JPS6016478A - Semiconductor element - Google Patents

Semiconductor element

Info

Publication number
JPS6016478A
JPS6016478A JP58123413A JP12341383A JPS6016478A JP S6016478 A JPS6016478 A JP S6016478A JP 58123413 A JP58123413 A JP 58123413A JP 12341383 A JP12341383 A JP 12341383A JP S6016478 A JPS6016478 A JP S6016478A
Authority
JP
Japan
Prior art keywords
hall element
electrode
conductive layer
substrate
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58123413A
Other languages
Japanese (ja)
Other versions
JPH0213941B2 (en
Inventor
Shingo Yagyu
慎悟 柳生
Toshihisa Moriyama
森山 敏尚
Hiroshi Nakamura
寛 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Nippon Victor KK
Original Assignee
Victor Company of Japan Ltd
Nippon Victor KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd, Nippon Victor KK filed Critical Victor Company of Japan Ltd
Priority to JP58123413A priority Critical patent/JPS6016478A/en
Publication of JPS6016478A publication Critical patent/JPS6016478A/en
Publication of JPH0213941B2 publication Critical patent/JPH0213941B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/01Manufacture or treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To form the titled element of characteristics with less dispersion and of high performance with a good yield by a method wherein the impurity region part and the electrode part of said element are constructed on the substrate of the element at the position of recesses. CONSTITUTION:The semi-insulation GaAs crystal substrate 11 is coated with a photo resist 12, which is then formed into a required pattern by exposure and development. With the resist 12 of this pattern as a mask, the recesses 13 of a fixed depth are formed in the substrate 11 by etching. Next, an impurity is ion-implanted from above the recess 13 at the position for constructing a conductive layer part, with the resist 12 as a mask; thereafter the resist 12 of the required pattern is removed. Then, the conductive layer part 14 of a Hall element is constructed by heat treatment. The electrode 15 are provided in the recesses at the position for electrode arrangement formed by etching, and a wafer is cut into every required chip, resulting in the assembly of the Hall element 16.

Description

【発明の詳細な説明】 本発明は半導体素子に係9、半導体素子の不純物領域部
又は電極部に対応して半導体素子基板表面に凹部を形成
し、該凹部位置の半導体素子基板に半導体素子の不純物
領域部又は電極部を構成することにより、半導体素子の
特性にバラツキがなく、高性能なものとなシ、又製造も
容易で、歩留シの向上したものとなる半導体素子を提供
することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, in which a recess is formed on the surface of a semiconductor device substrate corresponding to an impurity region or an electrode portion of the semiconductor device, and a semiconductor device is formed on the semiconductor device substrate at the location of the recess. To provide a semiconductor device which has uniform characteristics and high performance by configuring an impurity region portion or an electrode portion, and which is easy to manufacture and has an improved yield. With the goal.

例えば、半絶縁性のGaAs基板に不純物をイオン注入
することによって導電層が構成され、さらに電極部が表
面に設けられてなるホール素子は、第1図又は第2図の
如く構成されている。
For example, a Hall element is constructed as shown in FIG. 1 or 2, in which a conductive layer is formed by ion-implanting impurities into a semi-insulating GaAs substrate, and an electrode portion is provided on the surface.

すなわち、第1図に示すメサエッチ型のホール素子は、
GaAs基板1に、注入パターンを形成ぜ十 ずに、例えばSI等の不純物のイオン注入を行ない、そ
の後熱処理を行なって不純物の活性化を行ない、Ga 
As基板10表面に一様に導電層を形成し、その後ホー
ル素子のパターンをフォー・リングラフィ工程によって
形成し、導電層とするべき部分以外をエツチングによっ
て除去して所定のホール素子パターンの導電層2となし
、その後所定の位置に電極3を設けたものである。
In other words, the mesa-etch Hall element shown in FIG.
Without forming an implantation pattern, ions of an impurity such as SI are implanted into the GaAs substrate 1, and then heat treatment is performed to activate the impurity.
A conductive layer is uniformly formed on the surface of the As substrate 10, and then a Hall element pattern is formed by a four phosphorography process, and portions other than those to be made into a conductive layer are removed by etching to form a conductive layer with a predetermined Hall element pattern. 2, and then an electrode 3 was provided at a predetermined position.

しかし、このようにして構成されるホール素子は、ケミ
カル又はドライエツチング等でメサ形状を形成する工程
が必要であり、この為工程が複雑でコスト高なものとな
る等の欠点がある。
However, the Hall element constructed in this manner requires a step of forming a mesa shape by chemical or dry etching, which has disadvantages such as a complicated process and high cost.

そこで、第2図に示すようにプレーナ型のホール素子が
提案されているが、すなわちGaAs基板5にあらかじ
めフォトレジストあるいは5in2、Si3N、等の絶
縁膜を形成し、このG a A、s基板5上の層にイオ
ン注入用の窓を形成し、イオン注入して所定パターンの
導電層を形成し、その後フォトレジストあるいは5i0
2等の絶縁膜の層を除去し、熱処理を行なって所定パタ
ーンの導電層6を構成し、そして所定の位置に電極7を
設けたものが提案されている。
Therefore, a planar type Hall element has been proposed as shown in FIG. A window for ion implantation is formed in the upper layer, ions are implanted to form a conductive layer with a predetermined pattern, and then a photoresist or 5i0
It has been proposed that a conductive layer 6 having a predetermined pattern is formed by removing an insulating film layer such as No. 2 and performing heat treatment, and then providing an electrode 7 at a predetermined position.

しかし、このようにして構成されるホール素子は、前述
のホール素子に比べれば製造工程が簡単であるものの、
不平衡電圧VOの小さいものの製造頻度は小さく、又、
入力抵抗Riの大きなものが出来やすく、ホール素子の
特性にバラツキが大きく、高性能なホール素子の製造歩
留りは悪いといった欠点がある。
However, although the Hall element constructed in this way has a simpler manufacturing process than the aforementioned Hall element,
Products with a small unbalanced voltage VO are manufactured less frequently, and
This method has disadvantages in that it is easy to produce a device with a large input resistance Ri, the characteristics of the Hall element vary widely, and the manufacturing yield of high-performance Hall elements is low.

本発明は上記欠点を除去したものであり、以下その実施
例について説明する。
The present invention eliminates the above-mentioned drawbacks, and examples thereof will be described below.

第3図a−”cは、本発明に係る半導体素子の製造工程
説明図、第4図は出来た半導体素子の説明図である。
3a to 3c are explanatory diagrams of the manufacturing process of a semiconductor device according to the present invention, and FIG. 4 is an explanatory diagram of the completed semiconductor device.

すなわち、第3図aに示す如く、例えば半絶縁性のG 
a A s結晶基板11にフォトレジスト12を塗布し
、このフォトレジスト12を露光現像して所定のパター
ンに構成する。
That is, as shown in FIG. 3a, for example, semi-insulating G
A photoresist 12 is applied to the aAs crystal substrate 11, and the photoresist 12 is exposed and developed to form a predetermined pattern.

次に、同図すに示す如く、この所定パターンのフォトレ
ジスト12をマスクとして、GaAS結晶基板11に所
定パターンで所定深さの凹部13をエツチングによって
形成する。伺、との凹部13のうち、後述の導電層部を
構成する部分に対応する位置の凹部の深さaは、後述の
イオン注入によって構成される導電層部の深さbと略同
しかあるいは少し位太き目となる程度のものとしておく
ことが望ましい。
Next, as shown in the same figure, using this predetermined pattern of photoresist 12 as a mask, recesses 13 of a predetermined depth and a predetermined pattern are formed in the GaAS crystal substrate 11 by etching. The depth a of the recess 13 at the position corresponding to the portion constituting the conductive layer portion to be described later is approximately the same as the depth b of the conductive layer portion formed by ion implantation to be described later. It is desirable to make it slightly thicker.

そして、次にフォトレジスト12をマスクとして導電層
部を構成する位置の凹部13上より不純物をイオン注入
(イオン注入条件、ドーズ量8×1012ion107
1% 注入電圧190KeV) l、、その後所定パタ
ーンのフォトレジスト12を除去し、そして熱処理(ア
ニール条件、800℃、7分)を行なって第3図Cに示
すような糸−ル素子の導電層部14を構成する。
Then, using the photoresist 12 as a mask, impurity ions are implanted from above the concave portion 13 at the position constituting the conductive layer portion (ion implantation conditions: dose amount 8×1012 ions107
1% injection voltage (190 KeV) l, then the predetermined pattern of photoresist 12 is removed, and heat treatment (annealing conditions: 800° C., 7 minutes) is performed to form the conductive layer of the thread element as shown in FIG. 3C. 14.

又、ホール素子の電極部を設けるべき位置、すなわち第
3図すの工程のエツチングで形成された電極配設位置の
凹部に電極15を設け、そして所定のチップ毎にウェハ
ーを切断して第4図に示すようなホール素子16を構成
し、これを第5図に示すように組み立てる。同、第5図
中、17はモールド樹脂、18はAすのリード線、19
はリードフレームである。
Further, the electrode 15 is provided at the position where the electrode part of the Hall element is to be provided, that is, in the concave part of the electrode arrangement position formed by the etching process in the step of FIG. A Hall element 16 as shown in the figure is constructed and assembled as shown in FIG. In the same figure, 17 is mold resin, 18 is A lead wire, 19
is a lead frame.

上記のようにしてホール素子が構成されると、すなわち
電極配設位置のGaAs基板表面をエツチングして凹部
を形成していると、電極を設けるに際して電極配設位置
のGaAs基板表面は清浄になっており、その為ホール
素子の入力抵抗R1にばらつきが少ないものとなシ、シ
かも電極配設位置のGa As基板表面は窪んでいるの
で、この窪みが目印となり、電極構成に際してのパター
ン合わせが容易となり、電極が正確に形成され、又作業
能率よく行なえる。
When the Hall element is constructed as described above, that is, when the surface of the GaAs substrate at the electrode placement position is etched to form a recess, the GaAs substrate surface at the electrode placement position is cleaned when the electrode is provided. Therefore, there is little variation in the input resistance R1 of the Hall element.Since the surface of the GaAs substrate where the electrodes are arranged is depressed, this depression serves as a landmark and helps in pattern alignment when configuring the electrodes. It is easy, the electrodes can be formed accurately, and the work can be carried out efficiently.

又、導電要部構成位置のGaAs基板表面をエツチング
して凹部を形成していると、不純物のイオン注入に際し
て、イオン注入部分のGaAs基板表面は清浄になって
おり、その為目的とする不純物以外の不純物、例えばフ
ォトレジストの構成素材といった不純物が注入されるこ
とがなく、ホール素子の入力抵抗Riにばらつきが少な
いものとなり、又、不平衡電圧Voの小さなものが得ら
れやすく、すなわち導電層部の周縁部が正確に構成され
、特にこの凹部の深さが構成すべき導電層部の深さとほ
ぼ同じかあるいは少々深い程度にしておくと、導電層部
が正確に構成されて不平衡電圧V。
Furthermore, if the surface of the GaAs substrate at the location where the conductive main part is formed is etched to form a recess, when ions of impurities are implanted, the surface of the GaAs substrate at the ion-implanted portion is clean, so that impurities other than the intended impurities are kept clean. Impurities such as constituent materials of photoresist are not implanted, and the input resistance Ri of the Hall element has little variation, and it is easy to obtain a small unbalanced voltage Vo. If the peripheral edge of the recess is configured accurately, and in particular, the depth of this recess is approximately the same as or slightly deeper than the depth of the conductive layer to be configured, the conductive layer will be configured accurately and the unbalanced voltage V .

は小さなものとなり、かつバラツキも少ない。is small and has little variation.

例えば、同一のGaAsウェハーに、本実施例の如くエ
ツチングして凹部を構成してホール素子を作った場合と
、比較例としてエツチングを行なわず、凹部を構成しな
いで従来と同一1;+<(第2図のボール素子製造と同
僚)にしてホール素子を作った又、不平衡電圧■乳、本
実施例のポール素子では平均値が0.92 、標準偏差
が0.74であるのに対し、比較例のホール素子では平
均値が1.48、標準偏差が1.01といったように、
又、第6図に■0の分布図を示す(実線は本実施例、点
線は比較例)如く、不平衡電圧Voの小さなものが多く
できておシ、高性能なホール素子が歩留りよくできてい
ることを示している。
For example, a case where a Hall element is made by etching a concave part on the same GaAs wafer as in this example, and a case where a Hall element is made by etching and forming a concave part as in this example, and a case where the same GaAs wafer is etched and a concave part is not formed as a comparative example and the same as the conventional 1;+<( In addition, the unbalanced voltage was 0.2, whereas the average value of the pole element of this example was 0.92 and the standard deviation was 0.74. , the Hall element of the comparative example has an average value of 1.48 and a standard deviation of 1.01.
In addition, as shown in Fig. 6, which shows the distribution diagram of ■0 (the solid line is the present example, the dotted line is the comparative example), many of the unbalanced voltages Vo are small, and high-performance Hall elements can be manufactured with a high yield. It shows that

上述の如く、本発明に係る半導体素子は、半導体素子の
不純物領域部又は電極部に対応して半導体素子基板表面
に四部を形成し、該凹部位置の半導体素子基板に半導体
素子の不純物領域部又は電極部を構成したので、バラツ
キのない特性で、しかも高性能な半導体素子が歩留りよ
く得られる等の特長を有する。
As described above, in the semiconductor element according to the present invention, four parts are formed on the surface of the semiconductor element substrate corresponding to the impurity region part or the electrode part of the semiconductor element, and the impurity region part or the electrode part of the semiconductor element is formed on the semiconductor element substrate at the position of the recess. Since the electrode portion is configured, it has the advantage that semiconductor devices with uniform characteristics and high performance can be obtained at a high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来のホール素子の説明図、第3図
a −cは本発明の1実施例のホール素子製造工程説明
図、第4図は本発明の1実施例のホール素子の説明図、
第5図は第4図のホール素子を組み込んだ状態の説明図
、第6図はホール素子の11・・・G a A s結晶
基板(半導体素子基板)、13・・・凹部、14・・・
導電層部(不純物領域部)、15・・・電極。 特許出願人 日本ビクター株式会社 代理人 宇 高 克 己 ( t1回 ↑5囲 16図 に伽V)−
Figures 1 and 2 are explanatory diagrams of a conventional Hall element, Figures 3a-c are illustrations of the manufacturing process of a Hall element according to an embodiment of the present invention, and Figure 4 is an explanatory diagram of a Hall element according to an embodiment of the present invention. An explanatory diagram of
Fig. 5 is an explanatory diagram of the state in which the Hall element of Fig. 4 is incorporated, and Fig. 6 shows the Hall element 11...GaAs crystal substrate (semiconductor element substrate), 13... recess, 14...・
Conductive layer portion (impurity region portion), 15... electrode. Patent applicant: Katsumi Utaka, agent of Victor Japan Co., Ltd. (t1 times ↑5, Figure 16)

Claims (1)

【特許請求の範囲】[Claims] 半導体素子の不純物領域部又は電極部に対応して半導体
素子基板表面に凹部を形成し、該凹部位置の半導体素子
基板に半導体素子の不純物領域部又は電極部を構成した
ことを特徴とする半導体素子。
A semiconductor device characterized in that a recess is formed on the surface of a semiconductor element substrate corresponding to an impurity region or an electrode of the semiconductor element, and the impurity region or electrode of the semiconductor element is formed on the semiconductor element substrate at the position of the recess. .
JP58123413A 1983-07-08 1983-07-08 Semiconductor element Granted JPS6016478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58123413A JPS6016478A (en) 1983-07-08 1983-07-08 Semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58123413A JPS6016478A (en) 1983-07-08 1983-07-08 Semiconductor element

Publications (2)

Publication Number Publication Date
JPS6016478A true JPS6016478A (en) 1985-01-28
JPH0213941B2 JPH0213941B2 (en) 1990-04-05

Family

ID=14859936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58123413A Granted JPS6016478A (en) 1983-07-08 1983-07-08 Semiconductor element

Country Status (1)

Country Link
JP (1) JPS6016478A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4883773A (en) * 1986-12-16 1989-11-28 Sharp Kabushiki Kaisha Method of producing magnetosensitive semiconductor devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4883773A (en) * 1986-12-16 1989-11-28 Sharp Kabushiki Kaisha Method of producing magnetosensitive semiconductor devices

Also Published As

Publication number Publication date
JPH0213941B2 (en) 1990-04-05

Similar Documents

Publication Publication Date Title
JPS60180163A (en) Semiconductor element and method of producing same
JPH0787195B2 (en) Method of manufacturing Schottky gate field effect transistor
JP2677987B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS6016478A (en) Semiconductor element
JPS6046804B2 (en) Manufacturing method of semiconductor device
JP2535885B2 (en) Schottky barrier diode and manufacturing method thereof
JP2664527B2 (en) Semiconductor device
JPS6310588B2 (en)
JP3109001B2 (en) Method for manufacturing semiconductor device
JP2709086B2 (en) Method for forming electrode of semiconductor device
JPH0478034B2 (en)
JPS59964A (en) Manufacture of semiconductor device
JPS60733A (en) Semiconductor device and manufactur thereof
JPH05182977A (en) Manufacture of semiconductor device
JPH1041309A (en) Wiring formation method of semiconductor device
JPH0476924A (en) Manufacture of semiconductor device
JPS62248222A (en) Manufacture of semiconductor device
JPH0684954A (en) Manufacture of semiconductor device
JPH0352237A (en) Manufacture of semiconductor device
JPS5879719A (en) Method for doping impurity into semiconductor crystal
JPH01204414A (en) Manufacture of semiconductor device
JPH03233939A (en) Field-effect transistor and its manufacture
JPS63111667A (en) Manufacture of semiconductor device
JPS61204972A (en) Manufacture of mis transistor
JPS62183564A (en) Manufacture of semiconductor device