JPS60164321A - Semiconductor device producing apparatus - Google Patents

Semiconductor device producing apparatus

Info

Publication number
JPS60164321A
JPS60164321A JP2015684A JP2015684A JPS60164321A JP S60164321 A JPS60164321 A JP S60164321A JP 2015684 A JP2015684 A JP 2015684A JP 2015684 A JP2015684 A JP 2015684A JP S60164321 A JPS60164321 A JP S60164321A
Authority
JP
Japan
Prior art keywords
chamber
light
quartz window
thin film
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015684A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Ikeda
龍彦 池田
Hiromi Ito
伊藤 博已
Akira Shigetomi
重富 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015684A priority Critical patent/JPS60164321A/en
Publication of JPS60164321A publication Critical patent/JPS60164321A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation by radiant heating of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/6776Continuous loading and unloading into and out of a processing chamber, e.g. transporting belts within processing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To keep the irradiation to a semiconductor wafer constant, by providing a chamber and a quartz window each having an elongated longitudinal length so that each semiconductor wafer is made movable in the longitudinal direction thereof corresponding to progress of the formation of a thin film and that light is irradiated on the wafer in accordance with the movement thereof. CONSTITUTION:A heater block 14 carrying a semiconductor wafer 15 is located within a chamber 11 on one end thereof and is heated to a predetermined temperature. A photochemical reactive gas is circulated within the chamber 11, while light sources 16 are lit so that the semiconductor wafer 15 is irradiated with the light through a quartz window 17. Photochemical reaction is thereby caused to occur on the surface of the semiconductor wafer 15 so that a thin film starts to be formed by deposition of the reactive product. The heater block 14 and the light sources 16 are moved toward the other end of the chamber corresponding to progress of the formation of the thin film, whereby the light from the light sources is always allowed to pass through a part of the quartz window 17 without fog. Accordingly, a constant light irradiation to the surface of the semiconductor wafer 15 is ensured. In such a manner, a thin film can be formed while avoiding fogging on the inner side of the quartz window involved by light irradiation, and thus the reactive product can be prevented from decreasing deposition thereof.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は半導体製造装置に関し、特に光化学反応を用
いた半導体製造装置に係るものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor manufacturing apparatus, and particularly to a semiconductor manufacturing apparatus using photochemical reactions.

〔従来技術〕[Prior art]

従来例によるこの種の半導体製造装置の概要構成を第1
図に示す。すなわち、この第1図において、符号1は供
給系2および排出系3を有して内部に光化学反応性を有
するガスを流通させるように構成したチャンバであシ、
4はこのチャンバ1内にあって複数枚の半導体ウェハ5
を載置し得るようにしたヒータブロック、6け前記チャ
ンバ1外の上方に配置された光源、1はこの光源6の光
が前記各半導体ウェハ5上に到達し得るようにして前記
チャンバ1に形成された石英窓である。
The general configuration of this type of semiconductor manufacturing equipment according to the conventional example is shown in the first part.
As shown in the figure. That is, in FIG. 1, reference numeral 1 denotes a chamber configured to have a supply system 2 and a discharge system 3, and to allow a photochemically reactive gas to flow therein.
A plurality of semiconductor wafers 5 are placed in the chamber 1.
6 light sources placed above the outside of the chamber 1; 1 is placed in the chamber 1 so that the light from the light source 6 can reach each of the semiconductor wafers 5; It is a formed quartz window.

この従来例装置の構成にあっては、ヒータブロック4に
よシ各半導体ウェハ5を加熱しておき、チャンバ1内に
光化学反応性を有するガス、例えばシランを流通させた
状態で、各半導体ウェハ5上に石英窓7を通して光源6
の光を照射することによシ、これらの各半導体ウェハ5
の表面上で光化学反応を生じ、ガスの分解とウェハ表面
への吸着との過程を経た反応生成物の堆積によ如、各半
導体ウェハ5の表面上に目的とする薄膜を形成できるの
である。こ\でこのような光化学反応によって得られる
薄膜は、例えば熱酸化膜などに比較して低温での形成が
可能であると共に、圧力による影響も少なくて、常圧下
での形成ができるという利点を有し、かつ形成された薄
膜は例えばプラズマCVDMK比較して放射ダメージが
少なくその膜特性が良好であるという特長をも有してい
る。
In the configuration of this conventional apparatus, each semiconductor wafer 5 is heated by the heater block 4, and a photochemically reactive gas such as silane is circulated in the chamber 1. Light source 6 through quartz window 7 on 5
By irradiating each of these semiconductor wafers 5 with light of
A desired thin film can be formed on the surface of each semiconductor wafer 5 by causing a photochemical reaction on the surface of the semiconductor wafer 5 and depositing the reaction product through the process of gas decomposition and adsorption onto the wafer surface. Thin films obtained by such photochemical reactions have the advantage that they can be formed at lower temperatures than, for example, thermal oxide films, and are less affected by pressure and can be formed under normal pressure. The formed thin film also has the advantage of less radiation damage and better film properties than, for example, plasma CVDMK.

しかし寿から一方、このよう々従来例装置の場合には、
その各半導体ウェハの表面上への薄膜形成過程において
、千ヤンバ内での石英窓ノ内面ニも同様に薄膜が形成さ
れてしまい、この石英窓に曇りを生じて光源からの光の
透過率が減少し、反応生成物の堆積量が低下して遂には
光化学反応を生じなくなるという欠点があった。
However, since Kotobuki, on the other hand, in the case of conventional devices like this,
In the process of forming a thin film on the surface of each semiconductor wafer, a thin film is similarly formed on the inner surface of the quartz window within the 1,000-yamba range, causing cloudiness on the quartz window and reducing the transmittance of light from the light source. This has the disadvantage that the amount of reaction products deposited decreases and photochemical reactions no longer occur.

〔発明の概要〕[Summary of the invention]

この発明は従来のこのような欠点に鑑み、内部に光化学
反応性を有するガスを流通させるように構成したチャン
バ、およびこのチャンバに設けられる石英窓の長手方向
長方を充分に長くさせ、かつチャンバ内でのヒータブロ
ックおよびこのヒータブロック上に載置される各半導体
ウェハを、薄膜形成過程に対応して順次に長手方向に移
動可能にさせると共に、このヒータブロックの移動に対
応して光源からの石英窓を通した光照射を行なわせるよ
うにし、これにより各半導体ウェハの表面上への光の照
射量が常時一定になるようにすることによって、反応生
成物の堆積量低下を解消させたものである。
In view of these conventional drawbacks, the present invention provides a chamber configured to allow a photochemically reactive gas to flow therein, a quartz window provided in the chamber, and a quartz window provided in the chamber to be sufficiently long in the longitudinal direction. The heater block and each semiconductor wafer placed on the heater block can be sequentially moved in the longitudinal direction corresponding to the thin film forming process, and the light source can be moved in response to the movement of the heater block. A device that eliminates the reduction in the amount of reaction products deposited by irradiating light through a quartz window so that the amount of light irradiated onto the surface of each semiconductor wafer is always constant. It is.

〔発明の実施例〕[Embodiments of the invention]

以下この発明に係る半導体製造装置の一実施例につき、
第2図を参照して詳細に説明する。
Hereinafter, an embodiment of the semiconductor manufacturing apparatus according to the present invention will be described.
This will be explained in detail with reference to FIG.

この第2図に示す実施例装置は前記第1図に示す従来例
装置に対応して表わしたものである。この第2図におい
て、符号11.け長手方向長さを充分に長くシ、端部に
それぞれ供給系12および排出系し3を有して内部に光
化学反応性を有するガスを流通させるように構成したチ
ャンバ、14はこのチャンバ11内をその長手方向に氾
い移動可能にし、かつ複数枚の半導体ウェハ15を載置
し得るfうにしたヒータブロック、16は前記チャンバ
11外の上方にあって、前記ヒータブロック14の範囲
に対応して配置された光源、17は前記チャンバ11の
長手方向に沿わせて充分に長く形成され、前記光源16
の光が前記各半導体ウニ1)15上に到達し得るように
した石英窓、18は前記チャンバ11の長手方向各端部
にあって設けられたプラズマ電極でアシ、また前記した
各半導体ウェハ15を載量するヒータブロック14と前
記光源16とは、適宜公知の機構構成を用い、ヒータブ
ロック14については前記チャンバ11内、光源16に
ついては四千ヤンバ11外で、薄膜形成過程に対応し相
互に連動して、チャンバ11の長手方向に順次に移動で
きるようにしたものである。
The embodiment shown in FIG. 2 corresponds to the conventional device shown in FIG. 1. In this FIG. 2, reference numeral 11. A chamber 14 has a sufficiently long length in the longitudinal direction and has a supply system 12 and a discharge system 3 at each end to allow a photochemically reactive gas to flow therein. A heater block 16, which is movable in its longitudinal direction and on which a plurality of semiconductor wafers 15 can be placed, is located above the outside of the chamber 11 and corresponds to the range of the heater block 14. The light source 17 arranged in
A quartz window 18 is a plasma electrode provided at each end in the longitudinal direction of the chamber 11 to allow light to reach each of the semiconductor wafers 15. The heater block 14 on which the light source 16 is placed and the light source 16 are arranged using a known mechanical structure as appropriate, and the heater block 14 is placed inside the chamber 11, and the light source 16 is placed outside the 4000 Yamba 11, so that they can be connected to each other in correspondence with the thin film forming process. It is possible to move sequentially in the longitudinal direction of the chamber 11 in conjunction with the movement.

次にこの実施例装置の作用について述べる。Next, the operation of this embodiment device will be described.

まずチャンバ11内の一方の端部に近付けた位置に複数
枚の各半導体ウェハ15を載置したヒータブロック14
を配置させると共に、このヒータブロック14により各
半導体ウェハ15を所定温度に加熱させ、かつ同位置に
対応して光源16を配置させておき、この状態で光化学
反応性ガス。
First, a heater block 14 on which a plurality of semiconductor wafers 15 are placed near one end of the chamber 11
At the same time, each semiconductor wafer 15 is heated to a predetermined temperature by the heater block 14, and a light source 16 is placed corresponding to the same position, and in this state, a photochemically reactive gas is heated.

例えばシランをこのチャンバ11内に流通させ、また光
源16を点灯させて、石英窓17の該当部分を通し、光
源16からの光を各半導体ウェハ15に照射させること
妬よ)、こhらの各半導体ウェハ15の表面上で光化学
反応を生じ、ガスの分解とウェハ表面への吸着との過程
を経た反応生成物の堆積によシ、各半導体ウェハ15の
表面上に目的とする薄膜の形成が開始される。そしてこ
れに伴ない同時に光源16からの光が透過する石英窓1
7の該当部分の内側についても同様に薄膜の形成が開始
されるが、同該当部分以外の石英窓17の部分では光の
透過がなくて、その内側には薄膜が形成されることはな
く、従って同該当部分以外の石英窓17の部分には曇り
を生じない。
For example, by flowing silane into this chamber 11 and by turning on the light source 16, the light from the light source 16 is irradiated onto each semiconductor wafer 15 through the corresponding part of the quartz window 17). A photochemical reaction occurs on the surface of each semiconductor wafer 15, and a desired thin film is formed on the surface of each semiconductor wafer 15 by depositing a reaction product through the process of gas decomposition and adsorption to the wafer surface. is started. At the same time, the quartz window 1 through which the light from the light source 16 passes through
Formation of a thin film starts similarly on the inside of the corresponding part 7, but no light is transmitted through the parts of the quartz window 17 other than the corresponding part, and no thin film is formed on the inside thereof. Therefore, the portions of the quartz window 17 other than the corresponding portions are not fogged.

そこで前記した薄膜の形成開始に併せて、チャンバ11
内での各半導体ウニ/115を載置したヒータブロック
14と、同千ヤンバ11外での光源16とを、薄膜形成
過程に対応させて順次長手方向に泊い他方の端部側に移
動させて行くと、光源16からの光が常時、曇シのない
石英窓17の部分を透過することになって、各半導体ウ
ニ1)15の表面上への光の照射量を常時一定に保持で
き、従ってこのウェハ表面上に薄膜を一様に堆積させ得
るのでアシ、このようにしてヒータブロック14がチャ
ンバ11の他方の端部に達したのちに、薄膜形成を終了
した各半導体ウエト15を取シ出し、その後、チャンバ
11内には、エツチングガスを導入してプラズマ放電さ
せることにより、前記の薄膜形成過程で石英窓17の内
側に付着形成された反応生成物を取り除いた上で、この
チャンバ11を再使用可能とするのであシ、以上の操作
を繰シ返して実行するのである。
Therefore, in conjunction with the start of forming the thin film described above, the chamber 11
The heater block 14 on which each semiconductor urchin/115 is mounted inside and the light source 16 outside the same yamba 11 are sequentially moved in the longitudinal direction to the other end side in accordance with the thin film forming process. As a result, the light from the light source 16 always passes through the clear quartz window 17, and the amount of light irradiated onto the surface of each semiconductor sea urchin 1) 15 can be kept constant at all times. Therefore, since the thin film can be uniformly deposited on the wafer surface, after the heater block 14 reaches the other end of the chamber 11, each semiconductor weight 15 on which the thin film has been formed is removed. After that, an etching gas is introduced into the chamber 11 and plasma discharge is performed to remove the reaction products deposited on the inside of the quartz window 17 in the thin film forming process. 11 can be reused, so the above operations are repeated.

なお、前記実施例においては、チャンバ内でのヒータブ
ロックおよびこのヒータブロック上に載置される各半導
体ウェハと、同チャンバ外での光源とを薄膜形成過程に
対応して順次に長手方向に移動させ、石英窓部分に対す
る光の透過位置に順次に換えてゆくようにしているが、
前記石英窓の長手方向全長に亘って光源を列設させ、各
半導体ウェハを載置したヒータブロックのみを薄膜形成
過程に対応して順次に長手方向に移動させると共に、こ
のヒータブロックの移動に伴ない、その移動位置に準じ
て同位置に対応する光源を部分的に点灯させて行くよう
にしても、同様な作用効果を得られるものである。
In the above embodiment, the heater block in the chamber, each semiconductor wafer placed on the heater block, and the light source outside the chamber are sequentially moved in the longitudinal direction corresponding to the thin film forming process. The light transmittance position relative to the quartz window is sequentially changed.
Light sources are arranged in rows over the entire length of the quartz window in the longitudinal direction, and only the heater blocks on which each semiconductor wafer is placed are sequentially moved in the longitudinal direction in accordance with the thin film forming process, and as the heater blocks are moved, However, the same effect can be obtained even if the light sources corresponding to the same position are turned on partially according to the movement position.

〔発明の効果〕〔Effect of the invention〕

以上詳述したようにこの発明によれば、内部に光化学反
応性を有するガスを流通させるように構成したチャンバ
、およびこのチャンバに設けられる石英窓の長手方向長
さを充分に長くさせ、また複数枚の半導体ウエノ1を載
置して加熱するヒータブロックを、このチャンバ内で薄
膜形成過程に対応して順次に長手方向に移動可能にさせ
ると共に、このヒータブロックの移動に対応してプロ゛
ンク上に載置される各半導体ウエトの表面上に、石英窓
を通して光源からの光照射を行なわせるようにしたから
、これによって各半導体ウニ/・の表面上への光の照射
量を常時一定に保持し得て、この光照射に伴なう石英窓
内側の曇りを避けた薄膜形成を行なうことができ、従っ
て反応生成物の堆積量低下を阻止し得るものであシ、ま
たチャンノく内にプラズマ電極を設け、薄膜形成後にエ
ツチングガスを導入させてプラズマ放電作用を行なわせ
るようにすることで、石英窓内側に付着する薄膜の除去
ができ、これによって装置の継続使用が可能となり、し
かも装置構成自体も比較的簡単で容易に提供できるなど
の特長を有するものである。 ・
As detailed above, according to the present invention, there is provided a chamber configured to allow a photochemically reactive gas to flow therein, a quartz window provided in this chamber having a sufficiently long length in the longitudinal direction, and a plurality of A heater block on which a sheet of semiconductor wafer 1 is placed and heated is made to be sequentially movable in the longitudinal direction corresponding to the thin film forming process within this chamber, and a heater block is moved in the longitudinal direction corresponding to the movement of the heater block. Since the light source is irradiated with light from a light source through a quartz window onto the surface of each semiconductor layer placed on top, the amount of light irradiated onto the surface of each semiconductor layer is always constant. It is possible to form a thin film that can be maintained and to avoid clouding on the inside of the quartz window due to this light irradiation, and therefore to prevent a decrease in the amount of reaction products deposited. By installing a plasma electrode and introducing an etching gas after forming a thin film to cause a plasma discharge effect, the thin film adhering to the inside of the quartz window can be removed, making it possible to continue using the device. The structure itself is relatively simple and has the advantage of being easily provided.・

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例での半導体製造装置の概要を示す断面構
成図、第2図はこの発明に係る半導体製造装置の一実施
例による概要を示す断面構成図である。 11・・・・チャンバ、12′J6よび13・・−・光
化学反応性を有するガスの供給系および排出系、14−
−−・ヒータブロック、15・・−・半導体ウェハ、1
6・・e・光源、17・φ・・石英窓、18・・・・プ
ラズマ電極。 代理人 大 岩 増 j8
FIG. 1 is a sectional view showing an outline of a conventional semiconductor manufacturing apparatus, and FIG. 2 is a sectional view showing an outline of an embodiment of a semiconductor manufacturing apparatus according to the present invention. 11... Chamber, 12'J6 and 13... Photochemically reactive gas supply system and exhaust system, 14-
--- Heater block, 15 --- Semiconductor wafer, 1
6..e. light source, 17.φ.. quartz window, 18.. plasma electrode. Agent Masu Oiwa j8

Claims (1)

【特許請求の範囲】 (1)光化学反応によシ薄膜を形成させる半導体製造装
置において、内部に光化学反応性を有するガスを流通さ
せるように構成したチャンバ、およびこのチャンバに設
けられる石英窓の長手方向長さを充分に長くさせ、かつ
複数枚の半導体ウェハを載置して加熱するヒータブロッ
クを、チャンバ内で薄膜形成過程に対応して順次に長手
方向に移動可能にさせると共に、このヒータブロックの
移動に対応してブロック上に載置される各半導体ウェハ
の表面上に、石英窓を通して光源からの□光照射を行な
わせ得るようにしたことを特徴とする半導体製造装置。 (21光源をヒータブロックに連動して移動可能にした
ことを特徴とする特許請求の範囲第1項記載の半導体製
造装置。 (3)石英窓の長手方向全長に亘って光源を列設させ、
ヒータブロックの移動に伴ない、その移動位置に準じて
同位置に対応する光源を部分的に点灯制御させるように
したことを特徴とする特許請求の範囲第1項記載の半導
体製造装置。 (4) チャンバ内にプラズマ電極を設けたことを特徴
とする特許請求の範囲第1項または第2項記載の半導体
製造装置。
[Scope of Claims] (1) In a semiconductor manufacturing apparatus that forms a thin film by a photochemical reaction, a chamber configured to allow a gas having photochemical reactivity to flow therein, and a longitudinal side of a quartz window provided in this chamber. A heater block having a sufficiently long direction length and on which multiple semiconductor wafers are placed and heated can be sequentially moved in the longitudinal direction in accordance with the thin film forming process within the chamber. 1. A semiconductor manufacturing apparatus characterized in that □ light from a light source can be irradiated through a quartz window onto the surface of each semiconductor wafer placed on a block in accordance with the movement of the block. (21) The semiconductor manufacturing apparatus according to claim 1, characterized in that the light source is movable in conjunction with the heater block. (3) The light sources are arranged in rows over the entire longitudinal length of the quartz window,
2. The semiconductor manufacturing apparatus according to claim 1, wherein as the heater block moves, lighting of the light sources corresponding to the same position is partially controlled according to the moved position. (4) A semiconductor manufacturing apparatus according to claim 1 or 2, characterized in that a plasma electrode is provided within the chamber.
JP2015684A 1984-02-06 1984-02-06 Semiconductor device producing apparatus Pending JPS60164321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015684A JPS60164321A (en) 1984-02-06 1984-02-06 Semiconductor device producing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015684A JPS60164321A (en) 1984-02-06 1984-02-06 Semiconductor device producing apparatus

Publications (1)

Publication Number Publication Date
JPS60164321A true JPS60164321A (en) 1985-08-27

Family

ID=12019292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015684A Pending JPS60164321A (en) 1984-02-06 1984-02-06 Semiconductor device producing apparatus

Country Status (1)

Country Link
JP (1) JPS60164321A (en)

Similar Documents

Publication Publication Date Title
JPS63307740A (en) Photochemical reaction processing device
JPS60164321A (en) Semiconductor device producing apparatus
JPH08316185A (en) Ultraviolet treatment apparatus
JPH04188622A (en) Semiconductor device manufacturing method and device
JPS61228633A (en) Formation of thin film
GB2194966A (en) Deposition of films
JPS5940525A (en) Growth of film
JPH01220431A (en) Surface treatment using laser
JPS60216549A (en) Manufacture of semiconductor device
JP3634029B2 (en) Temperature control method in vacuum deposition system
JPS6138269B2 (en)
JPH0210866B2 (en)
JPH04352418A (en) Semiconductor manufacturing device
JPH0746688B2 (en) Surface treatment method
JPH07108836B2 (en) Low pressure CVD equipment
JPS63114209A (en) Equipment utilizing photochemical reaction
JPS59209643A (en) Photochemical vapor phase deposition device
JPS63307279A (en) Photochemical reaction treatment device
JPS63277769A (en) Device for utilizing photochemical reaction
JPH042118A (en) Formation of cvd film
JPS6314873A (en) Photochemical vapor deposition device
JPH076959A (en) Wafer support
JPS61194708A (en) Apparatus for processing
JPS60121716A (en) Photo cvd method and device therefor
JPS6273727A (en) Light exciting processor