JPS60164375A - Magnetostrictive material - Google Patents

Magnetostrictive material

Info

Publication number
JPS60164375A
JPS60164375A JP59020496A JP2049684A JPS60164375A JP S60164375 A JPS60164375 A JP S60164375A JP 59020496 A JP59020496 A JP 59020496A JP 2049684 A JP2049684 A JP 2049684A JP S60164375 A JPS60164375 A JP S60164375A
Authority
JP
Japan
Prior art keywords
magnetostrictive
heat treatment
magnetostrictive material
detection
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59020496A
Other languages
Japanese (ja)
Other versions
JPH0412636B2 (en
Inventor
Toshitsugu Ueda
敏嗣 植田
Hiroyuki Yamamoto
裕之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP59020496A priority Critical patent/JPS60164375A/en
Publication of JPS60164375A publication Critical patent/JPS60164375A/en
Publication of JPH0412636B2 publication Critical patent/JPH0412636B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/80Constructional details
    • H10N35/85Magnetostrictive active materials

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To increase the output of signals, to reduce loss of longitudinal elastic wave signals during propagation, and to augment mechanical strength by a method wherein the surface of a high-purity magnetostrictive material is coated with a chemical plate layer of the same material and then subjected to heat treatment. CONSTITUTION:On the surface of a high-purity magnetostrictive material A, a chemical plate layer is deposited by using a material B same as the material A except that it contains some P. The magnetostrictive material A may for example be electroformed Ni. The surface of the material A is thinly plated with an Ni layer B that is formed by a chemical process. Heat treatment follows that lasts for about 30min at about 650 deg.C. With the material being constituted as such, the pure Ni inside the material A is annealed to grow less hard while its electromechanical bondage coefficient grows higher. The surface layer B composed of Ni is hardened in the heat treatment because it contains some P, resulting in a good structural material excellent in its longitudinal wave propagating feature.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は磁歪ポテンショメータなどで用いられる磁歪材
料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to magnetostrictive materials used in magnetostrictive potentiometers and the like.

〔従来技術〕[Prior art]

磁歪線を伝播する超音波を利用した磁歪ポテンショメー
タは木藺出−人によって開発され、その開発された技術
は特願昭53−22281号、特願昭53−22282
号等として多数出願され、かつ横河新技術リポ−)’ 
79 、P3 (1979)等によって発表され、既に
公知の状態にあるものである。このような公知のNi歪
ポテンショメータを第1図に示す。
A magnetostrictive potentiometer that uses ultrasonic waves that propagate magnetostrictive lines was developed by Ideto Kokui, and the developed technology is disclosed in Japanese Patent Application No. 53-22281 and Japanese Patent Application No. 53-22282.
Yokogawa New Technology Report)'
79, P3 (1979), etc., and is already well known. Such a known Ni strain potentiometer is shown in FIG.

第1図において、10は磁歪線、20は超音波発生用の
駆動コイル21と水入磁石22とで+16成した駆動部
、30は検出コイル31と永久研石32とで構成した検
出部である。検出部30は磁歪線10上を変位可能とな
っており、駆動部20より発生し磁歪線10を伝播する
超音波信号を受信する。検出部30の変位位置は駆動部
zOより発生した超音波信号が検出部30に到達するま
での時間を検出することによりめられる。このような構
成に係る第1図の#C置は非接触のポテンショメータと
して、例えば記録層の位置帰還要素等に適用して好適な
ものである。
In FIG. 1, 10 is a magnetostrictive wire, 20 is a drive unit formed by a drive coil 21 for generating ultrasonic waves and a water-immersed magnet 22, and 30 is a detection unit consisting of a detection coil 31 and a permanent grinding stone 32. be. The detection section 30 is movable on the magnetostrictive wire 10 and receives an ultrasonic signal generated by the drive section 20 and propagated on the magnetostrictive wire 10. The displacement position of the detection section 30 can be determined by detecting the time taken for the ultrasonic signal generated by the drive section zO to reach the detection section 30. The position #C in FIG. 1 having such a configuration is suitable for application as a non-contact potentiometer, for example, to a position feedback element of a recording layer.

しかし、このような構成に係る第1図の装置を記録計の
位置帰還要素等に用いた場合、(1) 測定したい範囲
よりも長い構成が必要となる為に、組み込む機器内での
空間占有率が高くなる。
However, when the device shown in Figure 1 with such a configuration is used as a position feedback element of a recorder, etc., (1) it requires a longer configuration than the range to be measured, which takes up space within the device to be incorporated; rate becomes higher.

(2)各コイルの取イ」′部及び長さが機器によって異
なる為に、異なる機種にそのポテンショメータを適用す
る際には夫々再設計しなくてはならない。
(2) Since the diameter and length of each coil differ depending on the device, each potentiometer must be redesigned when it is applied to a different model.

等の欠点がある。There are drawbacks such as.

そこで、このような欠点を解決するものとして、本願出
願人は、特願昭58−186343号により、はぼ円環
状に右同形成された磁歪線を用いた回転型磁歪ポテンシ
ョメータも提案している。
Therefore, in order to solve these drawbacks, the applicant of the present application has also proposed a rotary magnetostrictive potentiometer using a magnetostrictive wire formed in a circular ring shape in Japanese Patent Application No. 58-186343. .

第2図はこのような回転型磁歪ポテンショメータの構成
図である。第2図において、4oは磁歪線で、この磁歪
線はほぼ円環状に右同形成されている。5oは磁歪線4
oを支持する支持部で、この支持部は磁歪ta40の外
周において一定の間隙を隔てて、その外周に沿うように
ほぼ円環状に右同形成されている。01乃至64は夫々
磁歪a40と支持部50とを繋ぐ糖部である。歪遅線4
゜と支持部50及び糖部61乃至64は、これら全体を
例えばNiのような磁歪特性の大きい金属の板をエツチ
ングにより抜くことにより成形したものである。このよ
うに糖部61乃至64をエツチングにより成形している
ので、これらの糖部を極く細く(実施例では0.1mm
・・・0.2mm)形成することができる。支持部50
は固定部材(図示せず)にその周面が取り付けられる。
FIG. 2 is a block diagram of such a rotary magnetostrictive potentiometer. In FIG. 2, 4o is a magnetostrictive line, and this magnetostrictive line is formed in a substantially circular ring shape. 5o is magnetostrictive wire 4
This support part supports the magnetostrictive ta 40 and is formed approximately in an annular shape along the outer periphery of the magnetostrictive ta 40 with a certain gap therebetween. 01 to 64 are sugar portions that connect the magnetostrictive member a40 and the support portion 50, respectively. Distortion delay line 4
The supporting portion 50 and the sugar portions 61 to 64 are entirely formed by etching a plate of a metal such as Ni, which has a large magnetostrictive property. Since the sugar parts 61 to 64 are formed by etching in this way, these sugar parts are made extremely thin (0.1 mm in the example).
...0.2 mm). Support part 50
has its peripheral surface attached to a fixing member (not shown).

7oは超音波発生用のコイル71及び永久磁石(図示せ
ず)を有する駆動部である。この駆動部は磁歪線4oの
一端41に固定的に取り付けられている。8oは回転軸
、90は取付部材、looは検出部である。検出部10
=Oは取(=J部材9oを介して回転軸8oに取り(−
1けられている。検出部100において、101.10
2は夫々コア、103は永久磁石である。コア101に
は超音波を検出する検出コイル104が巻回されている
。コア101.102は永へ磁石103を挟んてコ字状
に組み立てられ、これにより検出ヘッドが414成され
ている。このような構成の検出部100は、一方が開放
された検出ヘッド内に磁歪線4oが挿入されるように取
イIJ部材90を介して回転IIIII18oに取すイ
づけられている。これにより、回転軸8oを回転させる
と、検出部100はこの回転軸8oを軸として磁歪線4
0に沿って円弧状に回転する。
7o is a drive unit having a coil 71 for generating ultrasonic waves and a permanent magnet (not shown). This drive section is fixedly attached to one end 41 of the magnetostrictive wire 4o. 8o is a rotating shaft, 90 is a mounting member, and loo is a detection unit. Detection unit 10
= O is taken (= taken to the rotating shaft 8o via the J member 9o (-
I'm getting 1 digit. In the detection unit 100, 101.10
2 is a core, and 103 is a permanent magnet. A detection coil 104 for detecting ultrasonic waves is wound around the core 101 . The cores 101 and 102 are assembled in a U-shape with the permanent magnet 103 in between, thereby forming a detection head 414. The detection unit 100 having such a configuration is mounted on the rotation III 18o via the IJ member 90 so that the magnetostrictive wire 4o is inserted into the detection head with one side open. As a result, when the rotating shaft 8o is rotated, the detection unit 100 detects the magnetostrictive line 4 with this rotating shaft 8o as an axis.
Rotates in an arc along 0.

このような構成の磁歪ポテンショメータにおいて、駆動
部7oを構成する超音波発生用コイル71にパルス電流
を供給すると、コイル71の中の磁歪線40に局所的な
磁場の変化が起こり、その変化は磁歪効果により縦弾性
波(超音波)に変換されて磁歪線40内を検出部100
に向かって伝播する。−力、検出部100を構成する検
出ヘッドにより、永久磁石103で発生した磁束がコア
101→磁歪線40→コア102を通って再び永久磁石
103に戻る磁路が形成されている。このような磁路に
磁歪信号が入って来ると、逆磁歪効果により磁路のパー
ミアンスが変化して磁束の変化を生じ、その結果検出コ
イル104に検出部100の変位位置に応じたパルス電
圧が発生する。
In the magnetostrictive potentiometer having such a configuration, when a pulse current is supplied to the ultrasonic generation coil 71 constituting the drive unit 7o, a local change in the magnetic field occurs in the magnetostrictive wire 40 in the coil 71, and the change is caused by the magnetostriction. Due to the effect, the inside of the magnetostrictive wire 40 is converted into a longitudinal elastic wave (ultrasonic wave) and detected by the detection unit 100.
propagate towards. - The detection head constituting the force detection unit 100 forms a magnetic path in which the magnetic flux generated in the permanent magnet 103 passes through the core 101 → magnetostrictive wire 40 → core 102 and returns to the permanent magnet 103 again. When a magnetostrictive signal enters such a magnetic path, the permeance of the magnetic path changes due to the inverse magnetostrictive effect, causing a change in magnetic flux, and as a result, a pulse voltage is generated in the detection coil 104 according to the displacement position of the detection unit 100. Occur.

ここで、駆動部70を構成する超音波発生用コイル71
にパルス電流を印加してから検出部100に検出パルス
信号が発生するまでの時間、すなわち、コイル71から
の直接波と、磁歪線40の端面42で反射して戻ってく
る反射波とを検出部100が検出するに要する119間
t 1. t 2を測定することにより、可動部である
検出部100の変位位置を検出することができる。下式
(1)はt 1. t 2山婉笛山勾F1ナー+、のデ
 中小上へ卦抽竹卑古ることにより、音速の影響が除ノ
t、!れた変位位置信号を得ることができる。
Here, the ultrasonic generation coil 71 constituting the drive unit 70
The time from when a pulse current is applied to when a detection pulse signal is generated in the detection unit 100, that is, the direct wave from the coil 71 and the reflected wave reflected from the end face 42 of the magnetostrictive wire 40 and returned are detected. 119 times t required for the unit 100 to detect 1. By measuring t2, the displacement position of the detection unit 100, which is a movable part, can be detected. The following formula (1) is t1. t 2 Mountains and Flute Mountains F1 Na+, by increasing the number of trigrams to medium and small, the influence of the speed of sound is eliminated! It is possible to obtain a displacement position signal.

(t2.− t 1) / (t2 +tl )=d2
 / (dl −1−d2 )・・・・・・・・・・・
・・・・・・・・・・・・(1)ここに、tl =dl
 / C t2=(2d2+dl)/ C d1=s動部70と検出flll 100までの距離 d2−検出部100ど磁歪線4oの端面42の距離 C=音速 すなわち、遅延時間t1.t2の和と差の比が可動部で
ある検出部100の変位位置を表わす信号となる。
(t2.-t1)/(t2+tl)=d2
/ (dl-1-d2)・・・・・・・・・・・・
・・・・・・・・・・・・(1) Here, tl = dl
/ C t2 = (2d2 + dl) / C d1 = distance d2 from the moving part 70 to the detection fllll 100 - distance C between the end face 42 of the magnetostrictive wire 4o of the detection part 100 = speed of sound, that is, delay time t1. The ratio of the sum and difference of t2 becomes a signal representing the displacement position of the detection section 100, which is a movable section.

ところで、従来、このような@G !a10あるいは4
0としては、例えば圧延研歪旧シートをエツチングによ
り所定の形状に形成したり、パイプ状の部材を所定の形
状に形成したものが用いられている。
By the way, conventionally, @G! a10 or 4
For example, a rolled and strained sheet is formed into a predetermined shape by etching, or a pipe-shaped member is formed into a predetermined shape.

+1nL、7のようか庄6正R器歪オオSノート卑丁1
1.キングにより所定の形状に形成したものやパイプ状
の部材を所定の形状に形成したものをそのまま用いた場
合には、縦弾性波信号の伝播損失は少なくなるものの、
伝播速度に異方性があったり、電気−機械結合係数が小
さいことから出力イロ号が小さくなってしまうなどの問
題がある。これらの欠点は、例えば熱処理を施して異方
性を取り除いたり、電気−機械結合係数を大きくするこ
とにより大きな出力信号が得られるが、縦弾性波信号の
伝播損失も大きくなると共に硬度が非常に低下して取り
扱いが困難になるなどの欠点がでてくる。
+1nL, 7 Yokasho 6 Positive R Equipment Distortion Oh S Note Heiching 1
1. If a material formed into a predetermined shape by a king or a pipe-like member formed into a predetermined shape is used as is, the propagation loss of the longitudinal acoustic wave signal will be reduced;
There are problems such as anisotropy in the propagation velocity and a small electro-mechanical coupling coefficient, resulting in a small output error signal. These drawbacks are that, although a large output signal can be obtained by removing anisotropy or increasing the electro-mechanical coupling coefficient by heat treatment, the propagation loss of the longitudinal acoustic wave signal also becomes large and the hardness is extremely high. This results in drawbacks such as lowering the temperature and making it difficult to handle.

〔発明の目的〕[Purpose of the invention]

本発明はこのような問題点を改善する為になされたもの
で、大きな出力信号が得られ、縦弾性波信号の伝播損失
が少なく、機械的強度も優れた磁歪材料を得ることを目
的としたものである。
The present invention was made in order to improve these problems, and its purpose is to obtain a magnetostrictive material that can obtain a large output signal, has little propagation loss of longitudinal acoustic wave signals, and has excellent mechanical strength. It is something.

【発明の概要〕[Summary of the invention]

このような目的を達成する本発明は、純度の高い磁歪材
の表面に磁歪材と同材質の化学メッキ層が被着されると
共に熱処理が施されたことを特徴とする。
The present invention, which achieves these objects, is characterized in that a chemical plating layer made of the same material as the magnetostrictive material is deposited on the surface of a highly pure magnetostrictive material, and is also heat-treated.

〔実施例〕〔Example〕

以下、本発明の実施例を詳細に説明する。 Examples of the present invention will be described in detail below.

第3図は本発明の一実施例を示す断面図であり、Aは純
度の高い磁歪材、Bは磁歪材Aの表面に被着された磁歪
材Aと同材質でリンを含む化学メッキ層である。ここで
、磁歪材Aとしては例えば電鋳Njを用い、その表面に
薄<(20μm程度)化学メッキ層BとしてNiを被着
している。そして、熱処理としては、例えば約650°
Cで30分程度の加熱を行う。なお、これら化学メッキ
および熱処理は、電鋳Niシートを所定の形状にエツチ
ングした後に行うようにする。
FIG. 3 is a cross-sectional view showing one embodiment of the present invention, where A is a highly pure magnetostrictive material, and B is a chemical plating layer made of the same material as the magnetostrictive material A and containing phosphorus, which is adhered to the surface of the magnetostrictive material A. It is. Here, as the magnetostrictive material A, for example, electroformed Nj is used, and Ni is deposited on the surface thereof as a thin (about 20 μm) chemical plating layer B. Then, as the heat treatment, for example, about 650°
Heat at C for about 30 minutes. Note that these chemical plating and heat treatments are performed after the electroformed Ni sheet is etched into a predetermined shape.

このように構成することにより、内部の純Ni材Aは焼
き鈍まされて硬度が低下すると共に電気−機械結合係数
は高くなり、表面のNiメッキ層Bはリンを含んでいる
ために熱処理により硬度が高くなって梅造林および縦波
の伝播材として良好なものが得られる。実験例によれば
、電鋳Niシートを所定の形状にエツチングしただけの
磁歪線では出ツノ電圧が80mVで対数減衰率が0.0
012 (1/mm)であったものが、n11述の熱処
理のみを施す場合には出力電圧は150mVに増加する
ものの対数減衰率も0;006(1/mm)と大きくな
り、化学メッキ層Bを被着した後熱処理を施す場合には
出力電圧は205mVとさらに増加すると共に対数減衰
率はo 、 000!5 (1/mm)と低下し、本発
明により特性の優れた磁歪材料を実現できることが確認
できた。
With this configuration, the internal pure Ni material A is annealed to reduce its hardness and increase its electrical-mechanical coupling coefficient, and the Ni plating layer B on the surface contains phosphorus, so it cannot be heated by heat treatment. It has a high hardness and is good for plum afforestation and longitudinal wave propagation material. According to an experimental example, a magnetostrictive wire made by simply etching an electroformed Ni sheet into a predetermined shape has an output voltage of 80 mV and a logarithmic attenuation rate of 0.0.
012 (1/mm), but when only the heat treatment described in n11 is applied, the output voltage increases to 150 mV, but the logarithmic attenuation rate also increases to 0;006 (1/mm), and the chemical plating layer B When heat treatment is performed after depositing, the output voltage further increases to 205 mV and the logarithmic attenuation rate decreases to 0,000!5 (1/mm), making it possible to realize a magnetostrictive material with excellent properties by the present invention. was confirmed.

なお、第2図における磁歪&j140の反射端n1(4
2をポテンショメータの円環の円周よりも長く延長形成
することにより、有効回転検出角度を広くすることがで
きる。この場合、反射端部42は円周と同一平面に延長
形成してもよいし、円周方向と交わるように延長形成し
てもよい。
In addition, the reflective end n1 (4
By extending 2 to be longer than the circumference of the ring of the potentiometer, the effective rotation detection angle can be widened. In this case, the reflective end portion 42 may be formed to extend on the same plane as the circumference, or may be formed to extend so as to intersect with the circumferential direction.

また、磁歪線の一端に超音波信号を受信する検出部を設
は移動体に超音波信号を発生する駆動部を設けるように
してもよい。
Further, a detecting section for receiving an ultrasonic signal may be provided at one end of the magnetostrictive wire, and a driving section for generating an ultrasonic signal may be provided on the moving body.

また、駆動部または検出部のいずれかを複数個設けて縦
弾性波の検出部への到達時間の差から回転角を演算する
ようにしてもよい。
Alternatively, a plurality of either the drive section or the detection section may be provided, and the rotation angle may be calculated from the difference in arrival time of the longitudinal acoustic waves to the detection section.

また、縦弾性波を発生させるのにあたっては、電歪素子
を用いてもよい。
Furthermore, an electrostrictive element may be used to generate longitudinal elastic waves.

また、磁歪材料はNiに限るものではなく、その他の磁
歪材料であってもよい。
Further, the magnetostrictive material is not limited to Ni, and may be other magnetostrictive materials.

さらに、上記実施例では、磁歪材料を用いて磁歪ポテン
ショメータを構成する例を示したが、これに限るもので
はなく、各種の磁歪装置に用いることができる。
Further, in the above embodiment, an example was shown in which the magnetostrictive potentiometer was constructed using a magnetostrictive material, but the present invention is not limited to this, and can be used in various magnetostrictive devices.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば°、人ぎな出力信
号が得られ、縦弾性波信号の伝稲J口失が少なく、m械
的強度もイλれた(1赳歪材オ゛1を吉ることができる
As explained above, according to the present invention, a reasonable output signal can be obtained, there is little loss of transmission of the longitudinal acoustic wave signal, and the mechanical strength is also improved. 1 can be lucky.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来の磁歪ポテンショメータの構
成図、第3図は本発明の一実施例を示す断面図である。 40・・・磁歪線、50・・・支持部、61〜64・・
・糖部、70・・・駆動部、80・・・回転軸、90・
・・取付部材、100・・・検出部、A・・・磁歪材、
B・・・イヒ学メッキ層。
1 and 2 are configuration diagrams of a conventional magnetostrictive potentiometer, and FIG. 3 is a sectional view showing an embodiment of the present invention. 40...Magnetostrictive wire, 50...Support part, 61-64...
・Sugar section, 70... Drive section, 80... Rotating shaft, 90.
... Mounting member, 100... Detection section, A... Magnetostrictive material,
B... Ihigaku plating layer.

Claims (1)

【特許請求の範囲】[Claims] 純度の高い磁歪材の表面に磁歪材と同材質の化学メッキ
層が被着されると共に熱処理が施されたことを特徴とす
る磁歪材料。
A magnetostrictive material characterized in that a chemical plating layer of the same material as the magnetostrictive material is applied to the surface of a highly pure magnetostrictive material and is also heat-treated.
JP59020496A 1984-02-07 1984-02-07 Magnetostrictive material Granted JPS60164375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59020496A JPS60164375A (en) 1984-02-07 1984-02-07 Magnetostrictive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59020496A JPS60164375A (en) 1984-02-07 1984-02-07 Magnetostrictive material

Publications (2)

Publication Number Publication Date
JPS60164375A true JPS60164375A (en) 1985-08-27
JPH0412636B2 JPH0412636B2 (en) 1992-03-05

Family

ID=12028766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59020496A Granted JPS60164375A (en) 1984-02-07 1984-02-07 Magnetostrictive material

Country Status (1)

Country Link
JP (1) JPS60164375A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254678A (en) * 1984-05-30 1985-12-16 Nissan Motor Co Ltd Torque detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5468999A (en) * 1977-11-11 1979-06-02 Mishima Kosan Co Ltd Material for magnetostriction vibration propagation medium
JPS5487440A (en) * 1977-12-19 1979-07-11 Ibm Slender bistable magnetostrictive device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5468999A (en) * 1977-11-11 1979-06-02 Mishima Kosan Co Ltd Material for magnetostriction vibration propagation medium
JPS5487440A (en) * 1977-12-19 1979-07-11 Ibm Slender bistable magnetostrictive device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254678A (en) * 1984-05-30 1985-12-16 Nissan Motor Co Ltd Torque detector
JPH0452633B2 (en) * 1984-05-30 1992-08-24 Nissan Motor

Also Published As

Publication number Publication date
JPH0412636B2 (en) 1992-03-05

Similar Documents

Publication Publication Date Title
EP0136086A2 (en) A torque sensor of the noncontact type
JPS6084099A (en) Supersonic transducer
JPS61260321A (en) Position detecting device
CA1111969A (en) Bistable magnetostrictive device and methods of manufacture
CA1145009A (en) Magnetic transducer and proximity detection device incorporating such a transducer
Lafleur et al. Acoustically active surfaces using piezorubber
JPH0326339B2 (en)
US5813998A (en) Method and system for coupling acoustic energy using an end-fire array
JPS60164375A (en) Magnetostrictive material
US20200393417A1 (en) Normal beam emat on components with a bonded magnetostrictive layer
JPH0424530A (en) Magnetostriction torque sensor
JPH07103291A (en) Harmonic drive reduction gear
JPS60164216A (en) Rotary type magnetostriction potentiometer
JPH05231967A (en) Magnetostrictive torque sensor
JPS62206421A (en) Torque sensor
JPH08219908A (en) Magnetstrictive strain sensor
Maslov et al. A new focusing ultrasonic transducer and two foci acoustic lens for acoustic microscopy
US3465177A (en) Thin film piezoelectric transducer
JPH11295281A (en) Ultrasonic transducer for measurement
GB1581737A (en) Heat treatment of amorphous ferromagnetic ribbons
JPH09166584A (en) Coil type electromagnetic ultrasonic wave transducer
JPS6078318A (en) Magnetostriction potentiometer
Ellis et al. Magnetically transduced surface acoustic wave devices
Worthington et al. A magnetoacoustic keyboard
JPH07286995A (en) Electromagnetic ultrasonic wave transmitting and receiving method and device therefor