester photoinitiators

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3840695A (en) * 1972-10-10 1974-10-08 Westinghouse Electric Corp Liquid crystal image display panel with integrated addressing circuitry
JPS57157215A (en) * 1981-03-24 1982-09-28 Citizen Watch Co Ltd Matrix display device

Also Published As

Publication number Publication date
JPS60165623A (en) 1985-08-28

Similar Documents

Publication Publication Date Title
JPH0756547B2 (en) Transmissive display element
JPS60165621A (en) Transmission type display element
KR100575452B1 (en) electroretic display and transflective liquid crystal display device using electroretic display
KR940000589B1 (en) Image display device of projection type
KR100688230B1 (en) Transflective liquid crystal display device
JPS60165622A (en) Transmission type display element
KR930002921B1 (en) Color filter of lcd
KR100760938B1 (en) Reflection type Liquid Crystal Display Device
US20060125982A1 (en) Liquid crystal display
JPS60165624A (en) Transmission type display element
JP3360851B2 (en) Liquid crystal display
JP3166377B2 (en) Liquid crystal display
JPH0769532B2 (en) Projection display device
JPH0212224A (en) Liquid crystal display device
KR100613437B1 (en) transflective liquid crystal display device
JPH09258207A (en) Color liquid crystal display device
KR20080041853A (en) Apparatus for getting/displaying image using ultra small size lens and lcd array
JP2785205B2 (en) Display device
KR100637283B1 (en) Transflective Liquid Crystal Display Device
WO2015096257A1 (en) Color filter substrate and liquid crystal display panel
JPH0372967B2 (en)
JPH0210317A (en) Liquid crystal display device
JP2003005164A (en) Liquid crystal display
WO2023020440A1 (en) Display substrate, manufacturing method therefor, and display device
US6191834B1 (en) Liquid crystal cell

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term