JPS60165343A - Heat resistant cast alloy having high creep breaking strength and carburizing resistance - Google Patents
Heat resistant cast alloy having high creep breaking strength and carburizing resistanceInfo
- Publication number
- JPS60165343A JPS60165343A JP2250284A JP2250284A JPS60165343A JP S60165343 A JPS60165343 A JP S60165343A JP 2250284 A JP2250284 A JP 2250284A JP 2250284 A JP2250284 A JP 2250284A JP S60165343 A JPS60165343 A JP S60165343A
- Authority
- JP
- Japan
- Prior art keywords
- creep rupture
- less
- heat resistant
- cast alloy
- resistant cast
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、石油化学工業において反応管等に使用する耐
熱鋳造合金、例えばエチレン製造用クラッキングチュー
ブに用いる耐熱鋳造合金に関し、更に詳述すれば高温ク
リープ破断強度が大きく、耐浸炭性に優れ、しかも溶接
性も良ηrな耐熱5ヅf造合金に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat-resistant cast alloy used for reaction tubes and the like in the petrochemical industry, for example, a heat-resistant cast alloy used for cracking tubes for ethylene production. The present invention relates to a heat-resistant 5㎜ alloy with excellent carburization resistance and good weldability.
従来、上記クラッキングチューブ等の材料としてNiや
Orを含む++iiJ熱lj鋼が用いられている。Conventionally, ++IIJ heat lj steel containing Ni and Or has been used as a material for the cracking tube and the like.
例えば、A8’ll’M、I(K2O材(0,4O−2
5Or−2o Ni −1Fe ) ヤf(P 40材
(0,4G−25Cr −B 5 Ni−残Fe )、
又はo4C−2sOr −a 5Ni −1,5W鋼が
使用されている。For example, A8'll'M, I (K2O material (0,4O-2
5Or-2o Ni-1Fe) Yaf (P40 material (0,4G-25Cr-B5Ni-remaining Fe),
Or o4C-2sOr-a 5Ni-1,5W steel is used.
このうち、)IK 40材は、700〜1ooo′cの
温度範囲で使用されるのが一般である。その理由は、鋳
造時にオーステナイト中へ固溶する素イー中のCが、高
温加熱されるとOrと結合し、y!1.細なカーバイド
として分散析出し、更に長時間加熱保持されると」1記
カーバイドは成長粗大化する結 □果、その状態でのク
リープ破断強度は、短時間側データから直線的に外挿し
た幀より低10する刀・らである。Of these, IK 40 material is generally used in a temperature range of 700 to 1 ooo'c. The reason for this is that C in the elemental E, which forms a solid solution in the austenite during casting, combines with Or when heated to a high temperature, and y! 1. When they are dispersed and precipitated as fine carbides, and heated and held for a longer period of time, carbides grow and become coarser.As a result, the creep rupture strength in this state is calculated by linearly extrapolating from the short-time side data. It is a sword that has a lower value of 10.
また)IP40利は、HK40制に比j、、 、IQ
iの含有量が15%多く、高7温域での耐酸化性、強度
又は組織的安定性の面において優れている。しがし、長
時間、高温に加熱保持されると、1(K4Q材と同様に
クリープ破断強度が低下するという傾向があるので、9
50〜1050°Cの温度範囲にて常用される。Also) the IP40 rate is compared to the HK40 system, , , IQ
The content of i is 15% higher, and it is excellent in terms of oxidation resistance, strength, and structural stability in the high temperature range. However, if heated and held at high temperatures for a long period of time, the creep rupture strength tends to decrease (similar to K4Q material, so
Commonly used in the temperature range of 50-1050°C.
更にQ、4C−J50r−35Ni−1,5W鋼も、上
記HP 40材と同等のクリープ破断特性を有しており
、950〜1050°Cの温度範囲にて常用される。こ
の材料は)TP 4 Q材と異なってWを含有している
ので、このWの固溶強化効果によって長時間、高温に加
熱保持された状態でのクリープ破断強度の低下は1(P
404Rよυも小さいが、その強度は十分なものではな
い。Further, Q,4C-J50r-35Ni-1,5W steel also has creep rupture properties equivalent to the above-mentioned HP 40 material, and is commonly used in the temperature range of 950 to 1050°C. Unlike the )TP4Q material, this material contains W, so due to the solid solution strengthening effect of W, the creep rupture strength decreases by 1 (P
Although υ is smaller than 404R, its strength is not sufficient.
また上述した如き耐熱鋳鋼は、いずれも1050〜11
00°Cを越えた温度領域で耐浸炭性が劣るという欠点
も有している。In addition, the heat-resistant cast steels mentioned above all have a 1050 to 11
It also has the disadvantage of poor carburization resistance in a temperature range exceeding 00°C.
従って石油化学工業において反応管等に使用される耐熱
鋳造合金としては、高温領域におけるクリープ破断強度
が大きく、耐浸炭性に優れた材料の開発が望まれている
。Therefore, as a heat-resistant casting alloy used for reaction tubes and the like in the petrochemical industry, it is desired to develop a material that has high creep rupture strength in a high temperature range and excellent carburization resistance.
更に石油化学工業においてクラッキングチューブ等の反
応管を組み立てるべく連続配管する場合には、T 、I
G溶接、ΔiIG浴接、1皮覆アーク浴接等のアーク
溶接が用いられるので、」−記反応管等に使用される耐
熱5誇造合金としては良好な溶接性も要求される。Furthermore, when continuous piping is used to assemble reaction tubes such as cracking tubes in the petrochemical industry, T, I
Since arc welding such as G welding, ΔiIG bath welding, and 1-skinned arc bath welding is used, good weldability is also required for the heat-resistant 5 alloy used in reaction tubes and the like.
本発明は、かかる要求を充足する耐熱fiQ造合金合金
発した活眼、得られたものであり、高温領域におけるク
リープ破断強度が大きく、+mt浸炭性に優れ、しかも
溶接性も良好な耐熱鋳造合金を提供することを目的とす
る。The present invention is a heat-resistant casting alloy that has developed a heat-resistant fiQ alloy that satisfies these requirements. The purpose is to provide.
本発明に係る高クリープ破断強度の耐浸炭性耐熱鋳造合
金は、C:O,a〜055%、Si;3゜0%以下、M
n:2.0%以下、P : 0.03 %以”r、s:
o、oa%以下、Or : 20.0〜a o、o%、
N1: 20.0〜40.0%、CO:50〜2oo%
、W:0.5〜60%、A(1:o、o2〜06%、1
3二0.0005〜0.01% を含有するーヒ、Zr
:oo2〜0.5%又はZr : Q、Q 2〜0.5
%及びl1li二0.02〜05%を合体し、残部が実
質的にFeである。The carburization-resistant heat-resistant casting alloy with high creep rupture strength according to the present invention has C: O, a~055%, Si: 3°0% or less, M
n: 2.0% or less, P: 0.03% or more"r, s:
o, oa% or less, Or: 20.0~a o, o%,
N1: 20.0-40.0%, CO: 50-2oo%
, W: 0.5-60%, A(1:o, o2-06%, 1
Zr containing 0.0005 to 0.01%
:oo2~0.5% or Zr: Q, Q2~0.5
% and 0.02 to 05% of l1li2 are combined, and the remainder is substantially Fe.
C: 03〜0.55%
CはNbと結合して粒界に共晶カーバイドを生〕
成し、粒界破壊抵抗を高める結果、クリープ破断強度を
高める。このためには、特に950°C以上における高
クリープ破断強度を得るためには、少なくとも03%を
必要とする。一方、Cが055%を越えるとクリープ破
断強度向上への寄手は少なくなる上、Orカーバイドの
析出による脆化の方が大きくなるので、その上限は0.
55%とした。C: 03 to 0.55% C combines with Nb to form eutectic carbide at grain boundaries, which increases grain boundary fracture resistance and, as a result, increases creep rupture strength. For this purpose, at least 0.3% is required to obtain high creep rupture strength, especially at temperatures above 950°C. On the other hand, if C exceeds 0.55%, there will be less chance of improving creep rupture strength, and embrittlement due to Or carbide precipitation will increase, so the upper limit is 0.05%.
It was set at 55%.
、 Si:3,9%以下
溶解原材料から少量混入するSiは、溶鋼の流動性を高
めて鋳造性を向」ニさせる上、脱酸’4J果を高めるの
で有効な元素である。し〃・し、30%を越えるとクリ
ープ破断強度に悪影響を及はすので、その上限を3.0
%とした。, Si: 3.9% or less Si, which is mixed in a small amount from the melted raw materials, is an effective element because it increases the fluidity of molten steel and improves castability, as well as enhances the deoxidation effect. However, if it exceeds 30%, it will have a negative effect on the creep rupture strength, so the upper limit is set to 3.0%.
%.
Mn:2,0%以下
M、nは溶湯の脱酸を行い、溶湯中の不純物元素S=i
固定して溶接時の高温割れを防止rる元素として何効で
ある。しかし、20%を越えて含有させてもその添加量
の割には効果が小さいので、その上限を20%とした。Mn: 2.0% or less M, n deoxidizes the molten metal, and impurity elements in the molten metal S=i
What is its effect as an element that fixes and prevents hot cracking during welding? However, even if the content exceeds 20%, the effect will be small considering the amount added, so the upper limit was set at 20%.
P:0.08%以「
Pの含有量が0.03%を越えると、溶接時の高温割れ
感受性を音しく高めるため、その」1限は003%とし
た。P: 0.08% or more If the P content exceeds 0.03%, the susceptibility to hot cracking during welding increases significantly, so the first limit was set at 0.03%.
s:o、oa%以下
SもPと同様、その含有量が0.(M3%を越えると、
溶接時の高温割れ感受性を著しく高めるため、その上限
を0.03%とした。s: o, oa% or less Like P, the content of S is 0. (If it exceeds M3%,
In order to significantly increase the susceptibility to hot cracking during welding, the upper limit was set at 0.03%.
Or : 20.0〜30..0%
使用下限温度ニア00°Cの状!席から材料に耐酸化性
、高温強度を与えるためには、Orを少なくとも20.
0%含有させる必要がある。更に20.0%を越えて含
有させる場合、その増加量と共に耐酸化性及び高温強度
が向上するが、30.0%を越えると、低温域(900
°C以下)において組織的に不安定となり、Orカーバ
イド析出による脆化が著しくなるため、その上限は30
0%とした。Or: 20.0~30. .. 0% The lower limit temperature for use is near 00°C! In order to impart oxidation resistance and high temperature strength to the material from the seat, Or should be at least 20.
It is necessary to contain 0%. Furthermore, when the content exceeds 20.0%, the oxidation resistance and high temperature strength improve as the amount increases, but when the content exceeds 30.0%, the low temperature range (900
The upper limit is 30 °C or below), and the structure becomes unstable and embrittlement due to Or carbide precipitation becomes significant.
It was set to 0%.
Ni:20.O〜40,0%
N1はCr、に’eと共にオーステナイト相全形成し、
オーステナイトオ安定化させる元素である上、11Ut
酸化性を向上させ、高温強度を高める元素である。70
0°C以上の温度領域において、上記耐酸化性、高温強
度を向上させるためには、Niは少なくとも200%は
必要である。Niを20.0%以上含有させた場合、そ
の含有量の増加に伴い、耐酸化性、耐浸炭性は向上し、
高温領域における組織(特にカーバイトの凝集度合)を
安定化させる。しかし、40.0%を越えて含有させて
も高温強度に列する顕著な効果がないため、その上限は
40.0%とした。Ni:20. O ~ 40.0% N1 forms an austenite phase together with Cr and 'e,
In addition to being an element that stabilizes austenite, 11Ut
It is an element that improves oxidizing properties and increases high-temperature strength. 70
In order to improve the above-mentioned oxidation resistance and high-temperature strength in a temperature range of 0° C. or higher, at least 200% Ni is required. When Ni is contained at 20.0% or more, oxidation resistance and carburization resistance improve as the content increases,
Stabilizes the structure (especially the degree of carbide aggregation) in high temperature regions. However, even if the content exceeds 40.0%, there is no significant effect comparable to high-temperature strength, so the upper limit was set at 40.0%.
co:5.0〜200%
COは−Li1i2Niと同様、オーステナイトAIを
安定化させる元素であり、高温下にて酸化抵抗及び組織
的安定性を向上させるのに効果がある。更にクリープ破
断強度に対しても有効に作用する。これらの効果を発揮
させるには、COを少なくとも50%含有させる必要が
ある。また」1記効果は、COの増量と共に大きくなる
が、1150°C程度の高温領域ではCOを20%も含
有させれば十分であり、それ以上COを添加してもその
添加量の割には効果がない。従ってCOは5.0〜20
0%含有させることとした。co: 5.0 to 200% Like -Li1i2Ni, CO is an element that stabilizes austenite AI, and is effective in improving oxidation resistance and structural stability at high temperatures. Furthermore, it has an effective effect on creep rupture strength. In order to exhibit these effects, it is necessary to contain at least 50% CO. In addition, the effect described in item 1 increases as the amount of CO increases, but in the high temperature range of about 1150°C, it is sufficient to contain as much as 20% CO, and even if more CO is added, the has no effect. Therefore, CO is 5.0-20
It was decided to contain 0%.
W:05〜60% Wはオーステナイト中に固溶し、固溶強化効果がある。W: 05-60% W forms a solid solution in austenite and has a solid solution strengthening effect.
その効果は、Wが0.5%程度含有される状態から認め
られ、その含有量の増加と共に大きくなる。しかし、そ
の含有量が60%を越えると硬化して低温域での延性が
小さくなり、加工性、溶接性も悪化する。従ってWは0
5〜60%とした。This effect is recognized from a state where W is contained in an amount of about 0.5%, and increases as the content increases. However, if its content exceeds 60%, it hardens, resulting in decreased ductility in the low temperature range and poor workability and weldability. Therefore, W is 0
It was set at 5 to 60%.
Al:o、o2〜0.6%
AIのクリープ破断強度向上に対する効果は小さく、む
しろA4が0.6%を越えると室温における延性に対し
て悪影響を及はすので、AIの」−眼は0.6%以13
とした。一方、A4が002%以」−含有されると、高
温に加熱された状態にて表面皮膜を生成し、浸炭雰囲気
中のCの拡散を防止するため、耐浸炭性が向」−7する
。従ってその下限は002%とした。Al: o, o2 ~ 0.6% The effect of AI on improving creep rupture strength is small, and if A4 exceeds 0.6%, it has a negative effect on ductility at room temperature. 0.6% or more13
And so. On the other hand, when A4 is contained in an amount of 0.02% or more, a surface film is formed when heated to a high temperature to prevent diffusion of C in the carburizing atmosphere, thereby improving carburization resistance. Therefore, the lower limit was set at 002%.
B:0.0005〜0.01%
Bはオーステナイト中に生成する二次炭化物の成長を抑
制し、クリープ破断強度向上に寄与する。B: 0.0005 to 0.01% B suppresses the growth of secondary carbides generated in austenite and contributes to improving creep rupture strength.
その効果は0.0005%から認められるが、001%
を越えると溶接性に悪影響を及はすので、0.0005
〜0.01%をBの許容範囲とした。The effect is recognized from 0.0005%, but 001%
If it exceeds 0.0005, it will have a negative effect on weldability.
The allowable range for B was ~0.01%.
次にZrとTiについて述べる。Zrはその量と共にク
リープ破断強度が向上する。一方、Ill iは再加熱
によってオーステナイト中に生成するOrカーバイドの
成長粗大化を遅延させ、クリープ破断強度を向上させる
。いずれの元素も、002〜0.5%含有されていると
上記クリープ破断強度の向上効果が認められる。従って
本発明に係る鋳造合金は、Zr:o、o2〜0.5%及
び/又はTに0.02〜05%を含有させることとした
。Next, Zr and Ti will be described. The creep rupture strength of Zr increases with the amount of Zr. On the other hand, Ill i retards the growth and coarsening of Or carbide generated in austenite by reheating and improves the creep rupture strength. When each element is contained in an amount of 0.02 to 0.5%, the effect of improving the creep rupture strength is observed. Therefore, the cast alloy according to the present invention contains Zr:o, o2~0.5% and/or T: 0.02~05%.
以下、実施例によって本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.
高周波誘導溶解炉を用い、第1表に示す如き成分組成を
有する鋳鋼を各種溶製した。第1表中、届1〜A3は本
発明材に相当し、各種試験用素材として溶製したもので
あり、またA、 4は本発明材に相当するが、溶接用フ
ィラーワイヤ調製用素(Aとして溶製したものである。Various cast steels having the compositions shown in Table 1 were melted using a high frequency induction melting furnace. In Table 1, Notifications 1 to A3 correspond to the materials of the present invention, which were melted as materials for various tests, and A and 4 correspond to the materials of the present invention, but materials for preparing filler wire for welding ( It was melted as A.
史に第1表中、IFr、 11及び届12は従来利に相
当し、各試験用素材として溶製したものであり、また&
1 Bは従来利に相当するが、溶接用フィラーワイヤ
調製用累月として溶製したものである。In Table 1, IFr, 11 and Notification 12 correspond to conventional materials, which were melted as materials for each test, and
1B corresponds to the conventional method, but was melted as a filler wire for welding.
上記鋳鋼に遠心力鋳造を付して外径]、:l(8mmX
肉厚23.5mmX長さ520 mmの鋳鋼管を得、夫
々から試験片を調製し、クリープ破断強度試験及び耐浸
炭性試験を行った。上記クリープ破断試験は、本発明材
と従来利とを比較すること、及び本発明材の溶接性を検
討するために溶接画材と溶接継手部とを比較することの
二つの目的の下に実施した。The above cast steel was subjected to centrifugal casting to obtain an outer diameter of
Cast steel pipes with a wall thickness of 23.5 mm and a length of 520 mm were obtained, test pieces were prepared from each, and a creep rupture strength test and a carburization resistance test were conducted. The above creep rupture test was conducted for two purposes: to compare the inventive material with conventional materials, and to compare welding materials and welded joints in order to examine the weldability of the inventive material. .
なお、上記屑接継手を得るだめの溶接法としては、手動
TIG溶接(下向き溶接)を用いた。即ち、第1表のA
I又はAI2からなる母相に所定の開先加工(開先角:
20°)を施し、該(’d材を突き合わせだ上、第1表
の扁4又は届13からなる材料を切り出して伸展せしめ
たフィラーワイヤを用いて所定の溶接条件(溶接電流:
100〜V6oh、溶接電圧:14〜18V、溶接速度
:5、5〜8.0 m 7分)にて手動’I’IG溶接
を行い、上記溶接継手を得た。Note that manual TIG welding (downward welding) was used as the final welding method to obtain the above-mentioned scrap joint. That is, A in Table 1
A predetermined beveling process (bevel angle:
20°), butted the ('d materials) together, and then using a filler wire made by cutting out and stretching the material consisting of flat 4 or 13 in Table 1, welding under the specified welding conditions (welding current:
Manual 'I'IG welding was performed at 100-V6oh, welding voltage: 14-18V, welding speed: 5, 5-8.0 m, 7 minutes) to obtain the above-mentioned welded joint.
クリープ破断試験は、JIS Z 227.2の規定に
基づいて行った(試験温度:1098°C)。また耐浸
炭性試験としては、試片(直径12緒×長さ6QMII
)を固定浸炭剤(テ゛グサKGg’0)中に温度115
0’Cで200時間保持した後、試ハ表面から0.25
騎ピッチで切粉を採取して化学分析を行い、表面から1
履の位置における炭素増量をめ、これによって1耐浸炭
性を評価する方法を用いた。The creep rupture test was conducted based on the provisions of JIS Z 227.2 (test temperature: 1098°C). In addition, for the carburization resistance test, a specimen (diameter 12 x length 6QMII
) in a fixed carburizing agent (Tegusa KGg'0) at a temperature of 115
After holding at 0'C for 200 hours, 0.25
Chips were collected from the pitcher and chemically analyzed, and 1.
A method was used to evaluate the carburization resistance by increasing the amount of carbon at the position of the shoe.
各試験結果を第1図(従来材のクリープ破断特性)、第
2図(本発明材のクリープ破断特性)、第3図(本発明
利溶接継手部のクリープ破断性19、第2表(耐浸炭性
比較試験結果)に示す。なお、第1図には従来材溶接継
手部のクリープ破断特性も併せて図示した。The test results are shown in Figure 1 (creep rupture properties of conventional material), Figure 2 (creep rupture properties of the present invention material), Figure 3 (creep rupture properties of the welded joint of the present invention), and Table 2 (creep rupture properties of the welded joint of the present invention). Fig. 1 also shows the creep rupture characteristics of the welded joint of the conventional material.
第2表
該試験結果より、従来材の長時−開側のクリープ破断強
度は短時間側データから直線的に外挿しだ値より低下し
ている(第1図参照)にも拘らず、本発明材の長時間側
のクリープ破断強度は従来材のように低下していない(
第2図参照)ことが分かる。また従来材の溶接継手部は
母材に比して、約10%の強度低下を示しているが(第
1図参ij@)、本発明利の溶接継手部は母材と同等の
強度を有しており、本発明材の溶接性が良好なことが分
かった。更に耐浸炭性 に関しても本発明材は、表面か
ら1mmの位置における炭素増量が、従来材に比して5
0%以下となっており(第2表参照)、大幅に耐浸炭性
が改良されていることが分かった。Table 2 From the test results, the long-time open side creep rupture strength of the conventional material is lower than the value linearly extrapolated from the short-time side data (see Figure 1). The long-term creep rupture strength of the invented material did not decrease as much as the conventional material (
(See Figure 2). In addition, the welded joints of conventional materials show a strength decrease of about 10% compared to the base metal (see Figure 1 ij@), but the welded joints of the present invention have the same strength as the base metal. It was found that the material of the present invention has good weldability. Furthermore, regarding carburization resistance, the carbon content of the present invention material at a position 1 mm from the surface is 55% higher than that of conventional materials.
It was found that the carburization resistance was significantly improved.
以上詳述したように、本発明のn1it熱鋳造合金は従
来のNi+Orを含む耐熱鋳鋼等に比し、高温領域にお
けるクリープ破断強度が大きく、耐浸炭性に優れ、しか
も溶接性も良好な材料であるので、石油化学工業におい
て用いられるクラッキングチューブの材料として最適で
あるほか、リフオーマ−チューブ、チューブサポート等
の材料として使用することができる。また各種鉄鋼関連
設備部桐、例えばハースローラ、ラジアントチューブ、
熱処理用トレイ匈−の材料としても極めて有用である。As detailed above, the n1it heat cast alloy of the present invention has higher creep rupture strength in high temperature ranges, excellent carburization resistance, and good weldability compared to conventional heat-resistant cast steels containing Ni+Or. Therefore, it is ideal as a material for cracking tubes used in the petrochemical industry, and can also be used as a material for reformer tubes, tube supports, etc. In addition, various steel-related equipment department paulownia, such as hearth rollers, radiant tubes, etc.
It is also extremely useful as a material for heat treatment trays.
第1図は従来Hのクリープ破断特性を月くすグラフ、第
2図は本発明材のクリープ破断特性を示すグラフ、第3
図は本発明材の溶接継手部のクリープ破断特性を母相と
比較して示したグラフである。
石な1咋時間(Hrs)
腋M時間(Hrs)
絨婢時藺(Hrs)Figure 1 is a graph showing the creep rupture characteristics of conventional H, Figure 2 is a graph showing the creep rupture characteristics of the invention material, and Figure 3 is a graph showing the creep rupture characteristics of the material of the present invention.
The figure is a graph showing the creep rupture characteristics of the welded joint of the material of the present invention in comparison with the parent phase. Stone time (Hrs) Armpit time (Hrs) Carpet time (Hrs)
Claims (1)
Mn’:2.Q%以下、P:0.08%以下、S:0.
03%以下、Cr:2o、o 〜ao、0%、N1:2
0.0〜40.0’A、Co : 5.0〜20.0%
、W:05〜60%、A#:0.02〜0.6%、13
:0.0.005〜0.01% を含有する」二、zr
:002〜0.5%又はZr:0.02〜0.5%及び
Ti:0.02〜0.5%を含有し、残部が実質的にF
eである高クリープ破断強度の1耐浸炭性耐熱時造合金
。(1) c: o, a ~, 0.55%, S: a, O% or less,
Mn':2. Q% or less, P: 0.08% or less, S: 0.
03% or less, Cr:2o, o ~ ao, 0%, N1:2
0.0~40.0'A, Co: 5.0~20.0%
, W: 05-60%, A#: 0.02-0.6%, 13
: Contains 0.0.005-0.01%"2,zr
:002 to 0.5% or Zr: 0.02 to 0.5% and Ti: 0.02 to 0.5%, and the remainder is substantially F.
1 carburization-resistant heat-resistant time-formed alloy with high creep rupture strength.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2250284A JPS60165343A (en) | 1984-02-08 | 1984-02-08 | Heat resistant cast alloy having high creep breaking strength and carburizing resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2250284A JPS60165343A (en) | 1984-02-08 | 1984-02-08 | Heat resistant cast alloy having high creep breaking strength and carburizing resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60165343A true JPS60165343A (en) | 1985-08-28 |
JPH0232345B2 JPH0232345B2 (en) | 1990-07-19 |
Family
ID=12084516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2250284A Granted JPS60165343A (en) | 1984-02-08 | 1984-02-08 | Heat resistant cast alloy having high creep breaking strength and carburizing resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60165343A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2340911A (en) * | 1998-08-20 | 2000-03-01 | Doncasters Plc | Creep resistant alloy pipes and methods of making the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4847690A (en) * | 1971-10-20 | 1973-07-06 | ||
JPS53117892A (en) * | 1977-02-10 | 1978-10-14 | Shikhirev Boris N | Device for treating sheet material by using strong magnetic powder |
-
1984
- 1984-02-08 JP JP2250284A patent/JPS60165343A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4847690A (en) * | 1971-10-20 | 1973-07-06 | ||
JPS53117892A (en) * | 1977-02-10 | 1978-10-14 | Shikhirev Boris N | Device for treating sheet material by using strong magnetic powder |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2340911A (en) * | 1998-08-20 | 2000-03-01 | Doncasters Plc | Creep resistant alloy pipes and methods of making the same |
GB2340911B (en) * | 1998-08-20 | 2000-11-15 | Doncasters Plc | Alloy pipes and methods of making same |
Also Published As
Publication number | Publication date |
---|---|
JPH0232345B2 (en) | 1990-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4227925A (en) | Heat-resistant alloy for welded structures | |
KR102237487B1 (en) | Wire rod for welding rod and method for manufacturing thereof | |
JPS6344814B2 (en) | ||
JPH02267240A (en) | Heat-resistant alloy | |
JPS61186446A (en) | Heat resistant alloy | |
JPS58502B2 (en) | Alloy with excellent heat resistance | |
JP7478821B2 (en) | Wire rod for welding rod and its manufacturing method | |
JPS60165343A (en) | Heat resistant cast alloy having high creep breaking strength and carburizing resistance | |
JPS599272B2 (en) | filler metal | |
WO2018066573A1 (en) | Austenitic heat-resistant alloy and welding joint using same | |
JPS61177352A (en) | Heat resistant cast steel having superior elongation characteristic at room temperature | |
JPH022942B2 (en) | ||
JPS60165345A (en) | Heat resistant cast alloy having high creep breaking strength and decarburizing resistance | |
JPS60165346A (en) | Heat resistant cast alloy having high creep breaking strength and carburizing resistance | |
JPS60165342A (en) | Heat resistant cast alloy having high creep breaking strength and carburizing resistance | |
JPH03240930A (en) | Heat-resistant alloy excellent in carburizing resistance and weldability | |
JPS61186447A (en) | Heat resistant alloy | |
JPS60216993A (en) | Welding material for high-temperature member | |
JPH05195138A (en) | Heat resistant alloy having excellent carburization resistance and high creep rupture strength under conditions of high temperature and low stress | |
KR850000789B1 (en) | Iron based heat resistant cast alloy | |
JPS58193349A (en) | Heat resistant cast alloy excellent in high temperature ageing ductility and carburization resistance | |
JPS6251715B2 (en) | ||
JPH0297643A (en) | Heat-resistant cast alloy having high creep resistance | |
JPH07258783A (en) | Heat resistant alloy excellent in carburization resistance | |
JPH02259037A (en) | Heat-resistant alloy having excellent carburizing resistance |