JPS60164271A - Infrared homing apparatus - Google Patents

Infrared homing apparatus

Info

Publication number
JPS60164271A
JPS60164271A JP2017784A JP2017784A JPS60164271A JP S60164271 A JPS60164271 A JP S60164271A JP 2017784 A JP2017784 A JP 2017784A JP 2017784 A JP2017784 A JP 2017784A JP S60164271 A JPS60164271 A JP S60164271A
Authority
JP
Japan
Prior art keywords
target
gimbal
scanning
infrared
scanning mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017784A
Other languages
Japanese (ja)
Inventor
Susumu Takahashi
進 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2017784A priority Critical patent/JPS60164271A/en
Publication of JPS60164271A publication Critical patent/JPS60164271A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

PURPOSE:To improve the temperature resolving power with a reduction in the required frequency band of an amplifier by performing a horizontal scanning with the oscillation of a gimbal only, when searching a target. CONSTITUTION:Incident infrared rays are focused with an infrared dome 1 and an infrared ray scope 2 and reflected with a double-axis scanning mirror 3 for horizontal and vertical scannings. Infrared rays reflected with the scanning mirror 3 are sent to a signal processor 11 through a detector 6, a preamplifier 7, a multiplexer 8 and the like to automatically detect and track a target. The unit indicated by the dotted line 20 is carried on a gimbal driven by a gimbal driving section 13 and detects the angle of horizontal oscillation of the gimbal with respect to the machine body with a rotary encoder 14 to be fed to the signal processor 11. A target is searched by oscillating the gimbal to the right or left. Here, the 2-axis scanning mirror 3 stops scanning and restarts it to track the target after the discovery thereof.

Description

【発明の詳細な説明】 〔発明の技術分野」 この発明は赤外線撮像装置をジンバル上に搭載し、ジン
バルを振って目標の捜索、追尾を行なう赤外線ホーミン
グ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an infrared homing device in which an infrared imaging device is mounted on a gimbal and searches for and tracks a target by swinging the gimbal.

〔従来技術〕[Prior art]

一般にこの種の装置は、一旦目標を捕捉して追尾する時
に比べて、目標を雑音と区別して誤りな(確実に探知す
るだめにはより高い信号対雑音比が要求される。従って
目標の捜索時には目標の追尾時よりも温度分解能が優れ
ていることが望ましい。しかし、従来のこの種装置は目
標の捜索時も目標を追尾する時と同様に走査鏡による撮
像を行ない、撮像される毎フィールドの画面を用いて目
標の探知を行なっていた。従って目標を捜索する時も目
標を追尾する時と同じ温度分解能しか得られなかった。
In general, this type of device is difficult to distinguish the target from noise and make mistakes when tracking the target once it has been acquired (a higher signal-to-noise ratio is required to reliably detect the target. Sometimes it is desirable to have better temperature resolution than when tracking a target. However, in conventional devices of this kind, when searching for a target, images are taken using a scanning mirror in the same way as when tracking a target, and each imaged field is Therefore, when searching for a target, the same thermal resolution as when tracking the target could be obtained.

〔発明の概要J この発明は、かかる欠点を改善する目的でなされたもの
で、目標の捜索時に走査鏡による水平方向の走査をせず
、ジンバルの首振りにのみによって水平方向の走査を行
ない、それによって減少する所要周波数帯域に応じてフ
ィルタリング処理を行な・い温度分解能を向上させるよ
うにしだもので以下図面について詳#lllに説明する
[Summary of the Invention J This invention was made for the purpose of improving the above drawbacks, and when searching for a target, horizontal scanning is not performed using a scanning mirror, but only by swinging the gimbal. As a result, filtering processing is performed in accordance with the required frequency band that is reduced to improve the temperature resolution.The drawings will be described in detail below.

〔発明の実施例〕[Embodiments of the invention]

第1図Qよこの発明の一実施例を示す構成図であり、入
射赤外光は赤外ドーム+lj及び赤外線遠鏡(2)によ
って集光され、水平方向に画面を構成するための走査を
、また垂直方向にインタレースのためのl[査を行なう
2軸走査鏡(3)によって反射される。
FIG. 1 Q is a configuration diagram showing an embodiment of this invention, in which incident infrared light is focused by an infrared dome +lj and an infrared telescope (2), and scanned to form a screen in the horizontal direction. , and is also reflected by a two-axis scanning mirror (3) that scans for interlacing in the vertical direction.

その際、2軸走査鏡(3)は走査鏡駆動器(4)によっ
て駆動制御される。2軸走査鏡(3)によって反射され
た赤外光は結像光学系(5)によって1次元アレイの赤
外線検出器(6)上に結像される。赤外線検出器(61
の各検出素子の信号はプリアンプ(7)によって増幅さ
れ、マルチプレクサ(8)によって各検出素子に対応し
た信号が順次サンプルされシリアル信号に変換される。
At this time, the two-axis scanning mirror (3) is driven and controlled by a scanning mirror driver (4). The infrared light reflected by the two-axis scanning mirror (3) is imaged onto a one-dimensional array of infrared detectors (6) by an imaging optical system (5). Infrared detector (61
The signal of each detection element is amplified by a preamplifier (7), and the signal corresponding to each detection element is sequentially sampled by a multiplexer (8) and converted into a serial signal.

マルチプレクサで出力されるシリアル信号はポストアン
プ(9)で利得及び直流レベルの自動制御が行なわれヤ
勺変換器LIIでディジタル信号に変換される。ディジ
タルのビデオ信号は信号処理器0υに送られ、ここで目
標の自動探知及び目標の追尾が行なわれる。これらのタ
イミングはすべて同期制御器u7Jで制御される。一方
、第1図中に点線で囲った部分はジンバル駆動器11尋
で駆動されるジンバル上に搭載されており9機体に対す
るジンバルの水平方向の首振り角はロータリーエンコー
ダ圓で検出され信号処理器Uυに送られる。−第2図は
ジンバルの首振りと2軸走査鏡の鉛直方向のインタレー
ス走査及び水平方向の走査の関係を示しだ図で、(a)
はジンバルの首振り角の変化を、(b)は2軸走査鏡の
インタレース走査を、(0)は2軸走A〕娩の水平方向
の走査を示している0捜索開始時よりジンバルの首を左
右に振り目標を捜索する。その際2軸走査鏡の水平方向
の走査は中止しており、鉛直方向のみ赤外線検出器の各
検出素子間のすき間を埋めるためにジンバルの首振り方
向が変わる度にインタレースを行なう。目標捜索により
目標が発見されるとジンバルは目標の方向に向けられ、
2軸走査鏡も通常の撮像のために水平方向の走査を開始
し目標の追尾が行なわれる。
The serial signal output from the multiplexer undergoes automatic gain and DC level control in a post-amplifier (9), and is converted into a digital signal by a digital converter LII. The digital video signal is sent to a signal processor 0υ, where automatic target detection and target tracking are performed. All these timings are controlled by a synchronous controller u7J. On the other hand, the part surrounded by a dotted line in Figure 1 is mounted on a gimbal driven by a gimbal driver at 11 fathoms, and the horizontal swing angle of the gimbal with respect to the nine aircraft is detected by a rotary encoder circle and a signal processor Sent to Uυ. -Figure 2 shows the relationship between gimbal oscillation, vertical interlaced scanning and horizontal scanning of the two-axis scanning mirror, (a)
(b) shows the interlaced scanning of the two-axis scanning mirror, and (0) shows the horizontal scanning of the two-axis scanning A]. Shake your head left and right to search for your target. At this time, horizontal scanning of the two-axis scanning mirror is stopped, and interlacing is performed only in the vertical direction each time the gimbal swing direction changes in order to fill the gap between each detection element of the infrared detector. When a target is found by target search, the gimbal is pointed in the direction of the target.
The two-axis scanning mirror also starts scanning in the horizontal direction for normal imaging to track the target.

一般に赤外m撮像装置の温度分解能は他のパラメータが
変化しない場合には、増幅器の周波数帯域の平方根に反
比例する。いま、視野の一点が赤外線検出器上に結像さ
れて、走査により1個の検出素子を横切る時間をτdと
すると、装置の所要周波数帯域△fは次式で表わされる
Generally, the temperature resolution of an infrared m-imager is inversely proportional to the square root of the frequency band of the amplifier, when other parameters remain unchanged. Now, assuming that the time it takes for a point in the field of view to be imaged on the infrared detector and to cross one detection element by scanning is τd, the required frequency band Δf of the device is expressed by the following equation.

Δf1 ・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・il+−2τd さらに、この種の撮1象装置の通常の撮は時におけるτ
dは次式であられされる。
Δf1 ・・・・・・・・・・・・・・・・・・
・・・・・・・・・il+−2τd Furthermore, the normal imaging with this type of imaging device is τ at the time
d is calculated by the following formula.

αη τd=1 ・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・(2)但し、α:水平方向の瞬時
視野 η:走査鏡の水平方向の有効走査効率 θ:水平方向の視野 F=フィールドレート である。いま、α=0.5 (mrad) 、 η=Q
、4.0= 100 [mrad]、 ? = 60 
(ilz)とすると11)、121式%式% 一方、目標の捜索時に走査鏡の水平方向の走査をせずに
ジンバルの首振りのみにより走査した時のτdは次式で
あられされる。
αη τd=1 ・・・・・・・・・・・・・・・・・・・・・
(2) where α: instantaneous field of view in the horizontal direction η: effective scanning efficiency in the horizontal direction of the scanning mirror θ: field of view in the horizontal direction F=field rate. Now, α=0.5 (mrad), η=Q
, 4.0=100 [mrad], ? = 60
(ilz), then 11), 121 Equation % Equation % On the other hand, τd when scanning is performed only by swinging the gimbal without scanning the scanning mirror in the horizontal direction when searching for a target is given by the following equation.

但し、βニシンパルの首振り角速度 である。いま、β=50([/秒〕とすると(1)。However, the angular velocity of the swing of β Nishinpal It is. Now, if β=50 ([/second]), then (1).

(3)式よりΔf= 0.81 [K11z]となる。From equation (3), Δf=0.81 [K11z].

いま、目標の捜索時と目標の追尾時とでプリアンプの周
波数帯域を所要の周波数帯域に合わせて変化させると。
Now, when searching for a target and tracking a target, the frequency band of the preamplifier is changed to match the required frequency band.

前述のように装置の温度分解能は増幅器の周波数帯域の
平方根に反比例するから目標の捜索時は目標の追尾時に
比べて約4倍温度分解能が向上する。
As mentioned above, the temperature resolution of the device is inversely proportional to the square root of the frequency band of the amplifier, so the temperature resolution improves about four times when searching for a target compared to when tracking a target.

第3図はプリアンプの一実施例を示したものであり、赤
外線検出器の各検出素子に対応した1cu分の増幅器で
ある。目標の捜索時にはスイッチング用トランジスタQ
がONの状態になり、アンプの周波数帯域は次式となる
FIG. 3 shows an embodiment of the preamplifier, which is an amplifier for 1 cu corresponding to each detection element of an infrared detector. When searching for a target, switching transistor Q
is in the ON state, and the frequency band of the amplifier is as follows.

Δf:2πR(01+OO) ””””””””””’
(41但し、トランジスタのON抵抗はRに比べて充分
小さいとする。一方、目標の追尾時にはトランジスタQ
がOFFとなり、アンプの周波数帯域は次式%式% 従って、トランジスタQをONまたはOFFすることに
よりプリアンプの周波数帯域を切り換えることができる
Δf:2πR(01+OO) ”””””””””””'
(41 However, it is assumed that the ON resistance of the transistor is sufficiently smaller than R. On the other hand, when tracking the target, the transistor Q
is turned off, and the frequency band of the amplifier is determined by the following formula: % Therefore, by turning on or off the transistor Q, the frequency band of the preamplifier can be switched.

なお1以上はグリアンプによって周波数帯域を変化させ
る場合について説明したが、グリアンプの周波数帯域を
変えずに、7/D変換後にディジタル的にフィルタリン
グすることによっても温度分解能を向上させることがで
きる。
In addition, although the case where the frequency band is changed by the grid amplifier has been described above, the temperature resolution can also be improved by digitally filtering after 7/D conversion without changing the frequency band of the grid amplifier.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、目標の捜索時に走査鏡
による水平方向の走査をせずに、ジンバルの6振りによ
ってのみ水平方向の走査を行なうことにより増幅器の所
要周波数帯域を減少させ温度分解能を向上させる効果が
ある。
As explained above, this invention reduces the required frequency band of the amplifier and improves temperature resolution by performing horizontal scanning only by six swings of the gimbal without performing horizontal scanning with a scanning mirror when searching for a target. It has the effect of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す構成図、第2図はジ
ンバルの首振りと2軸走査鏡の走査の関係を示した図、
第3図はプリアンプの一実施例を示した図である。 図において、(3)は2軸走査fttM、v6rは赤外
線検出器、(7)はプリアンプである。 代理人大岩増雄
FIG. 1 is a configuration diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing the relationship between gimbal swing and scanning of a two-axis scanning mirror,
FIG. 3 is a diagram showing an embodiment of the preamplifier. In the figure, (3) is a two-axis scanning fttM, v6r is an infrared detector, and (7) is a preamplifier. Agent Masuo Oiwa

Claims (1)

【特許請求の範囲】[Claims] (1)複数の赤外線検出素子を視野の鉛直方向に配列す
るとともに、走査鏡によって水平方向の走査が行なえる
ように構成した赤外線撮像装置をジンバル上に搭載し、
ジンバルを水平方向に振って目標の捜索を行なう赤外線
ホーミング装置において、目標の捜索時には走査鏡の水
平方向の走査をぜずにジンバルの首振りのみによって走
査を行ない、目標の追尾時には走査鏡によって水平方向
の走査を行なうようにしたことを特徴とする赤外線ホー
ミング装置。 121 走査鏡による水平方向の走査の有無によって各
赤外線検出素子に対応するプリアンプの周波数帯域をI
II丁変5せることを特徴とする特許請求の範囲第1項
記載の赤外線ホーミング装置。
(1) A plurality of infrared detection elements are arranged in the vertical direction of the field of view, and an infrared imaging device configured so that horizontal scanning can be performed using a scanning mirror is mounted on a gimbal,
In an infrared homing device that searches for a target by swinging a gimbal horizontally, when searching for a target, scanning is performed only by swinging the gimbal without horizontally scanning the scanning mirror, and when tracking a target, the scanning mirror scans horizontally. An infrared homing device characterized by scanning in a direction. 121 The frequency band of the preamplifier corresponding to each infrared detection element is determined by the presence or absence of horizontal scanning by the scanning mirror.
2. The infrared homing device according to claim 1, characterized in that:
JP2017784A 1984-02-07 1984-02-07 Infrared homing apparatus Pending JPS60164271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017784A JPS60164271A (en) 1984-02-07 1984-02-07 Infrared homing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017784A JPS60164271A (en) 1984-02-07 1984-02-07 Infrared homing apparatus

Publications (1)

Publication Number Publication Date
JPS60164271A true JPS60164271A (en) 1985-08-27

Family

ID=12019893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017784A Pending JPS60164271A (en) 1984-02-07 1984-02-07 Infrared homing apparatus

Country Status (1)

Country Link
JP (1) JPS60164271A (en)

Similar Documents

Publication Publication Date Title
EP0362914B1 (en) Surveillance radar
CN107238842B (en) Area array target searching, scanning and imaging device and method
JPH0746833B2 (en) Imaging device
US4300160A (en) Thermal imaging device for detecting and identifying a thermal object
JPS60164271A (en) Infrared homing apparatus
JPS58180918A (en) Infrared ray monitoring device
JP2508843B2 (en) Target finder
US4164753A (en) Dual pyroelectric vidicon infrared camera
JPS61292122A (en) Scanning system for infrared image device
JPH07274215A (en) Stereoscopic video camera
JPS5952384B2 (en) infrared tracking device
RU2024212C1 (en) Method of infra-red imaging identification of shape of objects
JPS6167186A (en) Detecting device of bundle of radiation
JPS62220883A (en) Image tracking device
JP3135256B2 (en) Image scanning device
JP3343376B2 (en) Ultrasound diagnostic equipment
JPS62167184U (en)
RU2048687C1 (en) Device for search of objects
JPS6329631A (en) Ultrasonic diagnostic apparatus
JP2982518B2 (en) Infrared search device
JPS6396581A (en) Infrared detecting device
JPH11287869A (en) Method for detecting fire source location and its device
JPS56107179A (en) Infrared ray tracking system
JPH02190787A (en) Infrared detecting device
JPH06174828A (en) Target detecting device